STAtistical and Regional dynamical Downscaling of EXtremes for European regions

EVK2-CT-2001-00115

Deliverable D16 – Partner Contributions

Recommendations on the more robust statistical and dynamical downscaling methods for the construction of scenarios of extremes

FOREWORD

The STARDEX project on STAtistical and Regional dynamical Downscaling of EXtremes for European regions is a research project supported by the European Commission under the Fifth Framework Programme and contributing to the implementation of the Key Action "global change, climate and biodiversity" within the Environment, Energy and Sustainable Development.

STARDEX will provide a rigorous and systematic inter-comparison and evaluation of statistical and dynamical downscaling methods for the construction of scenarios of extremes. The more robust techniques will be identified and used to produce future scenarios of extremes for European case-study regions for the end of the 21st century. These will help to address the vital question as to whether extremes will occur more frequently in the future.

For more information about STARDEX, contact the project co-ordinator Clare Goodess (c.goodess@uea.ac.uk) or visit the STARDEX web site: http://www.cru.uea.ac.uk/projects/stardex/

STARDEX is part of a co-operative cluster of projects exploring future changes in extreme events in response to global warming. The other members of the cluster are MICE and PRUDENCE. This research is highly relevant to current climate related problems in Europe. More information about this cluster of projects is available through the MPS Portal: http://www.cru.uea.ac.uk/projects/mps/

STARDEX is organised into five workpackages including Workpackage 4 on 'Intercomparison of improved downscaling methods with emphasis on extremes' which was responsible for the production of this deliverable (D16). Workpackage 3 is co-ordinated by Torben Schmith from the Danish Meteorological Institute.

STARDEX PROJECT MEMBERS

UEA	University of East Anglia, UK
KCL	King's College London, UK
FIC	Fundación para la Investigación del Clima, Spain
UNIBE	University of Berne, Switzerland
CNRS	Centre National de la Recherche Scientifique, France
ARPA-SMR	Servizio Meteorologico Regionale, ARPA-SMR Emilia-Romagna, Italy
ADGB	University of Bologna, Italy
DMI	Danish Meteorological Institute, Denmark
ETH	Swiss Federal Institute of Technology, Switzerland
FTS	Fachhochschule Stuttgart – Hochschule für Technik, Germany
USTUTT-IWS	Institut für Wasserbau, Germany
AUTH	University of Thessaloniki, Greece

D16 AUTHORS AND VERSION HISTORY

Lead author:

Clare Goodess, UEA

Contributing authors:

Stefano Alberghi, ADGB Christina Anagnostopoulou, AUTH András Bárdossy, USTUTT-MAR Carlo Cacciamani, ARPA-SIM Bo Christiansen, DMI Dimitrios Gyalistras, UNIBE Yeshewatesfa Hundecha, USTUTT-MAR Panagiotis Maheras, AUTH Antonella Morgillo, ARPA-SIM Valentina Pavan, ARPA-SIM Jaime Ribalaygua, FIC Jürg Schmidli, ETH Torben Schmith, DMI Konstantia Tolika, AUTH Rodica Tomozeiu, ARPA-SIM Luis Torres, FIC Ennio Tosi, ADGB

 Version 1.0:
 27 July 2005

 Version 2.0:
 30 September 2005

CONTENTS

5
6
11
16
21
26
44
49
54

The following information is provided for each method:

- Summary
- STARDEX deliverables and papers
- Overall assessment
- Robustness criteria
- Application criteria
- Performance criteria
- Information provided by

A distinction is made between direct methods in which seasonal indices of extremes are downscaled and indirect methods in which daily time series are generated and the seasonal indices then calculated from these.

The STARDEX indices of extremes.

Precipitation	related indices of extremes	User-friendly name
pq90	90 th percentile of rainday amounts (mm/day)	Heavy rainfall threshold
px5d	Greatest 5-day total rainfall	Greatest 5-day rainfall (amount)
pint	Simple daily intensity (rain per rainday)	Average wet-day rainfall (amount)
pxcdd	Maximum number of consecutive dry days	Longest dry period
pf190	% of total rainfall from events > long-term 90 th	Heavy rainfall proportion
	percentile	
pnl90	Number of events $> $ long-term 90 th percentile	Heavy rainfall days
-	of raindays	
Temperature r	elated indices of extremes	
txq90	Tmax 90 th percentile (°C)*	Hot-day threshold
tnq10	Tmin 10 th percentile (°C)**	Cold-night threshold
tnfd	Number of frost days Tmin < 0 °C	Frost days
txhw90	Heat wave duration (days)	Longest heatwave
Mean indices		
pav	Precipitation average (mm/day)	Average daily rainfall (amount)
txav	Average Tmax (°C)	Average daily high temperature
tnav	Average Tmin (°C)	Average daily low temperature

* Alternative definition - 10th hottest day per season/36th hottest day per year
 ** Alternative definition - 10th coldest night per season/36th coldest night per year

ADGB_HYPER4 Indirect Method

Summary of the method

Indirect method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
ADGB_HYPER4	Series of sqrt(PC1 ² +PC2 ²) PC1 and PC2 are principal components of the gridded daily precipitation over Northern Italy	GPH anomaly and geostrophic wind direction at 500 hPa, Rh at 700 hPa precipitable water all at selected grid points.	Statistical predictor predictand link

STARDEX deliverables and papers

See ADGB contributions to D10, D12, D15 and D18.

Overall assessment of the ADGB_HYPER4 method

A relatively simple method for downscaling an areal index highly correlated with extreme precipitation events over Northern Italy.

Robustness criteria for the ADGB_HYPER4 method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, supported by high correlation values, D10(ADGB).
	Are these relationships physically meaningful?	Yes, supported by literature review and strong links with the NAO, see D12(ADGB).
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Not tested.
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	Relatively insensitive.
	Is the statistical model performance sensitive to other user choices?	Relatively insensitive. User choices tested: use of ERA

		reanalysis instead of NCEP, change of the number of events used to construct the observed statistic.
'Stationarity'	Predictors incorporated which are expected to change due to global warming? Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	Relative Humidity and precipitable water due to increase in temperature. No
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	Yes
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and vice versa?	Yes, since the same observed statistics has been used for all seasons.
Uniformity of performance	 Uniformity of statistical model performance across: stations regions seasons variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) 	The model refers to an areal index and has been applied to a single region.
	 Evaluated using: BIAS (mean difference between simulated and observed values) CORR (Spearman rank-correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated standard deviations Plotted using: Maps Histograms Box-whisker plots Q-Q diagrams 	The CORR is good for all seasons, while the Bias increases from good in spring to acceptable in autumn.
Reliability of simulation of predictors	Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - derived indices	Generally well simulated, see D13 (ADGB, Summary, ETH central analysis).

 spatial patterns temporal trends frequency and persistence, and day-to- day transitions, of circulation/weather types. 	
Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Not much. See: D14 results

ADGB_HYPER4	Yes/No	Comments/Notes
method provides:		
Station-scale information	No	
Grid-box information	No	
European-wide	No	Only one series representative of all
information		Northern Italy.
Daily time series	Yes	But about half of total days are not
		downscaled (because only days in which predictors lie in a range favorable for
		extremes are downscaled)
Seasonal indices of	Yes	
extremes		
Temporally consistent	No	
temperature and		
precipitation		
Spatially consistent	No	
multi-site information		
Temporally consistent	No	
multi-site information		
Information at sites with	/	
no observations		
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Relatively low	
Volume of data inputs	medium	
Availability of input data	medium	

Application criteria for the ADGB_HYPER4 method

ADGB_HYPER4	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices			
Seasons			
Regions			
Precipitation			
Indices	pnl90		
Seasons	Winter, Spring	Summer	Autumn
Regions			
Overall performance:			
	Mean temperature	N/A	
Т	emperature extremes	N/A	
Mean precipitation		N/A	
Precipitation extremes		Good	
Optimal spatial scale:		Northern Italy	
Recommended impact applications:		Any which require informat	ion on an area.

