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FOREWORD 

 
The STARDEX project on STAtistical and Regional dynamical Downscaling of EXtremes for 

European regions is a research project supported by the European Commission under the Fifth 

Framework Programme and contributing to the implementation of the Key Action “global 

change, climate and biodiversity” within the Environment, Energy and Sustainable 

Development. 

 

STARDEX will provide a rigorous and systematic inter-comparison and evaluation of 

statistical and dynamical downscaling methods for the construction of scenarios of extremes. 

The more robust techniques will be identified and used to produce future scenarios of 

extremes for European case-study regions for the end of the 21st century. These will help to 

address the vital question as to whether extremes will occur more frequently in the future.  

 

For more information about STARDEX, contact the project co-ordinator Clare Goodess 

(c.goodess@uea.ac.uk) or visit the STARDEX web site: 

 http://www.cru.uea.ac.uk/projects/stardex/ 

 

STARDEX is part of a co-operative cluster of projects exploring future changes in extreme 

events in response to global warming. The other members of the cluster are MICE and 

PRUDENCE.  This research is highly relevant to current climate related problems in Europe.  

More information about this cluster of projects is available through the MPS Portal: 

http://www.cru.uea.ac.uk/projects/mps/ 
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D15 Summary 

 
This report provides a compilation of descriptions of the downscaling 

methodologies developed by STARDEX partners and listed in the summary 

table. The descriptions were written in January/February 2005 and finally 

compiled into this one file in August 2011. 
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Table 1: List of STARDEX downscaling methodologies 
Method Predictand(s) 

(Unless otherwise 

indicated, predictands 

are station series ) 

Predictor(s) 

 

(See STARDEX Deliverable D10 for 

selection procedure)  

Description 

 

(See STARDEX Deliverable D15 for details) 

    

ADGB_HYPER4 Regional DP index GPH anomalies at 500 hPa, RH at 700 

hPa, geostrophic wind at 500 hPa & 

precipitable water 

Random sampling within the 4-dimensional hyperspace of 

the 4 predictors which defines conditions for high 

precipitation 

ARPA_CCA PIE, TIE SLP, SH at 1000, 950, 850 and 700 hPa, 

and T at 850 hPa 

Canonical Correlation Analysis 

ARPA_MLR PIE, TIE Z500: First 4 PCs of 500 hPa GPH 

anomalies 

T850: First 4 PCs of 850 hPa T 

Multiple Linear Regression 

AUTH_ANN DP, DT 500 hPa GPH & 1000-500 hPa thickness Artificial Neural Network 

AUTH_CCA DP, DT 500 hPa GPH & 1000-500 hPa thickness Canonical Correlation Analysis 

AUTH_MREG DP, DT Circulation types for 500 hPa, 1000-500 

hPa thickness 

Multiple Linear Regression 

CNRS_PPCI DP Large Scale Circulation patterns defined 

using 700 hPa GPH 

Random selection of an analogue within a set of training 

days having the same „Potential Precipitation Circulation 

Index‟ category  

DMI_CWG DP SLP Conditional weather generator, conditional on quantile 

values of a circulation index, in which precipitation 

occurrence and amount are modelled separately 

ETH_DYN DP – station data or 

mesoscale grids 

Grid-box precipitation As ETH_LOC, but with flow-dependent scaling factors 

ETH_DYNI DP – station data or 

mesoscale grids 

Grid-box precipitation As ETH_LOCI, but with flow-dependent scaling factors 

ETH_LOC DP – station data or 

mesoscale grids 

Grid-box precipitation Local scaling of GCM simulated precipitation 

ETH_LOCI DP – station data or 

mesoscale grids 

Grid-box precipitation Local scaling of GCM simulated precipitation with 

correction of precipitation frequency and intensity bias  

FIC_ANAL2  

 

DP, DT Geostrophic fluxes at 1000 & 500 hPa, 

low tropospheric humidity and thickness 

Two-step analogue method, in which (1) the „n‟ most 

similar days to the day being simulated are selected from a 
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( 2SA in some figures) reference data set and (2) regression is performed using 

predictand/predictor relationships from the „n‟ days data set 

KCL_ANN_GA_RBF DP The SDSM set of predictors Genetic algorithm used to optimise the Radial Basis 

Function network structure and parameters 

KCL_ANN_IRBF DP The SDSM set of predictors Individual Radial Basis Function artificial neural network 

model (i.e., applied to individual sites in each region) 

KCL_ANN_MLP DP The SDSM set of predictors Multi Layer Perceptron artificial neural network model 

KCL_ANN_RBF DP The SDSM set of predictors Radial Basis Function artificial neural network model 

(applied across all sites for each region) 

KCL_CR DP The SDSM set of predictors Conditional resampling of area average precipitation, 

conditional on the large-scale atmospheric forcing and a 

stochastic error term, and daily precipitation amounts at a 

„marker site‟ (generated using SDSM). 

UEA_ANN_GAMMA 

 

(GAM in some figures) 

DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 

using the hybrid Bernoulli/Gamma data misfit term 

UEA_ANN_GAMMAMC DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 

using the hybrid Bernoulli/Gamma data misfit term and 

Monte-Carlo simulation 

UEA_ANN_SSE DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 

using the sum-of-squares data misfit term 

UEA_CCA PIE CCA1: MSLP 

CCA4: MSLP + GPH, RH, T at 500, 700 

& 850 hPa 

Canonical Correlation Analysis 

UNIBE_CCA DT SLP and GPH, T, SH & RH at 100, 850, 

700, 500 and 300 hPa 

Canonical Correlation Analysis 

USTUTT_MAR DP Objective circulation patterns (CPs) and: 

- eastward moisture flux at 700 

hPa (for precipitation) 

- GPH at pressure level 

corresponding to the CP 

Multivariate Auto-Regressive model 

USTUTT_MLR PIE, TIE GPH, RH, T, divergence and vorticity at 

several levels, eastward moisture flux at 

700 hpa level and objective circulation 

patterns 

Multiple Linear Regression 
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Detailed description of ADGB statistical downscaling method "HYPER4" 

 

The assumptions at the base of the method derive from the consideration that the observations 

at a single station are too much influenced by local weather conditions to be sufficiently 

correlated to large scale parameters, and that, due to the high small scale variability of the 

topography in Northern Italy, the precipitation field is highly variable in space. The 

consequences of  this high variability are that some areas, like the delta of the river Po, have a 

90
th

 percentile of 16 mm while the areas of maximum precipitation, the area between 

Switzerland and Italy around the lake of Como, the area between Austria, Slovenia and Italy, 

and the eastern side of the gulf of Genoa have the 90
th

 percentile of 42 mm. The 

characteristics of the extreme events are therefore quite different, and the occurrence of an 

event in an area may be associated to “normal” precipitation in another area. Moreover two 

very similar large scale patterns can produce extreme events in different areas, usually the 

areas where the mean precipitation is higher. 

 

To have a good compromise between good links with large scale parameters, and good 

representation of small scale precipitation features, the model uses a single index of 

precipitation for all Northern Italy, which has a strong link with large scale predictors and a 

good correlation with precipitation events over Northern Italy. Index chosen is the sum of 

squares of the first two adimensional PCs of rain on Northern Italy, computed using the 

gridded data produced by ETH in the MAP project. This is a daily index, and it has been 

computed from 1966 to 1990, beyond this interval rain data on Italy become unreliable. As 

figs 1 and 2 show, high values of  PC1 give maximum precipitations both in the Western and 

Eastern part of Northern Italy, high values of PC2 give high precipitation either in the West or 

in the East, depending on the sign.  

