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Why Downscale!?

e GCMs

= area-averages

= smooth
topography

= poorly simulated
rainfall

® Need

= point or
catchment scale




Downscaling Methods

® Dynamical downscaling
- Regional Climate Models

Impacts Models

Rﬁegional Climate Models




Downscaling Methods

® Statistical Downscaling
= Empirically relate large-scale GCM fields to local-scale
= Three types

® Regression models

linear - Multiple Linear Regression

non-linear - Artificial Neural Network
® VWeather pattern approaches

condition local parameters on circulation type
® Stochastic weather generators

Markov models of precipitation

® Single-site and multi-site
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STARDEX Obijectives

® TJo rigorously and systematically inter-compare and
evaluate statistical, dynamical and statistical-
dynamical downscaling methods for the
reconstruction of observed extremes and the
construction of scenarios of extremes for selected
European regions

® TJo identify the more robust downscaling techniques
and to apply them to provide reliable and plausible
future scenarios of temperature and precipitation-
based extremes for selected european regions



Two Regions




“Contrasting” Regions
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Indices of “Extremes”’

Index

NEIE

Description

pav mean precipitation average precipitation on all days

pint precipitation intensity average precipitation on days with >Imm
pq90 Precipitation 90th percentile 90th percentile of precipitation on days with >l mm
px5d maximum 5-day precipitation maximum precipitation from any 5 consecutive days
pxcdd maximum consecutive dry days maximum number of consecutive days with < Imm
5190 e e @ el e ey creis fraction of total precipitation from events > long-

term 90th percentile

pni90

number of heavy events

number of events > long-term 90th percentile
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Downscaling Models

® Statistical
= Direct

° Rei ression

= Indirect Multi-site methods
® Regression - maintain covariance

MLPS{MLPK, RBF
® Regression/Resampling

® Dynamical
- HadRM3
- CHRM



SDSM

® [wo-step conditional resampling

= downscales area-average daily precipitation using a
combination of regression methods and a stochastic
weather generator

® multi-site method
= stations resampled depending on area average
® can’t exceed max one-day total

® Grid point predictors of 26 surface and upper air
variables at several grid points for two time lags

= over 200 predictors



CCA

Downscales seasonal indices of extremes
directly using variability of large-scale
circulation

Canonical correlation analysis of indices with
MSLP and 700hPa temperature and humidity

Best combination of predictors chosen using
cross validation in training period

Multi-site method
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Artificial Neural Networks

® non linear mapping of a
set of inputs to a set of Outputs
outputs via hidden layer @ @ @ (predictand)
nodes

® arbitrary number of

hidden layers with an @ @ @ Hidden Layer

arbitrary number of
nodes m
® this comparison used a @ @ @ Inputs
(predictors)

single hidden layer with
~10-20 nodes



Types of ANNs

A

B ‘ ‘

X X

X2

Multi Layer Perceptron Radial Basis Function

Optimises network according Optimises network according
to inputs and outputs to inputs only

Faster but requires estimation
Slower
of number of clusters



ANNs in this study

® SDSM predictors

e MLPK and RBF
= MLP and RBF with predictors chosen by MLR

= sum-of-squares error metric

® MLPS and MLPR

= MLP with predictors chosen by Automatic Relevance
Determination

= gamma-function error metric

- probabilistic output of P(rain) and gamma & and 3

® MLPS uses expected rainfall = Paf3
® MLPR uses Monte Carlo resampling



Dynamical downscaling

e HadRM3
- Hadley Centre 3rd generation RCM
= 19 levels + 4 soil, 50km x 50km resolution
= comprehensive atmospheric and land surface
physics

e CHRM

= adaption of HRM - the operational
forecasting model of the German and Swiss
met. services

= 20 levels + 3 soil, 55km x 55km

= full physics
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Training and Validation

® Statistical models trained 1958-1978 and
1994-2000 using NCEP data

® Validated 1979-1993 to match ERA-I5
nested RCMs

® Compared observed and downscaled indices
over validation period



Skill Scores

® Spearman Correlation

= validates inter-annual variability independent
of bias or incorrect variance

= shows how successfully capturing predictor-
predictand relationship
® Bias
= important but some models explicitly model
bias

® Debiased RMSE

= validates inter-annual variability, including
variance, independent of bias
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Average Correlation Rank




Average RMSE Rank
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Average Bias Rank
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Scenarios

Models run with HadAM3P data
HadAM3P regridded to match NCEP

Grid point mean and standard deviation of
data adjusted to match NCEP and same
scale factors applied to scenario.

Indices for 2071-2100 compared with
1961-1990

= 3 A2 ensemble members
= | B2 member
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Conclusion

® Compared six statistical and two dynamical
downscaling models in their ability to downscale
seasonal indices of precipitation

® Validation

= Deterministic models had large negative biases due to
tendency towards conditional mean daily rainfall

= Stochastic models reduced the bias but also reduced
correlation skil

= Skill of models highest for indices and seasons with
highest spatial coherence




Conclusion

® Validation
= ANNs best at modeling inter-annua

= Better performance of models in D]

= Rainfall occurrence better downsca

® Scenarios
= Wetter in winter, drier in summer

variability
F
ed than intensity

- Inter-model differences in scenario changes at least as
large as differences between scenarios

® caution when using one type of model

® Probabilistic output of models is of great benefit for

uncertainty estimates and reducing

model bias

® |argest source of uncertainty not addressed: GCM