Performance criteria for the ADGB_HYPER4 method

Information on ADGB_HYPER4 method provided by

Ennio Tosi Stefano Alberghi

ARPA-SIM_CCA Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
CCA	Station time series of seasonal extremes – temperature and precipitation	MSLP, Z500, T850hPa, Specific humidity at 850hPa	Canonical Correlation Analysis

STARDEX deliverables and papers

See: ARPA –SIM contributions to D10, D12, D15 and D18.

Busuioc A., Tomozeiu R., Cacciamani C. (2005). Statistical downscaling model for winter extreme precipitation events in Emilia-Romagna region, submitted to *International Journal of Climatology*

Overall assessment of the CCA method

CCA is a multivariate statistical technique that objectively defines the most highly related patterns of potential predictors and predictands.

Additional comments on the CCA method

CCA is sensitive to the number of EOFs/CCP (Canonical Correlation Patterns) used in the downscaling model, such that many tests have to be done in order to find the best combination.

Robustness criteria for the CCA method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, see D10(ARPA-SIM)
	Are these relationships physically meaningful?	Yes, see D10(ARPA-SIM)
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Similar set of predictors has been obtained for some temperature indices, but generally different for precipitation. Method tested: CCA against MLR

		Perioas testea: 1958-19/8+1994-2000
	Is the strength of the predictor/predictand	Relatively insensitive - test made for
	relationships and/or the performance of	temperature;
	the statistical downscaling model	Non-standard periods tested:
	sensitive to changes in	-calibration 1960-1989
	calibration/validation period?	-verification 1990-2000
	Is the statistical model performance	Relatively sensitive with the area
	sensitive to other user choices?	selected for predictors
		*
'Stationarity'	Predictors incorporated which are	-
v	expected to change due to global	
	warming?	
	<u> </u>	Trends and low-frequency variability are
	Assessed whether the direction and	well reproduced for mean temperature
	magnitude of observed trends in the	and precipitation and less well for
	predictand together with low-frequency	extreme precipitation (assessed for 1960-
	variability are reproduced by the	1990 period)
	statistical model?	() () () () () () () () () () () () () (
	Assessed whether the projected changes	No
	in predictor variables lie outside the range	140
	of variability observed over the	
	of variability observed over the	
	canoration/varidation period?	
	A gaagaad whathar pradiator/pradiatond	No
	relationships calculated from CCM/DCM	140
	relationships calculated from GCW/ KCW	
	output change between the control and	
	perturbed periods?	
	Calibrated the statistical model on a faeld?	N
	Calibrated the statistical model on a cold	INO
	period and validated it on a warm period	
XX 10 1 / 0	and vice versa?	
Uniformity of	Uniformity of statistical model	
performance	performance across:	
	- stations	
	- regions	
	- seasons	Relatively uniform across stations, more
	- variables (i.e., temperature vs	variable across regions and seasons.
	precipitation, means vs extremes)	See: D12
	- indices of extremes (e.g.,	
	occurrence vs magnitude)	
	Evaluated using:	Evaluated using: BIAS,CORR;RMSE
	- BIAS (mean difference between	See:D12
	simulated and observed values)	
	- CORR (Spearman rank-	
	correlation coefficient)	
	- RMSE (Root Mean Square Error)	
	- ratio of observed : simulated	
	standard deviations	

	Diottoducing	Tists sugars
	Plotted using:	Histograms
	- Maps	
	- Histograms	
	- Box-whisker plots	
	- 0-0 diagrams	
	- Taylor diagrams	
Daliahilita af	Prodictory coloulated from alignets model	Cratic la attama and tama and tama da af
Reliability of	Predictors calculated from climate model	Spatial patterns and temporal trends of
simulation of	output compared with those calculated	predictors are well simulated.
predictors	from Reanalysis data, taking into	See: D13 ARPA-SIM
	consideration:	
	- raw values	
	- derived indices	
	- derived indices	
	- spatial patierns	
	- temporal trends	
	- frequency and persistence, and	
	day-to-day transitions, of	
	circulation/weather types	
	Is performance of the statistical model for	Not much
	is performance of the statistical model for	not much.
	the control period degraded when	See: D13 AKPA-SIM
	predictors are taken from climate model	
	output rather than Reanalysis data?	
L		

CCA method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	No	
European-wide information	No	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent	No	Could be implemented if method
temperature and precipitation		were applied to temperature also
Spatially consistent multi-site	Yes	
information		
Temporally consistent multi-	-	
site information		
Information at sites with no	-	
observations		
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Medium	
Volume of data inputs	Medium	
Availability of input data	Medium	

Application criteria for the CCA method

Performance criteria for the CCA method

ССА	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices	Txav, Tnav	Txq90, Tnq10, Tnfd,	
		Txhw90	
Seasons	Winter	Spring, Summer, Autumn	
Regions	Emilia-Romagna, Greece	Emilia-Romagna, Greece	
Precipitation			
Indices	Pav	Pxcdd	Pq90, px5d, pint, pxcdd,
			pf190, pn190
Seasons	Winter	Spring, Autumn	Summer
Regions	Emilia-Romagna, Greece	Emilia-Romagna, Greece	Emilia-Romagna, Greece
Overall performance:			
	Mean temperature	Good	
	Temperature extremes	Average	
	Mean precipitation	Average	
	Precipitation extremes	emes Poor	
Optimal spatia	al scale:	Regional averages (5-10 stations)	
Recommended impact applications:		Any high-spatial resolution applications needing	
		information about seasonal extremes, but which do not	
		require spatially-correlated t	ime series for multiple sites

Information on CCA method provided by:

Carlo Cacciamani Rodica Tomozeiu Antonella Morgillo Valentina Pavan

ARPA-SIM_MLR Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
MLR	Station time series of seasonal extremes – temperature and precipitation	MSLP, Z500, T850hPa	Multiple Linear Regression (MLR)

STARDEX deliverables and papers

See ARPA –SIM contributions to D10, D12, D15 and D18.

Overall assessment of the MLR method

A relatively simple method for downscaling applied to station data. The predictors are the first four PCs of the MSLP, Z500 and T850. Performs well for temperature, but should be used with caution for precipitation.

Additional comments on the MLR method

MLR needs to test, before the construction of the model, the relationships between predictors and predictand.

Robustness criteria for the MLR method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, see D10(ARPA-SIM)
	Are these relationships physically meaningful?	Yes, see D10(ARPA-SIM)
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Similar sets of predictors have been obtained for some temperature indices but different sets of predictors for precipitation.