 

 

 

 

 

Figures 1-2 – EOF1 and EOF2 of total precipitation, each multiplied by the root of its eigenvalue. 
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The definition of the events takes into account that we are interested in precipitation extremes 

linked to large scale circulation patterns and therefore associated with synoptic scale systems, 

and not deriving from intense convection associated with thunderstorms.  

 

The identification of a day with precipitation is made in two steps: first it is required the 

presence of at least 1 mm of rain in 25 adjacent grid points, second, considering that the grid 

point value is obtained by interpolating station values, and therefore a high value is 

“distributed” over nearby grid points, isolated precipitation peaks have been eliminated if 

their value is greater than 4 times the minimum value of the 8 closest points. If there are only 

isolated (as defined above) precipitations the day is classified as a no rainy day. 

The precipitation value for a day classified as precipitation day is the maximum over the 

whole area.  

 

This procedures produces a series of  daily precipitation values and the 95
th

 percentile value 

has been chosen as the threshold for extreme precipitation. Extreme events occur when large 

scale parameters fall into a reduced range of values, the choice of the 95
th

 percentile allows a 

significant restriction of this range. 

 

The predictand has been chosen considering that the first two principal components of the 

precipitation over Northern Italy have a strong relation with the extreme precipitation events, 

that are always located in correspondence of the maxima of the two PC. The correlation 

between large scale features and the amplitude of the two PC is good. The square root of the 

sum of the squares of the two PC is strongly linked to intensity of the precipitation (as defined 

above), the correlation coefficient is .85 (see Fig.3), and, therefore has been chosen as 

predictand. The method derives separately the amplitude of PC1 and PC2, and the predictand 

is computed afterwards. 

 

Figure 3 

 

The choice of the predictors has been made firstly considering that when extreme events 

occur, large scale parameters fall within a restricted range of values. Specifically: the GPH 

anomalies at 500 hPa around the point of maximum correlation are below 60 m. The relative 

humidity at 700 hPa in the point of maximum correlation is above 33%. The geostrophic wind 

at 500 hPa over Northern Italy comes from South-West. The  500-1000 thickness gradient is 

directed in a North- South direction. The total precipitable water is above 13 mm. The 
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selection criteria for the 95
th

 percentile are more restrictive than those for 90
th

. These selection 

criteria allow to decide a priori if a precipitation extreme can occur in a given day. 

The choice of the large scale parameters to be used for the selection of the days has been 

made a priori taking into account the fact that high precipitation events are usually associated 

with cyclogenesis in the lee of the Alps, and relative humidity and precipitable water have 

been added to add information about the saturation state of the atmosphere and the amount of 

water available. After the choice their  effective selection capability has been tested. 

 

The determination of the grid points to be used for the values of the predictors cannot be 

made only using linear correlation coefficient. For instance the direction of the geostrophic 

wind at 500 hPa, being a periodic parameter, does not correlate with PC1 or PC2, the scatter 

plot shows points crowding in correspondence of the South-West direction showing that there 

is a non linear dependence of the amplitude of the PCs from the direction of the wind. The 

points to be used have therefore been chosen analyzing the scatter plots and selecting the 

point whose plots showed the highest variation of the PC amplitude as a function of the 

parameter under examination, i.e. points that show maximum discriminating power (fig.4).    

   

Figure 4 

 

  

 

The verification of the predictive ability of the predictors has been made using them 

separately and then, starting with the most powerful, introducing one predictor at a time to 

test an effective increase of prediction skill. At the end of the procedure the 4 predictors 

chosen are: 

1.GPH anomalies at 500 hPa. The anomaly has been computed subtracting at each grid point 

value the zonal mean at that latitude. This allows a good definition of the position of high and 

low centers. 

2.Relative humidity at 700 hPa 

3.Precipitable water  

4.Direction of the geostrophic wind at 500 hPa 

The downscaling is done separately for EOF1 and EOF2. The grid points used for each EOF 

are obviously different. After the two separate downscaling the final predictor is computed 
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The downscaling method begins with the selection of the days with condition favorable for 

high precipitation. If the large scale parameters are in requested range their values identify a 

point in the 4 dimensional hyper space of the 4 predictors. The distribution of observed PC 

amplitude in  the neighborhood of this point varies as a function of the region. An histogram 

is constructed with the PC amplitudes contained inside a hyper sphere in the space of 

predictors whose radius is chosen to contain 150 points. Various bin size of the histogram 

have been tested to assure stability of the results. Given the histogram, a value is chosen for 

the PC amplitude using a random number generator. Figure 5 exemplifies the technique for a 

2 dimensional space. The final output is the number of occurrences of a value of  the index 

(PC1
2
 +PC2

2
 )exceeding the given threshold. 

The results of the model are sensitive to the choice of the random number, as expected for 

rare events, so the results are given as a  mean of 99 runs of the model. 

Figure 5 

 

It has been chosen to use always full year data, without considering different seasons. The 

main reasons are that during summer the total number of data (rainy days) is reduced, and 

therefore the exclusion of some years for testing the downscaling method could produce a 

statistic too poor. The second reason is that introducing a season dependent statistic based on 

observed seasons forces the observed annual cycle of future climate scenarios, and does not 

allow to detect shifts of the annual cycle. 

 

As already mentioned, the precipitation data on Italy are unreliable after 1990, thus, to have a 

sufficient statistic to compute skills (e.g. rank correlation), all the years from 1966 to 1990 

have been downscaled for verification one at a time, using in turn the remaining 24 years for 

training. 

 

As the model is based on a pre-selection of days favourable to extreme precipitations, it 

produces a non-continuous time series of values for the downscaled index. Thus it is not 

possible to produce indexes like consecutive dry days 
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A short summary of the method with some details  

 

Characteristics:  

- a “type 2” method (daily downscaling, then calculation of indices)  

- downscales precipitation  

- calculates number of extremes over 90th perc. of rainy days in the whole period (index 

Pnl90)  

- Calibration period: 1966-1990. Verification period: cross validation on 1966-1990  

- not seasonally-based, but a unique full-year calibration (to eventually allow annual cycle 

shifts)  

- gives a unique index of precipitation for all Northern Italy, not indexes on single stations  

 

The method uses precipitation data from MAP. A "rainy day" on Northern Italy is defined as a 

day in which at least 1mm of precipitation falls in at least 25 neighbouring grid points, 

excluding thunderstorms, i.e. peaks in the precipitation pattern. Using daily maximum 

precipitation values on Northern Italy a list of observed extreme events days (with 

precipitation greater than 95th percentile of the entire distribution) is drawn.  

Afterwards EOF analysis is performed and a daily series of the first two precipitation PCs is 

used in the subsequent DS method. An index is computed from the "observed" PCs (sum of 

squares of adimensional PCs), that is well correlated (>0.85) with max. precipitation value on 

Nortern Italy. 90th percentile of this index in rainy days is used as a threshold for Pn90 

calculation.  