		Method tested: MLR against CCA Periods tested: 1958-1978+1994- 2000
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	Relatively insensitive - test made for temperature Non-standard periods tested: -calibration 1960-1989 -verification 1990-2000
	Is the statistical model performance sensitive to other user choices?	Relatively sensitive with the area selected for predictors
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	-
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	Trends and low-frequency variability are well reproduced for mean temperature and precipitation and less for extremes (assessed for 1960-1990 period)
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	No
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and vice versa?	iNo
Uniformity of performance	Uniformity of statistical model performance	Relatively uniform across stations,
periormunee	- stations - regions - seasons	seasons. See: D12(ARPA-SIM)
	 variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) 	
	 BIAS (mean difference between simulated and observed values) 	BIAS, CORR, RMSE
	 CORR (Spearman rank-correlation coefficient) PMSE (Poot Mean Square Error) 	See: D12 (ARPA-SIM)
	 ratio of observed : simulated standard deviations 	
	Plotted using:	
	- Histograms - Box-whisker plots	Histograms

-Q-Q diagrams Taylor diagramsReliability of simulation of predictorsPredictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - derived indices - spatial patterns - temporal trends - frequency and persistence, and day- to-day transitions, of circulation/weather types.Spatial patterns and temporal trends of predictors are well simulated. See: D13 ARPA-SIMIs performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?Not much. See: D13 ARPA-SIM	- Q-Q diagrams - Taylor diagrams- Taylor diagramsReliability of simulation of predictorsPredictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration:Spatial patterns and temporal tren of predictors are well simulated. See: D13 ARPA-SIM		0.0 diagrams	
Reliability of simulation of predictorsPredictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - derived indices - spatial patterns - temporal trends - frequency and persistence, and day- to-day transitions, of circulation/weather types.Spatial patterns and temporal trends of predictors are well simulated. See: D13 ARPA-SIMIs performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?Not much. See: D13 ARPA-SIM	Reliability of simulation of predictorsPredictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration:Spatial patterns and temporal tren of predictors are well simulated. See: D13 ARPA-SIM		- Q-Q diagrams - Taylor diagrams	
	 raw values derived indices spatial patterns temporal trends frequency and persistence, and day- to-day transitions, of circulation/weather types. Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data? Not much. See: D13 ARPA-SIM	Reliability of simulation of predictors	Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - derived indices - spatial patterns - temporal trends - frequency and persistence, and day- to-day transitions, of circulation/weather types. Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Spatial patterns and temporal trends of predictors are well simulated. See: D13 ARPA-SIM Not much. See: D13 ARPA-SIM

MLR method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	No	
European-wide information	No	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent	No	Could be implemented if method
temperature and precipitation		were applied to temperature also
Spatially consistent multi-site	Yes	
information		
Temporally consistent multi-	-	
site information		
Information at sites with no	-	
observations		
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Medium	
Volume of data inputs	Medium	
Availability of input data	Medium	

Application criteria for the MLR method

Performance criteria for the MLR method

MLR	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices	Txav, Tnav	Txq90, Tnq10, Tnfd,	
		Txhw90	
Seasons	Winter	Spring, Summer, Autumn	
Regions	Emilia-Romagna, Greece	Emilia-Romagna, Greece	
Precipitation			
Indices	Pav	Pxcdd	Pq90, px5d, pint, pxcdd,
			pf190, pn190
Seasons	Winter	Spring, Autumn	Summer
Regions	Emilia-Romagna, Greece	Emilia-Romagna, Greece	Emilia-Romagna, Greece
Overall performance:			
	Mean temperature	Good	
	Temperature extremes	Average	
	Mean precipitation	Average	
	Precipitation extremes	emes Poor	
Optimal spatia	al scale:	Regional averages (5-10 stations)	
Recommended impact applications:		Any which require high-spatial resolution information	
		about seasonal extremes, but do not require spatially-	
		correlated time series for mu	ltiple sites

Information on MLR method provided by:

Carlo Cacciamani Rodica Tomozeiu Antonella Morgillo Valentina Pavan

AUTH - ANN Direct Method

Summary of the method

Direct method	Predictand(s)	Predictor(s) (See STARDEX	Description (See STARDEX
		Deliverable D10 for	Deliverable D15 for
		selection procedure)	details)
AUTH- ANN	Seasonal indices of temperature/precipitation extremes	 500hPa geopotential heights 1000-500hPa thickness field 	Downscaling model based on artificial neural networks

STARDEX deliverables and papers

- AUTH contributions to D10, D12, D15 and D18.
- Tolika K, Maheras P, Vafiadis M, Flocas HA, Arseni- Papadimitriou A (2005): Simulation of seasonal precipitation and raindays over Greece: a statistical downscaling technique based on artificial neural nets. Submitted for publication in *Climatic Change*.
- Kostopoulou E, Giannakopoulos C, Anagnostopoulou Chr, Tolika K, Maheras P, Vafiadis M (2005): Simulating Maximum and Minimum Temperatures over Greece: A comparison of three modeling techniques. Submitted for publication in *Climate Research*.

Overall assessment of the AUTH-ANN method

The ANN method captures some of the non-linear aspects of the circulation-local climate relationship. It proved to be skillful in representing relationships in the presence of noisy data. However, it requires too much computing time for daily data. It was also found weak in representing the observed variability of the data.

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes
	Are these relationships physically meaningful?	Yes
	If different methods or time periods are used	

Robustness criteria for the AUTH-MLRct method

	for predictor selection, are similar sets of	Relatively different. See: Tolika et
	predictors obtained?	al. (2005)
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	Relatively sensitive:
	Is the statistical model performance sensitive to other user choices?	Relatively sensitive/ User choices tested: different predictors.
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes , see D13
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	Yes
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	No
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and vice versa?	No
Uniformity of performance	 Uniformity of statistical model performance across: stations regions seasons variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) Evaluated using: BIAS (mean difference between simulated and observed values) CORR (Spearman rank-correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated standard deviations Plotted using: Maps 	Relatively uniform across stations, more variable across regions and seasons. Averages and duration indices more uniform than intensity indices. See: D10-D12
	 Histograms Taylor diagrams 	

Reliability of	Predictors calculated from climate model	Generally well simulated see D13
simulation of	output compared with those calculated from	
predictors	Reanalysis data, taking into consideration:	
	- raw values	
	- spatial patterns	
	- temporal trends	
	- frequency and persistence, and day-to-	
	day transitions, of circulation/weather	
	types.	
	- Is performance of the statistical model	Yes
	for the control period degraded when	See: Tolika et al., 2005
	predictors are taken from climate	
	model output rather than Reanalysis	
	data?	

AUTH-MLRct method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	Yes, potentially	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent temperature and	Yes	
precipitation		
Spatially consistent multi-site information	Yes	
Temporally consistent multi-site	Yes	
information		
Information at sites with no observations	No	
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Low	
Volume of data inputs	Low	
Availability of input data	High	

Application criteria for the AUTH-MLRct method

AUTH-ANN	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices	Txav, tnav Txq90, tnq10,		
	tnfd, txhw90		
Seasons	Winter, Spring,	Summer, Autumn	
Regions	w. Greece	e. Greece	
Precipitation			
Indices	Pav, Pxcdd, pint	Pq90, px5d	pf190, pn190
Seasons	Winter, Spring	Summer, Autumn	
Regions	w. Greece	e. Greece	
Overall perfor	mance:		
	Mean temperature	Good	
Temperature extremes		Good	
Mean precipitation		Good	
Precipitation extremes		Average	
Optimal spatia	al scale:	Regional averages (22 statio	ns)
Recommended	l impact applications:		

Performance criteria for the AUTH-ANN method

Information on AUTH-ANN method provided by

Panagiotis Maheras Christina Anagnostopoulou Konstantia Tolika

AUTH_CCA Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
AUTH_CCA	Seasonal indices of	500hPa (precipitation) and	Canonical
	temperature/precipitation	thickness field 1000-	Correlation
	extremes	500hPa (temperature)	Analysis

STARDEX deliverables and papers

- AUTH contributions to D10, D12
- Kostopoulou E, Giannakopoulos C, Anagnostopoulou Chr, Tolika K, Maheras P, Vafiadis M (2005): Simulating Maximum and Minimum Temperatures over Greece: A comparison of three modeling techniques. Submitted for publication in *Climate Research*

Overall assessment of the AUTH-CCA method

The AUTH-CCA method results were inferior to the other two AUTH methods and so it was not applied to the scenario data. (*the comments on the tables refer only to the control run data*)

AUTH - CCA method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	No	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent temperature and	No	
precipitation		
Spatially consistent multi-site information	No	
Temporally consistent multi-site	No	
information		
Information at sites with no observations	No	
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Low	
Volume of data inputs	Low	
Availability of input data	High	

Application criteria for the AUTH-CCA method

AUTH-CCA	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices		Txq90, tnq10, Txav, tnav	tnfd, txhw90
Seasons		Winter Spring, Summer,	Autumn
Regions		W. Greece	E. Greece
Precipitation			
Indices		Pxcdd .Pav	Pq90, px5d, pint, pxcdd, pf190, pn190
Seasons		Winter Spring,	Summer Autumn
Regions		W. Greece	E. Greece
Overall perfor	mance:		
	Mean temperature	Average	
	Temperature extremes	es Average	
	Mean precipitation	on Poor	
	Precipitation extremes	es Poor	
Optimal spatia	al scale:	Regional averages (22 stations)	
Recommended	l impact applications:		

Performance criteria for the AUTH-CCA method

Information on AUTH-CCA method provided by

Panagiotis Maheras Christina Anagnostopoulou Konstantia Tolika

AUTH - MLRct Direct Method

Summary of the method

Direct method	Predictand(s)	Predictor(s)	Description
		(See STARDEX	(See STARDEX
		Deliverable D10 for	Deliverable D15 for
		selection procedure)	details)
AUTH-	Seasonal indices of	Primary Data	Multiple Linear
MLRct	temperature/precipitation	- 500hPa	Regression based on a
	extremes	geopotential	circulation type approach
		heights	
		(precipitation)	
		- 1000-500hPa	
		thickness field	
		(temperature)	
		Predictors	
		Daily calendar of 14	
		circulation types for the	
		two data sets	

STARDEX deliverables and papers

- AUTH contributions to D10, D12, D15 and D18.
- Maheras P, Tolika K, Anagnostopoulou Chr, Vafiadis M, Patrikas I, Flocas H (2004): On the Relationships between circulation types and changes in rainfall variability in Greece. *International Journal of Climatology* **24**: 1695-1712
- Kostopoulou E, Giannakopoulos C, Anagnostopoulou Chr, Tolika K, Maheras P, Vafiadis M (2005): Simulating Maximum and Minimum Temperatures over Greece: A comparison of three modeling techniques. Submitted for publication in *Climate Research*

Overall assessment of the AUTH-MLRct method

The MLRct method provides a strong, relative stable predictor-predictant relationship. It also provides a strong signal in predictor change and gives more physical meaning into the relationships than a purely statistical approach. However, it requires a different classification for every time period and for every study region. It was also found weak in representing the observed variability of the data.

Additional comments on the AUTH-MLRct method

The classification of the circulation types is easy applicable to any region but it proved to be very sensitive to the choice of the study period

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, high correlation coefficients for all seasons, for both temperature and precipitation indices (except autumn precipitation indices).
	Are these relationships physically meaningful?	Yes, supported by Maheras et al., 2004; Kostopoulou et al., 2005
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Yes Methods tested: Cross validation Period tested: 1958-2000 (1 year step)
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	Relatively sensitive
	Is the statistical model performance sensitive to other user choices?	Relatively sensitive User choices tested: cross validation (Maheras et al., 2004)
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes, the method is based on a circulation type approach and the circulation types are sensitive to global warming (changes in their frequency) see D13
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	Yes
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	No
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	Yes
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period	No

Robustness criteria for the AUTH-MLRct method

	1 · 0	
Uniformity of	and vice versa'? Uniformity of statistical model performance	Relatively uniform across stations,
performance	 across: stations regions seasons variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) Evaluated using: BIAS (mean difference between simulated and observed values) CORR (Spearman rank-correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated standard deviations Plotted using: Maps Histograms Taylor diagrams 	more variable across regions and seasons. Averages and duration indices more uniform than intensity indices. See: D10, D11,D12
Reliability of simulation of predictors	Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - spatial patterns - temporal trends - frequency and persistence, and day- to-day transitions, of circulation/weather types.	Generally well simulated with the exception of the frequencies of the a small number of circulation types
	taken from climate model output rather than Reanalysis data?	See: D10 – D12

AUTH-MLRct method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	No	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent temperature and	Yes	
precipitation		
Spatially consistent multi-site information	Yes	
Temporally consistent multi-site	Yes	
information		
Information at sites with no observations	No	
Method requirements :	Relatively	Comments/Notes
-	high/medium/low	
Computing resources	Low	
Volume of data inputs	Low	
Availability of input data	High	

Application criteria for the AUTH-MLRct method

AUTH-	Relative	Performance	Confidence
MLRct			
method	High	Medium	Low
Temperature			
Indices	Txav, tnav Txq90, tnq10,	txhw90	
	tnfd		
Seasons	Winter Spring, Summer,		
	Autumn		
Regions	W. Greece, E. Greece		
Precipitation			
Indices	Pav, pxcdd, pint	Pq90, px5d,	pf190, pn190
Seasons	Winter Spring	Summer	Autumn
Regions	W. Greece,	E. Greece	
Overall perfor	mance:		
	Mean temperature	Good	
	Temperature extremes	Good	
Mean precipitation		Good	
	Precipitation extremes	Average	
Optimal spatia	al scale:	Regional averages (22 statio	ns)
Recommended	l impact applications:		

Performance criteria for the AUTH-MLRct method

Information on AUTH-MLRct method provided by

Panagiotis Maheras Christina Anagnostopoulou Konstantia Tolika

DMI_CWG Indirect Method

Conditional weather generator, conditional on quantile values of a circulation index, in which precipitation occurrence and amount are modelled separately.

Direct Method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
DMI_CWG	Daily Precipitation	Circulation index calculated from MSLP	Conditional weather generator

STARDEX deliverables and papers

See DMI contributions to D12, D15 and D18.

Goodess, C.M., Anagnostopoulou, C., Bárdossy, A., Haylock, M.R., Hundecha, Y., Maheras, P., Ribalaygua, J., Schmidli, J., Schmith, T. and Tomozeiu, R.: An intercomparison of statistical downscaling methods for Europe and European regions – assessing their performance with respect to extreme temperature and precipitation events. *Submitted to Climatic Change*.