 

NCEP parameters used are:  

- 500hPa geopotential height anomaly (2 grid points)  

- 500hPa geostrophic wind direction  

- 700hPa relative humidity  

- 500-850hPa thickness gradient direction  

- precipitable water (calculated from specific humidity at 500, 700 and 850hPa)  

Except that geopotential height anomaly, other parameters are considered in only 1 grid point 

(the most selective, or the most "predictive" one).  

 

The method consists of a two-steps algorithm:  

- First, a preselection of "potentially extreme" days, based on the range of values that large-

scale NCEP parameters undertake in the observed extreme events list. This "pre-selections" 

allows to discard about 60% of days  

- Second, a resampling (random) procedure in the 4-dimensional hyper-space of parameters 

(thickness is not used) to reproduce correctly the statistics of precipitation events for a given 

set of large-scale parameters values. PC1 and PC2 are separately downscaled for each pre-

selected day, then the 'sum of squares of PCs' index is computed. Finally Pn90 is calculated. 

The procedure is iterated 100 times to have a better stability of results. Mean values are 

considered.  

 

Note that:  

- rainy days on Northern Italy (as defined above) are about 55% of total days  

- a 90th percentile calculated on rainy days only is used  

- BIAS and RMSE are dimensional quantities, thus comparison with other methods for this 

region is not really fair (on a single Northern Italy station, rainy days are less than one third of 

total)  
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What is new with the method 

 

The spatial distribution of the precipitation in the area under study is strongly influenced by 

orography.  Its distribution has two distinct peaks, one in the western part of the domain and 

the other in the eastern part and this structure is well captured by the first two EOFs of the 

field. The distribution of extreme events follows the same pattern (almost all the extremes are 

placed in the areas of the two maxima of precipitation) and therefore has a strong correlation 

with the first two EOFs. The method exploits this strong correlation and the high correlation 

of the EOFs with the large scale parameters. This is a clear strength of the method, when 

applied to areas where these strong correlation occur.  

 

Another important characteristic, particularly important in areas with a strong seasonal cycle, 

is that the downscaling does not aggregate data per season. This avoids two problems: it does 

not force the observed seasonal cycle on downscaled data and does not use an unnatural 

grouping (e.g. the seasonal cycle of precipitation in northern Italy is not captured by using 

DJF, MAM, JJA and SON). 

 

 

 

Strenghts Weaknesses 

not seasonally dependent downscales only selected days (not full series) 

good link with large scale only one index and not on a station scale 

high skill in correlation with observed doesn't predict precipitation directly  

 

 

 

Application critera table 

 

 

Method provides: Y/N Comments/Notes 

Station-scale information N  

Grid-box information N  

European-wide 

information 

N only one series, representative of all 

Northern Italy 

Daily time series Y but about half of total days are not 

downscaled (because of extreme events 

calibration) 

Seasonal indices of 

extremes 

Y but only n. days > 90th perc.  

Temporally consistent 

temperature and 

precipitation
1
 

N only precipitation index downscaled 

Spatially consistent multi-

site information
2
 

N only one downscaled series 

Temporally consistent 

multi-site information
3
 

N only one downscaled series 

Information at sites with no 

observations  

/  
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Method requirements : Relatively 

high/medium/low 

Comments/Notes 

Computing resources relatively low  

Volume of data inputs medium  

Availability of input data medium  

 

 
1
  i.e., the temperature/precipitation co-variance is similar for the downscaled validation series 

and observed series  
2
  i.e., the downscaled validation series has a similar spatial pattern to the observed series  

3
  i.e., the downscaled validation series has similar daily inter-site correlations to the observed 

series  

 

 

Improvements 

 

A longer observed precipitation record could certainly improve the performances of the 

method. 

 

The increasing availability of high resolution climate models (T106 typically) requires the 

recalibration of the method with higher resolution analyses, like ERA40. 
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The statistical downscaling methods developed by ARPA–SMR in order to downscale the 

extreme events are : 

 

1. Multivariate regression based on Canonical Correlation Analysis (CCA) 

2.   Multiple Linear Regression based on the principal  components (PCs) derived from EOF 

analysis  

 

 

 

1.Statistical Downscaling model based on CCA 

 

Description of  the method  

 

 

The statistical model based on the Canonical Correlation Analysis (CCA) was introduced in 

the climate research by Barnett and Preisendorfer (1987). This technique finds pairs of 

patterns in a way that the correlation between two corresponding pattern is maximized. A 

description of the methods is presented in the following. 

 

CCA is a statistical method that enables an expansion of two multivariate, observed vectors 

(X and Y) into a finite set of vectors, called canonical correlation patterns (FX and FY):  

 

k

X

K

k

kt t FX


)(
1




   and k

Y

K

k

kt t FY


)(
1




  .  

 

The canonical correlation patterns are derived by fX and fY, respectively the eigenvectors of 

the matrices T

XYYXYXX SSSSA
11   and XYX

T

XYYY SSSSA
11  : 

 
k

XX

k

X fSF


  and k

YY

k

Y fSF


  

 

where SX and SY are, respectively, the covariance matrices of X and Y, while SXY is the cross-

covariance matrix of  X and Y. It can be shown that canonical correlation patterns are chosen 

such that: 

 

 Canonical correlation coefficients,  and , defined by projection of two data sets onto 

these patterns, are optimal in a least square sense, i.e. for given patterns FX and FY the 

norms k

X

K

k

kt t FX


)(
1




   and k

Y

K

k

kt t FY


)(
1




   are minimised. This condition 

implies: t

k

XXk XFS


,1  and t

k

YYk YFS


,1 , where SX and SY are, respectively, 

the covariance matrices of X and Y. 

 

The canonical coefficients, defined by projection of two data sets onto canonical patterns 

exhibit maximum correlation, Corr[1, 1]  Corr[2,  2]  …  Corr[ K,  K]  0, but are 

 uncorrelated with the projections of the data onto any of the other patterns: Corr[k, 

l], Corr[k, l], Corr[k, l] and Corr[l, k] are equal zero for all k  l. 
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 the canonical coefficients, also called canonical correlation coordinates, are 

orthonormalized: Var[k]  = Var[k]  = 1. 

 

In order to simplify mathematics and to reduce the noise of fields involved, observation 

vectors are transformed into a low-dimensional EOF-space (EOF stands for Empirical 

Orthogonal Functions) before computing CCA:  

 

k

X

X

k

K

k
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1


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Y

Y

k
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k
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 )(
~

1




  

 

The numbers X

k  and Y

k are the eigenvalues, whereas k

Xe


 and k

Ye


 the empirical orthogonal 

functions. In EOF coordinates, because of SX and SY are both identity matrices, CCA matrices 

are of the simpler and the non-negative definite symmetric form: T

XYXYX SSA   and 
T

XY AA  . 