Schmidli, J., Haylock, M., Hundecha, Y., Schmith, T. and Ribalaygua, J.: Statistical and Dynamical Downscaling of Precipitation: Evaluation, Intercomparison, and Scenarios for the European Alps. *In preparation*.

Overall assessment of the DMI CWG method

A simple method with one predictor suggests robustness. It turns out to be best in winter and near the Atlantic and for simple statistics.

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, the objectively identified MSLP-pattern is statistically significant
	Are these relationships physically meaningful?	Yes, the pattern identified for a particular station often corresponds to a lower pressure near the stations when precipitation occurs.
	If different methods or time periods are used for predictor selection, are similar sets of	Very similar

Robustness criteria for the DMI_CWG method

	predictors obtained?	Periods tested: 1958-1980/1981- 2000
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	Relatively insensitive Non-standard periods tested:1958- 1980/1981-2000
	Is the statistical model performance sensitive to other user choices?	Not tested
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes (daily MSLP), which is expected to change due to shift in storm tracks etc.
	magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model? Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	Yes: The overall shape of the scenario-control climate is conistent with an increase in the NAO, which is also obtained directly from the GCMs
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and <i>vice versa</i> ?	No
		No
Uniformity of performance	Uniformity of statistical model performance across: - stations - regions - seasons - variables (i.e., temperature vs precipitation, means vs extremes) - indices of extremes (e.g., occurrence vs magnitude) Evaluated using:	Best performance in Atlantic- influenced regions and during winter. Averages and occurrence indices perform better than magnitude. See: D12 European report.
	 BIAS (mean difference between simulated and observed values) CORR (Spearman rank-correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated standard deviations Plotted using: Maps (x) 	Mainly CORR

	 Histograms (x) Box-whisker plots Q-Q diagrams Taylor diagrams 	
Reliability of	Predictors calculated from climate model	MSLP turned out to be more useful
simulation of	output compared with those calculated from	as a predictor than vorticity, see D13
predictors	 Reanalysis data, taking into consideration: raw values derived indices spatial patterns temporal trends frequency and persistence, and day- to-day transitions, of circulation/weather types. 	(AMI), Summary, ETH central analysis).
	Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Not evaluated

DMI_CWG method provides:	Yes/No	Comments/Notes
Station-scale information Grid-box information European-wide information Daily time series Seasonal indices of extremes Temporally consistent temperature and precipitation Spatially consistent multi-site information Temporally consistent multi- site information Information at sites with no observations	Yes No Yes Yes No No No	Could be implemented if method were applied to temperature also
Method requirements :	Relatively high/medium/low	Comments/Notes
Computing resources	Low	
Volume of data inputs	Low	
Availability of input data	High	

Application criteria for the DMI_CWG method

DMI_CWG	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices	-	-	-
Seasons	-	-	-
Regions	-	-	-
Precipitation			
Indices	Pav	Pxcdd	Pq90, px5d, pint, pxcdd, pf190, pn190
Seasons	Winter		Summer
Regions	Atlantic influenced		Easten
			Mediterranean/Europe
Overall performance:			
	Mean temperature	-	
	Temperature extremes	-	
	Mean precipitation	Average	
	Precipitation extremes	Poor	
Optimal spatial scale:		Regional averages (5-10 stations)	
Recommended impact applications:		Any which require European-wide information about	
		winter extremes, but do not require spatially-correlated	
		time series for multiple sites	

Performance criteria for the DMI_CWG method

Information on DMI_CWG method provided by

Torben Schmith Bo Christiansen

ETH_LOCI Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
ETH_LOCI	daily precipitation (station or grid point data)	GCM precipitation	Local rescaling of GCM simulated precipitation

STARDEX deliverables and papers

See ETH contributions to D12, D13, D15 and D18.

Schmidli, J., Frei, C., and Vidale, P.L, 2005a: Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. *International Journal of Climatology*, accepted.

Schmidli, J., Frei, C., Goodess, C., Haylock, M.R., Hundecha, Y., Ribalaygua, J., Schmith, T. 2005b: Statistical and dynamical downscaling of precipitation: Evaluation, intercomparison, and scenarios for the European Alps. in preparation.

Overall assessment of the ETH_LOCI method

A relatively simple method for downscaling precipitation. Performance depends on the quality of the GCM simulated precipitation with respect to temporal variations.

Robustness	Key questions and recommended	STARDEX assessments
ci ilei ia	assessment methous	
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, Schmidli et al., 2005a.
	Are these relationships physically meaningful?	Yes, Schmidli et al., 2005a.
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	NA
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	No
	Is the statistical model performance sensitive to other user choices?	No
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes, GCM precipitation.
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	NA
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	NA
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and <i>vice versa</i> ?	No

Robustness criteria for the ETH_LOCI method

Uniformity of	Uniformity of statistical model	Variable across regions and seasons
performance	performance across:	(see Schmidli et al. 2005b)
p • • • • • • • • • • • • • • • • • • •	- stations	
	- regions	
	- seasons	
	- variables (i e temperature vs	
	precipitation means vs extremes)	
	- indices of extremes (e.g.	
	occurrence vs magnitude)	
	Evaluated using:	
	- BIAS (mean difference between	
	simulated and observed values)	
	- CORR (Spearman rank-	
	correlation coefficient)	
	- RMSE (Root Mean Square Error)	
	- ratio of observed : simulated	
	standard deviations	
	Plotted using:	
	- Maps	
	- Histograms	
	- Box-whisker plots	
	- Q-Q diagrams	
	- Taylor diagrams	
Reliability of	Predictors calculated from climate model	Quality of GCM predictors is comparable
simulation of	output compared with those calculated	to reanalysis predictors (see D13 ETH
predictors	from Reanalysis data, taking into	partner report).
	consideration:	
	- raw values	
	- derived indices	
	- spatial patterns	
	- temporal trends	
	- frequency and persistence, and	
	day-to-day transitions, of	
	circulation/weather types.	
	Is performance of the statistical model for	
	the control period degraded when	
	nredictors are taken from climate model	Depends on GCM and recordingia used
	output rather than Reanalysis data?	Depends on OCIVI and realiarysis used.
	output runor than realitysis data?	