 

Construction of the model 

  

In order to estimate the predictand anomalies from the predictor anomaly field, the first step is 

to connect 1(t) and 1(t) with a simple linear model: )()( 111 tt   , and since 1(t) and 

1(t) are normalised to unit variance, 1 is the canonical correlation coefficient. The 

predictand anomalies are forecast as: 

 
1

11

1

1 )()( YY tt FFY


   

 

If the most important canonical correlation patterns are taken into account, predictand 

anomalies can be described by a multiple linear model: 

 





K

k

k

Ykk

K

k

k

Yk tt
11

)()( FFY


  

 

 

Description of why this method is improved/new 

 

 CCA especially finds the optimum linear-combination of the predictor data vector that will 

explain the most variance in the predictand data vector  

 

A table listing up to three general strengths and three weakness of the method as bullet points 

 

Strengths: 

 Canonical correlation analysis is a multivariate statistical technique that objectively 

define the most highly related patterns of potential predictors and predictands; 

 CCA can be viewed as an extension of the multiple regression; 

 

 Canonical correlation analysis enables to define a local climate, through a statistical 

relationship that relates large-scale atmospheric features (predictors), usually well 

predicted by GCMs, to local ones (predictand). 
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Weakness: 
 CCA and all other statistical downscaling models (such as MLR) underestimate the  

temporal variance; 

 

 CCA is sensitive to the number of EOFs/CCP used in the downscaling model, such as 

many test have to be done as far as the best combination is found; 

 

 The model skill depends on the spatial area over which predictors are taking into 

account. 

 

Specific suggestions for further improvements to/developments of the method 

 

In order to solve the problem of underestimation of the temporal variability, technique such as 

those suggested by von Storch (1999), namely, adding to the downscaled series a white noise, 

is necessary. 

 

 

2. Statistical Downscaling model based on MLR 

 

Description of  the method  

 

 

Multiple Linear Regression  analysis, so useful in diagnostic and predictive studies of data 

sets, attempts to model the relationship between two or more variables by fitting a multi-

linear equation to observed data (Wilks, 1995). One variable is considered to be an 

explanatory variable (the predictand), and the other is considered to be dependent variables 

(the predictors).  

The model may be expressed by the following equation: 

 

Y = a0, + a1X1 + a2X2 + …….+ anXn 

 

where: Y is the predictand; 

 ai are the regression coefficients that are estimated using the observed data; 

 X is the predictors.  

 

The regression coefficients are determined by using the least squares methods. To avoid the 

multicollinearity of the predictors the choice of this had to be made carefully because we had 

to be sure to choose indipendent variable. One way to do this  is first to study the correlation 

between the predictors and selected only the predictors less correlated.  

 

In order to filter the noise from the data and to  reduce the dimensionality of the predictors the 

regression model could be constructed based on PCs derived from EOFs analysis, that are 

shortly described in the CCA methods. We consider retaining in the  MLR only the number of  

PC‟s that have a meaningfully contribution to total variance and that make significant the 

regression coefficients. 

 

Description of why this method is improved/new 

 

The MLR methods has been tested  in two steps: 
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a) using only the first 4PCs of the predictors; 

b) increasing  the number of PCs of predictors, such as the explained variance to be 97% 

from the total variance. 

 

The skill of the model has been slightly improved in the second situation for some extrems. 

 

A table listing up to three general strengths and three weakness of the method  

 

Strengths: 

 

 MLR is  enables to define a local climate, through a statistical relationship that relates 

large-scale atmospheric features to local one; 

 MLR is very simple method to be implemented. 

 

Weakness: 

 

 MLR underestimate the temporal variability, such in the CCA case; 

 MLR need to test before the construction of the model, the relationships between 

predictors and predictand;  

 The model skill depends on the spatial area over which predictors are taking into 

account. 

 

Specific suggestions for further improvements to/developments of the method 

 

Same solution like in the CCA techniques  

 

References 

 

Barnett, T. P. and Preisendorfer, R. 1987. Origin and levels of monthly and seasonal forecast 

skill for United States surface air temperatures determined by canonical correlation analysis”. 

Mon. Wea. Rev., 1825-1850. 

 

Zorita, E. and von Storch, H., 1999. The analogue method as a simple statistical downscaling 

technique: comparison with more complicated method. J. Climate, 12, 2474-2489. 
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AUTH DOWNSCALING METHODS 
 

Introduction 
AUTH has developed three statistical downscaling models a) Multiple Linear Regression 

Model using the circulation type approach b) Canonical Correlation Analysis (CCA) 

Model c) Artificial Neural Network Model, in order to simulate the extreme indices of 

temperature and precipitation. The models are described in detail in the next paragraphs. They 

were applied on an annual and seasonal basis using as predictors the 500hPa geopotential 

heights in the case of the extreme precipitation indices (predictants) and the (1000-500hPa) 

thickness field (predictors) for the simulation of the extreme temperature indices 

(predictants).  

For all three models initially the calibration period is 1958-1978+ 1994-2000 and the 

validation period is 1979-1993 using the NCEP/NCAR reanalysis data. In the case of the 

GCM output the calibration period is 1958-2000 (NCEP data) and the validation period is 

1960-1990 (GCM control run) or 2070-2100 (GCM scenarios). 

 

Multiple Linear Regression Model using the circulation type approach 

 

AUTHs Multi Linear Regression Model is based on a daily catalogue of 14 circulation 

types, which is constructed for each calibration period. The automated classification scheme 

is based on standardized 500hPa and 1000-500hPa (thickness) daily geopotential height data 

of the NCEP/NCAR reanalysis data achieve (Kalnay et al., 1996) with a spatial resolution of 

2.5
o
 x 2.5

o 
within the European region of 20

o
N -65

o
N and 20

o
W-50

o
E.  

Six anticyclonic types ( Anw (A1), Ane (A2), A (A3), Asw (A4), Ase (A5) and Ae (A6)) 

and eight cyclonic types (C, Cs, Csw, Cnw, Cne, Cse, Cn and Cw) are defined. The 

characterization of Anticyclonic or Cyclonic circulation types refers to the locations of the 

positive or negative anomaly centre (


xx
z i

i


 , where zi = the standardized daily values for 

each grid, xi = the daily values of geopotential height for each grid (i), x  = the mean monthly 

value for each grid for the period 1958-2000 and σ = the corresponding standard deviation) in 

relation to the Greek area. 

For example, the positive anomaly centre of the anticyclonic type A locates over Greece, 

while the location of the negative anomaly centre of Csw (cyclonic type) is in 
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southwest of the Greek area. More details on the classification method are provided by 

Maheras et al. (2000) and Maheras and Anagnostopoulou (2003). 

After developing the daily calendar for the two fields, the multi linear regression method 

is used for all possible combinations of the circulation types (fig1). On a second step, the best 

for each group of circulation types (each ct separately, each pair of ct, each triplet, each 

quadruplet, etc) was selected using the highest R
2
. Continuously, the simulated data from 

these “best R
2
” groups were compared with the observed data and the best of these “best R

2
” 

groups was selected based on the highest correlation coefficient. Finally, for each station and 

for each season, one ct group was chosen, which was then applied to the MLR Model (fig 1).  

For the validation period a new daily calendar was developed, computing the frequencies 

of the new circulation types. Then, the MLR model is applied in the same way as in the 

calibration period (fig 1). 

 

Referencies: 

Kalnay E, Kanamitsou M, Kistler R, Collins W, Deaven D, Gandin L, Irebell M, Saha W, 

White G, Woolen J, Zhu Y, Leetman A, Reynolds R, Chelliah M, Edisuzaki W, Huggins 

W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The 

NCEP/NCAR 40-year Reanalysis project. Bulletin of American Meteorological Society  

77: 437-471. 

Maheras P, Patrikas I, Karacostas Th, Anagnostopoulou Ch. 2000. Automatic classification of 

circulation types in Greece: Methodology, description, frequency, variability and trend 

analysis. Theoretical and Applied Climatology 67: 205-223.  

Maheras P, Anagnostopoulou Chr. 2003. Circulation Types and their Influence on the 

Interannual variability and precipitation changes in Greece, Mediterranean Climate-

Variability ad Trends. Springer Verlag, Berlin, Heidelberg, 215-239. 

 

 

 

 

 

 
 

 

 

 

 

 

Input for Predictors: 

Data NCER/NCAR for 

- 500hPa geopotential heights 

- thickness field 1000-500hPa 

in grid points 2.5x2.5 

(Kalnay et al., 1996) 

Input for Predictands: 

- Daily rainfall totals of 

precipitation 

- Daily Maximum and 

minimum temperature for 

stations or grid points 



STARDEX  

D15 – Compiled 18 August 2011 from material written January/February 2005 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Multi Linear Regression Model based on a circulation type approach 

Canonical Correlation Analysis Model 
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calibration period 

Estimation of the coefficient in a multiple linear regression equation using the 

best combination of the circulation types for each station (grid) 

 

F(predictant) = a1x1+ a2x2+….+ anxn+bo 

 

  x1, … xn: frequencies of circulation types, 1 ≤n ≤14 

Development of the daily calendar for 14 circulation types and 

computation of their frequencies for the validation period 

 

Application of the MLR model to each station (grid point) and 

simulation of each predictant 
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AUTHs Canonical Correlation Analysis Model is based on CCA (Barnett and 

Preisendorfer 1987; von Storch and Zwiers, 1999), which selects pairs of spatial patterns of 

two space-time dependent variables.  

Initially the S-mode unrotated PCA method was applied to the predictors (500 hPa and 

(1000-500) hPa thickness geopotential heights) in order to reduce the dimensionality of the 

original data. The PCs retained explained more than 80% of the total variance. The scores of 

these Principal Components were used in CCA method and all the canonical pairs were 

computed. The predictants are the precipitation and temperature indices for all stations (or 

grid points).  

On a second step, these CCA pairs were used in a multiple regression model in order to 

estimate the predictants from the large scale predictors. Finally, this model is applied again 

using as predictors the GCM output (fig 2).  

 

References: 

Barnett T and Preisendorfer R (1987) Origin and levels of monthly and seasonal forecast 

skill for United States surface air temperatures determined by canonical correlation 

analysis. Monthly Weather Review 115: 1825-1850. 

Von Storch H, and Zwiers FW (1999) Statistical Analysis in Climate Research. 

Cambridge University Press. pp 484 
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Figure 2. Block diagram of the CCA model used 
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Downscaling Technique using an ARTIFICIAL NEURAL NETWORK 

 

 

The AUTHs ANN Model is based on the quickprop algorithm created by Scott 

Fahlman using in the beginning Common Lisp and then translated in C by Terry Regier 

(University of California, Berkley). This algorithm is described in detail by Fahlman 1988. 

 The neural net that was used is a feed – forward type of neural network and its 

learning process is based on back – propagation method. After having constructed many 

configurations for this neural network, it was concluded, on a trial and error basis, that the 

best results were obtained with only one hidden layer, with 12 nodes (figure 3).  

The chosen predictors for the simulation of precipitation and precipitation indices 

(predictants) are: 

 Scores of the 500hPa field (S-mode PCA unrotated) 

The chosen predictors for the simulation of temperature and temperature indices 

(predictants) are: 

 Scores of the thickness (1000-500hPa) field (S-mode PCA unrotated) 

 

The neural net is trained for the years of the calibration period and is validated for the years of 

the validation period. Before the training process begins, the weights (w) were 

initialized to small number using a random seed generator. The NET signal: 

 

 nnwxNET  

 

is processed by the transfer (activation) function: 

 

)exp(1

1
)(

NET
NETF


  

 

to produce the output signal.  

This transfer function is a “sigmoid function” which values are ranging between 0 and 1 and 

so the target vector of the predictants are “normalized” taking values between these limits in 

order to be compared with the F(NET) signal. 

 

The error between the predicted output (F(NET)) and the target vector is estimated using the 

RMSE (root mean square error): 

N

etvectortNETF
RMSE

 


arg)((
 

 

This calculated error is then back-propagated and the weights are determined again in order to 

minimize the error in the next “training year”. This procedure ends when the error reaches a 

minimum. 
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Figure3. The artificial neural network model used. 

 

 

 

Reference: 

Fahlman S., 1988: Faster Learning Variations on Back-propagation. An Empirical Study. 

Proceedings of 1988 Connectionist Models Summer School, published by Morgan 

Kaufmann. 
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D15: Improved Statistical Downscaling Methodologies: description of the 

STARDEX methods 
 

 

1.Main steps of the algorithm. 

 

 

Definition of IPEs (Intense Precipitation Events ) over the station of interest. 

Definition of PRs (Precipitation Regimes), an extension of WR s(Weather Regime ) 

concept. 

Construction of the ppci, a linear index depending on LSCs (Large Scale Circulation 

patterns), PRs, and WRs. 

Description of the DS (Downscaling ) scheme. 

 

 

2.Definition of IPEs. 

 

 

Many definitions of local Intense Precipitation Events may be given.  We choose to define 

IPEs as those days with a precipitation in excess of a fixed threshold. The  threshold value 

is choosen in such a way that one is left with about 10  IPEs per year. Witth such a 

definition, IPEs occur  preferentially during wet seasons if any, generally fall and winter 

in southern Europa. The PRs and ultimately the DS scheme appear to be very insensitive 

to the precise value of the threshold. 

 

 

3.Definition of PRs. 

 

Once  IPE days have been selected, we extract the corresponding  Z700 height maps over an 

euro-atlantic sector and like in [Plaut et al., 2001], we classify these maps into clusters. 

We call Precipitation Regimes (PRs) the central patterns of these clusters. 

This new naming is a natural extension of the naming  Weather Regimes  (WR) which 

commonly refers to the central patterns of the clusters one obtains when classifying all the 

LSC patterns.  Unlike WRs, PRs  highly depend on the particular station (or gridpoint) of 

interest. PRs are most often robust and may own a high discriminating power: this 

peculiar quality manifests through the fact that whenever the anomaly pattern correlation 

coefficient (apcc) of any day LSC with a given PR is high enough (close enough to 1), 

the probability of this day being an IPE gets high. 

 

 

10. Construction of a ppci.. 

 

The potential precipitation circulation index is a linear  daily precipitation index. 

Its value is defined as the best regression of (daily )precipitation against the apccs of the 

corresponding LSC with the PRs and WRs.  
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Since classification may have been performed into various numbers of PRs or WRs, the 

optimal number of PRs and WRs are looked for in a cross-validation way; (please, note 

that optimality may be defined in various ways). 

The ppci appears extremely robust and over-constrained, with almost similar learning and 

verification scores if one uses a cross-validation approach. 

 

 

5.Description of the Downscaling  algorithm. 

 

 

Our previously defined ppci is the basic tool of our stochastic scheme. We first compute the 

ppcis of any learning period day (see above). Then we classify the values of these ppcis 

into 20 categories (20 is better than 10; higher numbers of categories bring no more  

improvement!). Using categories to find analogs is a pretty way to take into account the 

non-linear link between precipitation  and the ppci: precipitation almost never occur with 

negative ppci values, whereas  IPEs mostly occur together with the highest ppci 

categories   [Plaut, 2004]. 