ETH_LOCI method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	Potentially	Depends on available observations
Daily time series	Yes	
Seasonal indices of extremes	Yes	
Temporally consistent temperature and precipitation	NA	Method not tested for temperature
Spatially consistent multi-site information	Yes	
Temporally consistent multi-site information	Yes	
Information at sites with no	No	
observations		
Method requirements :	Relatively high/medium/low	Comments/Notes
Computing resources	Low	
Volume of data inputs	Low	
Availability of input data	High	

Application criteria for the ETH_LOCI method

ETH_LOCI	Relative	Performance	Confidence
method	High	Medium	Low
Temperature			
Indices	-	-	-
Seasons	-	-	-
Regions	-	-	-
Precipitation			
Indices	pfre, pav	pxcdd, pint	pq90, px5d
Seasons	Winter	Spring, Autumn	Summer
Regions	-	-	-
Overall perfor	mance:		
	Mean temperature	-	
	Temperature extremes	-	
	Mean precipitation	Good	
	Precipitation extremes	Average	
Optimal spatial scale:		Grid box and larger scales	
Recommended impact applications: Any		Any which require high-spa	tial resolution information
		about seasonal extremes	

Performance criteria for the ETH_LOCI method (applied to ERA40)

Information on ETH_LOCI method provided by Jürg Schmidli

FIC_ANAL2 Indirect Method

Summary of the method

Direct	Predictand(s)	Predictor(s)	Description
method	(Unless otherwise		
	indicated,	(See STARDEX	(See STARDEX Deliverable D15 for
	predictands are	Deliverable D10 for	details)
	station series)	selection procedure)	
FIC_ANAL2	Daily	Geostrophic fluxes at	Two-step analogue method, in which
	Precipitation and	1000 & 500 hPa, low	(1) the 'n' most similar days to the day
	Temperature	tropospheric thickness	being simulated are selected from a
		(and sine of the day of	reference data set and (2) regression is
		the year and 10	performed using predictand/predictor
		previous days	relationships from the 'n' days data set
		temperature)	

STARDEX deliverables and papers

See FIC contributions to D10, D12, D15 and D18.

Overall assessment of the FIC_ANAL2 method

A robust and physically meaningful method for downscaling to an unlimited number of stations or grid points, adapted to the whole of Europe. Performs very well for temperature, but should be used with caution for precipitation.

Robustness criteria for the FIC_ANAL2 method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, predictors are selected under theoretical considerations, looking for predictors that are physical forcings of the predictands, see D10 (FIC)
	Are these relationships physically meaningful?	Yes, enhanced using time and spatial scales as similar as possible to physical processes, see D10 (FIC)
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Selection under theoretical considerations
	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to	Relatively insensitive (tested in previous versions of the method)

	changes in calibration/validation period?	
	Is the statistical model performance sensitive to other user choices?	Not tested
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes (especially thickness and 10 previous days temperature), based on theoretical considerations:, see D10 (FIC)
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low- frequency variability, are reproduced by the statistical model?	Yes: observed trends, in previous versions of the method; low-frequency variability in D12 (FIC)
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	Yes, in previous versions of the method, in progress within STARDEX
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No: it is assumed that these relationships don't change, because predictors are physical forcings of the predictands, see D10 (FIC)
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and vice versa?	Yes, in previous versions of the method,
Uniformity of performance	 Uniformity of statistical model performance across: stations regions seasons variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) Evaluated using: BIAS (mean difference between simulated and observed values) CORR (Spearman rank- correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated atenderd dovisitions 	Relatively uniform across stations (spatial coherence), more variable across regions and seasons. Averages and duration indices more uniform than intensity indices. Temperature downscaled better and more uniformly than precipitation. See D12 (FIC): Yes Yes Yes
	Plotted using: - Maps - Histograms - Box-whisker plots	Yes Yes No

	- Taylor diagrams	No
Reliability of simulation of predictors	Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Generally well simulated , see D13 (Summary, ETH central analysis). Theoretical selection of predictors that are well simulated by GCMs Yes. See: D14 results (FIC)

FIC_ANAL2 method	Yes/No	Comments/Notes
provides:		
Station-scale	Yes	
information		
Grid-box information	Yes	
European-wide	Yes	
information		
Daily time series	Yes	
Seasonal indices of	Yes	
extremes		
Temporally consistent	Yes	Tested in version used for operational
temperature and		forecasting: consistency due to the use of
precipitation		the same analogous days for both variables
		estimation
Spatially consistent	Yes	
multi-site information	**	
Temporally consistent	Yes	
multi-site information	NT.	
Information at sites	No	
with no observations		
Mathod	Relatively	Comments/Notes
requirements ·	high/medium/low	Comments/Trotes
Computing resources	Low	
Volume of data inputs	Low	
Availability of input	Medium	
data		

Application criteria for the FIC_ANAL2 method

FIC_ANAL2	Relative	Performance	Confidence	
method	High	Medium	Low	
Temperature				
Indices	Txav, tnav ,Txq90, tnq10,	txhw90		
	tnfd			
Seasons	Winter, Spring, Autumn	Summer		
Regions	Europe			
Precipitation				
Indices	Pav	Pxcdd, pnl90	Pq90, px5d, pint, pxcdd,	
			pf190	
Seasons	Winter	Spring, Autumn	Summer	
Regions	NW Europe	SW Europe	E Europe	
Overall performance:				
	Mean temperature	Good		
	Temperature extremes	Good		
	Mean precipitation	Average		
Precipitation extremes		Poor		
Optimal spatial scale:		Single sites		
Recommended impact applications:		Very good performance for daily series or extremes of		
		temperature. Any which require high-spatial resolution		
		information about daily series or seasonal extremes,		
		although it should be used w	vith caution for precipitation.	

Performance criteria for the FIC_ANAL2 method

Information on FIC_ANAL2 method provided by Jaime Ribalaygua Luis Torres

UNIBE_CCA Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15
	station series)		for details)
UNIBE_CCA	Seasonal indices of	Best performing predictor field(s)	Canonical
	temperature extremes	selected from: 6 different large-scale	Correlation
		sectors containing the study area;	Analysis
		seasonal means of SLP, and GPH, T, SH,	
		RH, at 300, 500, 700 & 850 hPa.	

STARDEX deliverables and papers

See UNIBE contributions to D12, D14, D15, D17 and D18.

Gyalistras, D. and Schuepbach, E.: Statistical downscaling of seasonal temperature statistics in the European Alps: Sensitivity of model skill and climate change scenarios to choice of large-scale predictors. *Climate Dynamics*, in preparation.

Overall assessment of the UNIBE_CCA method

Strengths: Relatively simple and flexible method, modest input data requirements (seasonal fields), yields generally plausible results (interpretation of canonical map pairs), is little sensitive to biases in GCM-simulated fields, provides site-specific scenarios.

Weaknesses: Does not perform well for "sophisticated" seasonal statistics such as number of frost days and heat wave duration.

Additional comments on the UNIBE CCA method

High sensitivity of downscaled scenarios to choice of predictor(s).

Robustness criteria for the UNIBE_CCA method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, see deliverable D12 by UNIBE
	Are these relationships physically meaningful?	Yes, see deliverable D12 by UNIBE
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Yes, see deliverable D12 by UNIBE

	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period?	No, see deliverable D12 by UNIBE
	to other user choices?	choice of the number of EOFs used for CCA (see, e.g., Gyalistras et al. 1994, Clim. Res. 4(3): 167-189)
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes, in particular large-scale temperature
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low-frequency variability, are reproduced by the statistical model?	Yes, work in progress
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	No, but changes in GCM-simulated temperature fields for the late 21 st century are generally known to lie outside the observed 20 th century variability range.
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and vice versa?	No
Uniformity of	Uniformity of statistical model performance	
performance	across:	
	- stations	medium
	- regions	small
	- seasons	large
	- variables (i.e., temperature vs	large
	 precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) 	large
	Evaluated using:	
	- BIAS (mean difference between	Yes
	simulated and observed values)	
	- CORR (Spearman rank-correlation coefficient)	Yes
	- RMSE (Root Mean Square Error)	Yes
	- Reduction of Variance	Yes
	- ratio of observed : simulated standard	No
	deviations	
	Plotted using:	N.7.
	- Maps	Yes
	- Histograms	Yes
	- Box-whisker plots	No
	- Q-Q diagrams	No