Our scheme is a true DS one (no small scale parameter involved) 

Starting from the LSC of any involved day, we compute  its ppci. And the category into 

which it enters. 

Then we randomly choose an analog within the subset of learning period days having a ppci 

belonging to the same category, and assign this analog precipitation to the involved day 

In this way complete daily precipitation series may be easily generated and any seasonal 

extreme index (like Pav, PQ90, P5DMAX, PCDD, etc...) may be computed. 

Given the stochastic component of our scheme, a large number of precipitation series may be 

downscaled from a single GCM run, in a way somewhat  rench  s to ensemble 

technics. 

Given the different dynamical processes involved in the generation of different season 

precipitation, the best ppci are looked for independently for the four (DJF, MAM, etc...) 

seasons. Therefore the exact model differ from season to season. 

 

 

10. Some strength of the ppci DS scheme. 

 

 

Robustness 

Truely a DS scheme: no small scale (often less accurately forecast) parameter involved 

Pretty good description  (high Spearman correlation) of  seasonal precipitation (alpine 

stations, except during summer; western  rench  stations, winter, spring) or drought 

duration indices (Alps: fall and winter; West Iberia: spring and winter). 

 

 

10. Some weaknesses of the ppci DS scheme. 

 

 

Summer indices badly reproduced, likely due to smaller scale precipitation mechanisms 

during summer. 

Except for Pav, the interannual variability is most often highly underestimated 

Low quality PQ90, better P5DMAX and PCDD.. 
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No spatial coherence at the daily time scale (imdependent models for 2 different stations). 

8. Application criteria for statistical and dynamical downscaling 

 

Method provides: Y/N Comments/Notes 

Station-scale information Y  

Grid-box information Y provided it learns with 

gridbox precipitation 

European-wide information N  

Daily time series Y  

Seasonal indices of extremes Y  

Temporally consistent temperature and 

precipitation
1 

N  only precipitation  is 

downscaled 

Spatially consistent multi-site information
2 

Y at seasonal level, not at 

daily level 

Temporally consistent multi-site information
3 

N  

Information at sites with no observations  N  

   

Method requirements : Relatively 

high/medium/low 

Comments/Notes 

Computing resources medium The algorithm may be 

simplified without 

noticeable loss of skill 

Volume of data inputs medium  

Availability of input data high  

 

9. Suggestions for further improvement, development. 

 

Large Scale domain  adaptive size. 

The bulking of menth into standard seasons (DJF, etc...) may not be the best. 

For future climate change investigations,it seems that our model may be simplified in a way 

that would allow much faster numerical investigations  [Plaut, 2005]. 

 

10. References. 

 

[Plaut et al., 2001]: Plaut, G., Schuepbach, Evi, and Doctor, M.: Heavy precipitation events 

over a few alpine sub-regions and the links to large-scale circulation: 1971-1995, 

Climate Research 17, CR Speial 9 ACCORD, pp285-302, 2001. 

[Plaut, 2004]: Plaut G., Downscaling algorithms for precipitation: The “potential 

precipitation circulation index” or “ppci”, an adaptive predictor to downscale 

extreme precipitation on the  rench Alpes Maritimes, STARDEX partner 5 (CNRS-

INLN) deliverable report D10, 2004, available on 

STARDEX web site or http://www.inln.cnrs.fr/~plaut/STARDEX.CNRS.reports/D10 

[Plaut, 2005]: Downscaling of extremes for precipitation over 10 alpine and 16 iberian 

stations: Application of a stochastic algorithm based on a  “potential precipitation 

circulation index” (“ppci”) defined using NCEP reanalysed large scale Z700 

geopotential field (1958-2000), STARDEX partner 5 (CNRS-INLN) deliverable report 

D12, 2005, available on 

STARDEX web site or http://www.inln.cnrs.fr/~plaut/STARDEX.CNRS.reports/D12 

 

http://www.inln.cnrs.fr/~plaut/STARDEX.CNRS.reports/D10
http://www.inln.cnrs.fr/~plaut/STARDEX.CNRS.reports/D12
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A conditional weather generator 
 

DMI partner report for deliverable D15 

Torben Schmith, Danish Meteorological Institut 

 

Description of method 
We apply a weather generator approach for hindcasting daily precipitation amounts, where the 

parameters in the generator are dependent on daily values of an index describing the large 

scale circulation on which the probabilistic characteristics of the precipitation are quantified. 

The relation between the circulation and the precipitation characteristics is calculated for each 

station and for each season. 

For calibrating the model to a given station, a surface pressure pattern is obtained as the 

average pressure difference between rainy days and dry days measured at that station. The 

circulation index is then calculated by projecting the daily surface pressure anomaly field onto 

this pattern. 

The parameters in the weather generator are: the probability for wet/dry days, the probabilities 

for a wet/dry day following a dry/wet day, and the two parameters describing the gamma-

distribution that best approximates the probability density of the rain amount (only wet days). 

The dependence of these parameters on the circulation index is then determined by „binning‟ 

into 5-10 bins. 

When applying the model, the daily circulation index is calculated by projection the daily 

surface pressure anomaly field onto the pattern found above.  Using the dependence of the 

probabilities on the circulation index a two-state Markov process is used to obtain the 

sequence of dry/wet days. Then, for each wet day the rain amount is drawn from a gamma-

distribution with the parameters corresponding to the circulation index of that day. 

Why this method is improved. 
Conditional weather generator approaches for downscaling daily precipitation values have 

been previously applied (Wilby et al., 1998), but in that work the circulation idex is 

evaluated at a point. The improvement of the present method is that the index is defined as  

projection onto an „optimal‟ pattern. 

Strengths/weaknesses 
Strengths: 

 Few parameters (thresholds, geographical domains etc.) to be specified. 

 Calculates daily values of predictor  

 Calculates distribution of daily values 

Weaknesses: 

 Does not - in the present formulation - take vertical stability or humidity content 

explicitly into account. 

 Single site method – does not exploit spatial correlations. 
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Application criteria table 
Method provides: Y/N Comments/Notes 

Station-scale information Y  

Grid-box information N  

European-wide information Y  

Daily time series Y  

Seasonal indices of extremes Y  

Temporally consistent temperature and 

precipitation
1
 

Y  

Spatially consistent multi-site information
2
 N  

Temporally consistent multi-site 

information
3
 

N  

Information at sites with no observations  N  

   

Method requirements : Relatively 

high/medium/low 

Comments/Notes 

Computing resources Low  

Volume of data inputs Low  

Availability of input data High  

 
1
  i.e., the temperature/precipitation co-variance is similar for the downscaled validation series 

and observed series  
2
  i.e., the downscaled validation series has a similar spatial pattern to the observed series  

3
  i.e., the downscaled validation series has similar daily inter-site correlations to the observed 

series  

Specific suggestions for further improvements to/developments of the 

method 
One immediately applicable improvement to the model would be to include a measure of 

vertical stability. Changes in vertical stability are known to influence the typical scale and 

development times of baroclinic disturbances which could probably lead to precipitation 

changes. 

 

One candidate is the approximate expression for the growth rate of the fastest growing 

baroclinic disturbance: 

T
zgTz

v

N

f
BI 




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












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11
31.031.0




  (Lindzen and Farrell (1980)), 

which is combination of horizontal circulation and vertical stability.  

References 
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of baroclinic instabilities. J. Atmos Sci., 37, 1648-1654. 
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Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of 

methods. Water resources res., 34, 2995-3008. 
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D15 Method Description - ETH 

 

The ETH downscaling method is based on the procedure of Widmann and Bretherton (2003) 

and uses GCM-simulated precipitation as a predictor for regional/local precipitation. The 

basic idea of both the original (LOC) and the new (LOCI) downscaling method is to rescale 

the GCM-simulated precipitation with a spatially varying, but time-invariant factor, which 

compensates for the longterm bias of the GCM at the station. (A variant of both methods 

allows for a scaling factor which 

depends on the season of the year). 

 

Within STARDEX a more refined variant of the original scheme was implemented. 

The new method improves on the original method by including a bias correction for 

precipitation frequency and intensity. The positive impact of this bias correction is shown 

clearly by the validation experiments. 

 

The downscaled precipitation P̂ for a given station can be written as 
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is the station-dependent scaling factor, P
o
 is the observed precipitation, and P

o
WDT is the wet-

day threshold for the observations. The angle brackets indicate the climatological mean 

precipitation intensity over the calibration period at each grid point, and P
o

WDT is defined to be 

equal to 1 mm per day. The idea of the new method is to define the model wet-day threshold 

P
m

WDT such that the model precipitation frequency equals the observed precipitation 

frequency. For further details on the ETH downscaling method see Schmidli and Frei (2005). 

 

Strengths of the ETH downscaling methods are: 

Easily transferable to different regions 

4.Easy implementation and low data requirements (no daily observations required at 

station, but only mean precipitation frequency and mean precipitation intensity) 

6.Strong predictor/predictand relationship and therefore potentially less prone to stationarity 

problems 

 

Weaknesses are: 

2.Downscaling skill depends crucially on quality of GCM data 

3.Non-responsive to changes in mesoscale processes that are not resolved by the GCM 

 

The scheme may be considered as the grafting of a GCM (rather than a full downscaling 

technique) that serves as a useful benchmark, against which other downscaling methods are 

compared. 
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1. Data. 

 

The downscaling method works on a daily basis. The low resolution predictors have been 

selected from NCEP/NCAR Reanalyses. In the verification  phase, the calibration period is 

1958-1978 and 1995-2000, and the verification period is 1979-1994. For the final application 

of the method to HadAM3p output, the reference period is 1958-2000. 

 

A good diagnostic capability in the daily scale is required, to ensure the statistical 

relationships stability. In this regard some ideas must be kept in mind: 

 

1. The statistical tool must be "non-linear" enough to handle the strong non-linear 

relationships that link predictors with most of the local surface weather predictands. 

2. Predictors must present clear physical linkages with the predictand. That points towards 

the need of using as predictors (whenever is possible) direct forcings of the predictand.  

3. The predictors must cover, as much as possible, all the direct forcings of the predictand. 

 

The statistical downscaling method has been developed trying to consider the previous 

conceptual framework. 

 

 

1.1. Predictors for precipitation. 
 

Precipitation is forced by upwards movements of air. The most important forcings of upward 

movements are: 

o Dynamic forcing 

o Topographic lift 

o Convection 

 

 Dynamic forcing at the synoptic scale is determined by geopotential configurations at 

1000 and 500 hPa (see “ω” equation, Holton, 1975). 

 Topographic lift could be considered attending at surface winds, which are strongly 

related to geostrophic flux at 1000 hPa. 

 Convection occurs due to triggering factors (differential surface heating, topographic or 

frontal lifts) on a more or less unstable atmospheric profile. 

 

Beside this, low troposphere humidity is related with the amount of precipitation due to 

upwards movements. 

 

The predictors used for precipitation are: 

 Geostrophic flux direction at 1000 hPa, obtained from 1000 hPa geopotential height. 

 Geostrophic flux velocity at 1000 hPa, obtained from 1000 hPa geopotential height. 

 Geostrophic flux direction at 500 hPa, obtained from 500 hPa geopotential height. 

 Geostrophic flux velocity at 500 hPa, obtained from 500 hPa geopotential height. 

 

Another predictor has been tested, but the final version of the method does not use it: 

 Low troposphere relative humidity, obtained from 1000, 925 and 850 hPa relative 

humidity. 

 

Convective precipitation downscaling can be improved attending also to instability predictors 

(instability indexes, low level thermal advection…). This could be very important for 
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extremes simulation, since some of the extreme precipitation events in certain regions are 

related to convective precipitation. 

 

 

1.2. Predictors for temperature. 
 

Two meter air temperature is influenced both by low troposphere temperature and by soil 

surface temperature: 

 

 Low troposphere temperature is well resembled by low troposphere thickness (for 

example 1000/850, 1000/700 or 1000/500 thickness) that are good predictors for surface 

temperature. 1000/850 hPa can be also sensitive to land-sea mask in coastal regions. 

 Regarding soil temperature: 

o Soil surface temperature is driven by heat fluxes at the surface layer. 

o The insolation angle affects soil temperature, and it can be considered using sine 

functions of the day of the year. This influence depends on cloudiness. 

o Soil temperature is strongly influenced by cloudiness, because it modifies radiation 

cooling/heating of the surface. Cloudiness is forced by upwards movements of air, 

like precipitation, and the precipitation predictors are perfectly suitable for 

cloudiness. 

o The thermal inertia of the soil could be considered using previous days 

temperature as predictors. 

o Snow cover strongly modifies radiative cooling / heating of the surface so it should 

be also used. 

 The influence of both low troposphere temperature and soil temperature, on two meter 

temperature, depends on atmospheric stability: under unstable conditions, there are more 

vertical heat fluxes, and two meter temperature is more dependant on low troposphere 

temperature. 

 

Most of the predictor / predictand relationships are strongly non linear. For example, the 

relationship between the maximum two meter temperature and low troposphere thickness is 

very non linear, depending on the cloudiness conditions: under covered skies, low troposphere 

thickness almost determines the maximum two meter temperature; but if the sky is clear, the 

maximum temperature is driven by solar radiation, and the influence of low troposphere 

thickness is much lower. A previous stratification attending to cloudiness conditions makes 

these relationships much more linear, an then, much more easily and robustly captured. 

 

The predictors used for temperature are: 

 Geostrophic flux direction at 1000 hPa, obtained from 1000 hPa geopotential height. 

 Geostrophic flux velocity at 1000 hPa, obtained from 1000 hPa geopotential height. 

 Geostrophic flux direction at 500 hPa, obtained from 500 hPa geopotential height. 

 Geostrophic flux velocity at 500 hPa, obtained from 500 hPa geopotential height. 

 1000/500 Hpa thickness, obtained from 1000 and 500 hPa geopotential heights. 

 

Two other predictors are used, in this case not obtained from NCEP/NCAR Reanalyses: 

 Low troposphere relative humidity, obtained from 1000, 925 and 850 hPa relative 

humidity. 