	- Taylor diagrams	No
Reliability of simulation of predictors	 Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: raw values derived indices spatial patterns temporal trends frequency and persistence, and day- to-day transitions, of circulation/weather types. Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data? 	No such analyses carried out by UNIBE – but see D13 No significant degradation detected

UNIBE_CCA method	Yes/No	Comments/Notes
provides:		
Station-scale	Yes	
information		
Grid-box information	No	
European-wide	No	Could be implemented. Use of different
information		predictor sectors for different regions
		recommended (e.g., shifting spatial window
	~~	for predictor fields).
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent	Yes	Could be implemented if method were
temperature and		applied to precipitation also. See, e.g.,
precipitation		Gyalistras et al. 1994, Clim. Res. 4(3): 167-
		189
Spatially consistent	Yes	
multi-site information		
Temporally consistent	Yes	Note the reduction in temporal variance due
multi-site information		to the use of a regression approach. See, e.g.,
		von Storen 1999, J. Clim. 12(12): 3505-
Information at sites	No	5500.
with no observations	INU	
Method	Relatively	Comments/Notes
requirements :	high/medium/low	
Computing resources	Intermediate	Model fitting requires computation of
		eigenvectors for a large number of predictor
		variables.
Volume of data inputs	Low	(as compared to "direct" methods)
Availability of input	Low	(as compared to "direct" methods)
data		

Application criteria for the UNIBE_CCA method

UNIBE_CC	Relative	Performance	Confidence
Α			
method	High	Medium	Low
Temperature			
Indices	txav, tnav	txq90, tnq10	tnfd, txhwd
Seasons	Winter, Spring, Summer,		
	Autumn		
Regions	N-Alps	(S- and E-Alps)	
Precipitation			—
Indices			—
Seasons			—
Regions			
Overall perfor	mance:		
	Mean temperature	Good	
	Temperature extremes	Average to poor	
	Mean precipitation		
	Precipitation extremes		
Optimal spatia	al scale:	Not known	
Recommended	l impact applications:	Useful for a spatially consist	tent, first-order assessment
		of likely changes in seasonal	l, site-specific temperature
		statistics. Can be combined	with stochastic weather
		generators to produce month	nly, daily or hourly weather
		data, see, e.g., Gyalistras &	Fischlin 1999,
		Petermanns geogr. Mitt. 143	8(4): 251-264.

Performance criteria for the UNIBE_CCA method

Information on UNIBE_CCA method provided by Dimitrios Gyalistras, 10-Aug-2005

USTUTT_MAR Indirect Method

Summary of the method

Indirect method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
USTUTT_MAR	Daily series of precipitation and temperature	Objective circulation patterns of MSLP and eastward moisture flux for precipitation HGT and the corresponding Objective circulation patterns (CPs) of the 700 hPa for temperature	Multivariate Autoregressive model

STARDEX deliverables and papers

See USTUTT contributions to D10, D12, D15 and D18.

Overall assessment of the USTUTT_MAR method

A stochastic method for downscaling of daily series of precipitation and temperature at stations or grids by maintaining the spatial covariance structure in particular European regions. Performs relatively better for temperature indices and mean precipitation. For certain indices of extremes of precipitation, it should be used with caution in seasons other than Winter and Spring.

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, supported by high correlation values and the ability of the classified CPs to explain the variability of precipitation or temperature, see D10(USTUTT)
	Are these relationships physically meaningful?	Yes, supported by literature review.
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Not tested

Robustness criteria for the USTUTT_MAR method

	Is the strength of the predictor/predictand relationships and/or the performance of the statistical downscaling model sensitive to changes in calibration/validation period? Is the statistical model performance	Relatively sensitive Non-standard periods tested: Calibrated for 'warm' period and validated for 'cold' period and vice versa
	sensitive to other user choices?	
'Stationarity'	Predictors incorporated which are expected to change due to global warming?	Yes (e.g. moisture flux for precipitation), based on literature review.
	Assessed whether the direction and magnitude of observed trends in the predictand, together with low- frequency variability, are reproduced by the statistical model?	No
	Assessed whether the projected changes in predictor variables lie outside the range of variability observed over the calibration/validation period?	No
	Assessed whether predictor/predictand relationships calculated from GCM/RCM output change between the control and perturbed periods?	No
	Calibrated the statistical model on a 'cold' period and validated it on a 'warm' period and <i>vice versa</i> ?	Yes. Calibration during 'cold' periods shows a better prospect of extrapolating to the warmer period for precipitation related indices. A similar tendency is noted for temperature indices in Winter and Spring.
Uniformity of performance	 Uniformity of statistical model performance across: stations regions seasons variables (i.e., temperature vs precipitation, means vs extremes) indices of extremes (e.g., occurrence vs magnitude) 	Relatively uniform across stations and between seasons as well as indices for temperature indices. Considerable variability across stations and seasons for precipitation indices. Better performance for mean precipitation than extremes. The occurrence of the extreme is better reproduced than the magnitude of the extremes. The best performance is obtained in winter and Spring, while the worst is in summer.
	Evaluated using: - BIAS (mean difference between simulated and observed values)	Model shows relatively higher bias for temperature indices. It shows a slight negative bias for precipitation indices except in autumn where it shows a positive bias in the mean

		precipitation For temperature indices it
		generally shows overestimation
	- CORR (Spearman rank- correlation coefficient)	Performance as discussed above.
	 RMSE (Root Mean Square Error) 	Performance as discussed above
	- ratio of observed : simulated standard deviations	Generally, interannual variability of indices is underestimated by the model.
	 Maps Histograms Box-whisker plots Q-Q diagrams Taylor diagrams 	Histograms
Reliability of	Predictors calculated from climate	Generally well simulated. The frequency of
simulation of	model output compared with those	circulation patterns associated with wet
predictors	calculated from Reanalysis data.	situation patients associated with wet
predictorscalculated from Reanalysis data, taking into consideration:-raw values-derived indices-spatial patterns-temporal trends-frequency and persistenc and day-to-day transition of circulation/weather types.	 taking into consideration: raw values derived indices spatial patterns temporal trends frequency and persistence, and day-to-day transitions, of circulation/weather types. 	seasons except in summer where the opposite situation is noted, while the persistence of the CPs is generally slightly overestimated in all seasons. The moisture flux is overestimated over northwestern Europe in winter and underestimated in the Southern part of Europe in summer. See D13 (USTUTT, Summary, ETH central analysis).
	Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Not much. In winter, indices of precipitation related to magnitude are estimated with higher bias when predictors are taken from GCM. Underestimation of the variability of the indices is more or less the same in both cases. Temperature indices are estimated with a relatively higher bias when GCM predictors are used. The variability of the mean and the extreme maximum temperature are overestimated when GCM predictors are used. For the other indices, the variability is underestimated in both cases by similar extent.

USTUTT_MAR method	Yes/No	Comments/Notes
provides:		
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	Not verified	
Daily time series	Yes	
Seasonal indices of extremes	Yes	Calculated from the daily
		series
Temporally consistent	Yes	
temperature and precipitation		
Spatially consistent multi-site	Yes	
information		
Temporally consistent multi-site	Yes	
information		
Information at sites with no	Yes	Computed from the spatial-
observations		temporal structure
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Relatively high	
Volume of data inputs	Relatively high	
Availability of input data	High	

Application criteria for the USTUTT_MAR method

USTUTT_M	Relative	Performance	Confidence
AR			
method	High	Medium	Low
Temperature			
Indices	Txav, tnav, txq90, tnq10	tnfd, txhw90	
Seasons	Winter, Spring, Summer	Autumn	
Regions	German Rhine		
Precipitation			
Indices	Pav	Pxcdd, px5d, pnl90	Pq90, pint, pf190
Seasons	Winter, Spring	Autumn	Summer
Regions	German Rhine	Alps	
Overall perfor	mance:		
	Mean temperature	Good	
	Temperature extremes	Good/Average	
	Mean precipitation	Good	
Precipitation extremes		Poor	
Optimal spatial scale:		Performs better when indices are calculated from	
		aggregated precipitation at a catchment scale.	
Recommended impact applications:		Any which require high-spatial resolution information	
		of spatially-correlated time series for multiple sites.	

Performance criteria for the USTUTT_MAR method

Information on USTUTT_MAR method provided by

András Bárdossy Yeshewatesfa Hundecha

USTUTT_MLR Direct Method

Summary of the method

Direct method	Predictand(s) (Unless otherwise indicated, predictands are station series)	Predictor(s) (See STARDEX Deliverable D10 for selection procedure)	Description (See STARDEX Deliverable D15 for details)
USTUTT_MLR	Seasonal indices of temperature and precipitation extremes	GPH, RH, T, VORT, DIVG at 500, 700 & 850 hPa, Eastward moisture flux at 700 hPa, Frequency of CPs of MSLP	Multiple Linear Regression

STARDEX deliverables and papers

See USTUTT contributions to D10, D12, D15 and D18.

Overall assessment of the USTUTT_MLR method

A simple method for downscaling of indices of extremes at stations or grids in particular European regions. Performs well for temperature indices and mean precipitation. For certain indices of extreme of precipitation, it should be used with caution in seasons other than winter.

Additional comments on the USTUTT_MLR method

Seasonal measures of mean and extremes of predictors are used. As the measures of extremes, the seasonal 90th and 10th percentile values of the predictors are used. A stepwise regression is used to select predictors from among the potential ones.

Robustness criteria for the USTUTT_MLR method

Robustness criteria	Key questions and recommended assessment methods	STARDEX assessments
'Strength and stability'	Can strong predictor/predictand relationships be identified?	Yes, specially the humidity related predictors show high correlation with the extreme indices, see D10(USTUTT)
	Are these relationships physically meaningful?	Yes, supported by literature review.
	If different methods or time periods are used for predictor selection, are similar sets of predictors obtained?	Relatively similar Methods tested: Stepwise regression Periods tested: years arranged according to annual mean temp. and selection done for the first and last third years separately.

	Is the strength of the	Relatively sensitive
	predictor/predictand relationships	Non-standard periods tested: Calibrated for
	and/or the performance of the	'warm' period and validated for 'cold' period
	statistical downscaling model	and vice versa
	sensitive to changes in	
	calibration/validation period?	
	Is the statistical model performance	Not tested
	sensitive to other user choices?	
'Stationarity'	Predictors incorporated which are	Yes (e.g. Moisture flux) based on literature
Stationarity	expected to change due to global	review
	warming?	
	Assessed whether the direction and	No
	magnitude of observed trends in the	
	predictand, together with low-	
	frequency variability, are	
	reproduced by the statistical model?	
	Assessed whether the projected	
	changes in predictor variables lie	No
	outside the range of variability	
	observed over the	
	calibration/validation period?	
	Assessed whether	
	predictor/predictand relationships	No
	calculated from GCM/RCM output	
	change between the control and	
	perturbed periods?	
	Calibrated the statistical model on a	Yes. Except in summer, the model shows a
	'cold' period and validated it on a	potential for extrapolation of the indices related
	'warm' period and vice versa?	to the magnitude and frequency of heavy
	1	precipitation to a warmer climate. For
		temperature related indices, it shows a similar
		tendency in winter and autumn. In Summer, the
		model shows a better prospect for extrapolation
		to a colder climate.
Uniformity of	Uniformity of statistical model	Relatively uniform across stations and between
performance	performance across:	seasons as well as indices for temperature
	- stations	indices. Considerable variability across stations
	- regions	and seasons for precipitation indices. Better
	- seasons	performance for mean precipitation than
	- variables (i.e., temperature	extremes. The occurrence of the extremes is
	extremes)	extremes
	- indices of extremes (e.g.	The best performance is obtained in winter and
	occurrence vs magnitude)	the worst in summer
	Evaluated using:	nie wordt in Summer.
	- BIAS (mean difference	Generally, the model slightly underestimates the
	between simulated and	mean and extreme precipitation.
	observed values)	
	- CORR (Spearman rank-	Performance as discussed above.

	 correlation coefficient) RMSE (Root Mean Square Error) ratio of observed : simulated standard deviations 	Performance as discussed above. Generally, interannual variability of indices is underestimated by the model.
	 Maps Histograms Box-whisker plots Q-Q diagrams Taylor diagrams 	Histograms
Reliability of simulation of predictors	Predictors calculated from climate model output compared with those calculated from Reanalysis data, taking into consideration: - raw values - derived indices - spatial patterns - temporal trends - frequency and persistence, and day-to-day transitions, of circulation/weather types.	Generally well simulated except that the moisture flux is overestimated over northwestern Europe in winter and underestimated in the Southern part of Europe in summer, see D13 (USTUTT, Summary, ETH central analysis).
	Is performance of the statistical model for the control period degraded when predictors are taken from climate model output rather than Reanalysis data?	Yes, Higher bias is obtained when predictors are taken from GCM.

USTUTT_MLR method provides:	Yes/No	Comments/Notes
Station-scale information	Yes	
Grid-box information	Yes	
European-wide information	Not tested	
Daily time series	No	
Seasonal indices of extremes	Yes	
Temporally consistent temperature and	-	
precipitation		
Spatially consistent multi-site information	-	
Temporally consistent multi-site	-	
information		
Information at sites with no observations	No	
Method requirements :	Relatively	Comments/Notes
	high/medium/low	
Computing resources	Low	
Volume of data inputs	Relatively high	
Availability of input data	High	

Application criteria for the USTUTT_MLR method

USTUTT_M	Relative	Performance	Confidence
LR			
method	High	Medium	Low
Temperature			
Indices	Txav, tnav,txq90, tnq10,	Txhw90	
	tnfd		
Seasons	Winter, Spring, Summer,		
	Autumn		
Regions	German Rhine		
Precipitation			
Indices	Pav	Pxcdd, px5d, pn190	Pq90, pint, pf190
Seasons	Winter, Spring	Autumn	Summer
Regions	German Rhine	Alps	
Overall perfor	mance:		
	Mean temperature	Good	
	Temperature extremes	Good	
	Mean precipitation	Good	
	Precipitation extremes	Poor	
Optimal spatial scale:		Station scale	
Recommended	l impact applications:	Any which require high-spa	tial resolution information
		about seasonal extremes, but do not require spatially-	
		correlated time series for mu	altiple sites

Performance criteria for the USTUTT_MLR method

Information on USTUTT_MLR method provided by

Yeshewatesfa Hundecha András Bárdossy