 A sine function of the day of the year 

 The mean temperature of the previous days, obtained as follows: 
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where d-i is the i previous day of the problem day. The maximum and minimum 

temperature are those downscaled for the previous days 

 

 

2. Description of the method. 
   

The method estimates high-resolution surface meteorological fields for a day “X”, in two 

steps (see figure 1): in the first step, the “n” most similar days to the “X” day, attending to 

their low-resolution atmospheric fields, are selected from a reference dataset. In the second 

one, high-resolution surface information is estimated in a different way for precipitation and 

temperature. Rainfall estimations for a point are done by means of a simple average of the 

observed precipitation amounts in the “n” analogous days, in that point. It was also tested to 

select (in the “n” day‟s population) the most similar days attending to low troposphere 

humidity. Temperature is obtained applying a further multiple linear regression analysis that 

searches for relationships (in the “n” day‟s population) between the predictors and the surface 

maximum and minimum temperature (predictand). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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2.1. First step: the analogical technique 
 

As pointed earlier, in the first step, the “n” most similar days to the “X” day, attending to their 

low-resolution atmospheric fields, are selected from a reference dataset. The similarity 

measure must contain diagnostic capability regarding high-resolution precipitation fields. In 

this sense, the similarity measure must assess the likeness of as many as possible precipitation 

forcings associated to the low resolution atmospheric configurations of the days being 

compared. 

 

The analogical predictors: mean daily geostrophic flux fields on 1000 and 500 hPa. 

 

It must be highlighted that predictor variables are not point, but field values (what increases 

trustworthiness of the predictor). 32 sets of atmospheric windows have been defined. Each set 

consists of three windows. The first set covers the area 55ºN-30ºN 27.5ºW-15ºE, and the grid 

points belonging to each of the three windows of that first set are shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

 

The other window sets are obtained moving the window 10 degrees northwards, and 10 

degrees eastwards. So window 3 of each of the 32 sets cover the following areas: 

 

Window 3 of set 1: 55ºN-30ºN 27.5ºW-15ºE 

Window 3 of set 2: 65ºN-40ºN 27.5ºW-15ºE 

Window 3 of set 3: 75ºN-50ºN 27.5ºW-15ºE 

Window 3 of set 4: 85ºN-60ºN 27.5ºW-15ºE 

Window 3 of set 5: 55ºN-30ºN 17.5ºW-25ºE 

Window 3 of set 6: 65ºN-40ºN 17.5ºW-25ºE 

Window 3 of set 7: 75ºN-50ºN 17.5ºW-25ºE 
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Window 3 of set 8: 85ºN-60ºN 17.5ºW-25ºE 

Window 3 of set 9: 55ºN-30ºN 7.5ºW-35ºE 

Window 3 of set 10: 65ºN-40ºN 7.5ºW-35ºE 

Window 3 of set 11: 75ºN-50ºN 7.5ºW-35ºE 

Window 3 of set 12: 85ºN-60ºN 7.5ºW-35ºE 

Window 3 of set 13: 55ºN-30ºN 2.5ºE-45ºE 

Window 3 of set 14: 65ºN-40ºN 2.5ºE-45ºE 

Window 3 of set 15: 75ºN-50ºN 2.5ºE-45ºE 

Window 3 of set 16: 85ºN-60ºN 2.5ºE-45ºE 

Window 3 of set 17: 55ºN-30ºN 12.5ºE-55ºE 

Window 3 of set 18: 65ºN-40ºN 12.5ºE-55ºE 

Window 3 of set 19: 75ºN-50ºN 12.5ºE-55ºE 

Window 3 of set 20: 85ºN-60ºN 12.5ºE-55ºE 

Window 3 of set 21: 55ºN-30ºN 22.5ºE-65ºE 

Window 3 of set 22: 65ºN-40ºN 22.5ºE-65ºE 

Window 3 of set 23: 75ºN-50ºN 22.5ºE-65ºE 

Window 3 of set 24: 85ºN-60ºN 22.5ºE-65ºE 

Window 3 of set 25: 55ºN-30ºN 32.5ºE-75ºE 

Window 3 of set 26: 65ºN-40ºN 32.5ºE-75ºE 

Window 3 of set 27: 75ºN-50ºN 32.5ºE-75ºE 

Window 3 of set 28: 85ºN-60ºN 32.5ºE-75ºE 

Window 3 of set 29: 55ºN-30ºN 42.5ºE-75ºE 

Window 3 of set 30: 65ºN-40ºN 42.5ºE-75ºE 

Window 3 of set 31: 75ºN-50ºN 42.5ºE-75ºE 

Window 3 of set 32: 85ºN-60ºN 42.5ºE-75ºE 

 

Window 2 and 1 of each set are located as shown in figure 2, inside window 3. 

 

For each site, the most skilful set of windows downscaling precipitation was selected, and 

used to downscale both precipitation and temperature 

 

 

The similarity measure: average of standardised Euclidean distances among 1000 

and 500 hPa daily geostrophic flux fields. 

 

As pointed earlier, the downscaling method should perform as good as possible at the daily 

scale. The similarity measure between two days must be a scalar magnitude (to allow sorting), 

that summarises the resemblance of this two days with regard to their mean 1000 and 500 hPa 

geostrophic wind fields. 

 

The similarity between two days is calculated determining (and standardising) independently 

those days likeness regarding each of the final four predictor fields “p”: 1000 hPa geostrophic 

wind speed field, 1000 hPa geostrophic wind direction field, 500 hPa geostrophic wind speed 

field and 500 hPa geostrophic wind direction field. 

 

The similarity of days “i” and “j” regarding each predictor field “p” (for example, 1000hPa 

geostrophic wind speed), is calculated as an euclidean distance with:  
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where Spd1000ik is the value of the 1000 hPa geostrophic wind speed of the day “i”, at the 

grid point “k” of the grid used to represent atmospheric fields (see figure 2); Pk is the 

weighting coefficient of the “k” grid point. Pk coefficients are different for 1000 and 500 hPa 

predictors (see figure 2). And “N” is the number of the atmospheric grid points (198), that is 

determined by the spatial domain (55ºN-30ºN 27.5ºW-15ºE for the first set) and the resolution 

(2,5º x 2,5º; lat. x lon.) of the referred grid. 

 

Once Dspd1000(i,j) has been calculated, it has to be standardised. The standardisation is done by 

means of substituting Dspd1000(i,j) by centspd1000, that is the closest centil of the reference 

population of Euclidean distances among predictor fields “spd1000”, to the Dspd1000(i,j) value. 

The centil values are previously determined, obiously independently for each “p” predictor 

field, over a reference population of more than 1.000.000 values of Dp, calculated applying 

the previous formulae, with the same Pk values, to randomly selected days (i.e., days multiple 

of 10). If the closest value to Dspd1000(i,j) is centspd1000 = c, that means that about the c% of the 

1.000.000 Dspd1000 values are lower than Dspd1000(i,j).The use of centil instead of the original 

distance allows to consider adimensional and initially equally weighted variables, in the 

measure. 

  

After the four Dp(i,j) independent calculation and standardisation (determination of the closest 

four centp), the final similarity measure between days “i” and “j” is: 

 

5005005005001000100010001000),( dirdirspdspddirdirspdspd centwcentwcentwcentwjisim  , 

 

where wp is the weighting coefficient of the predictor field “p”. The wp combination finally 

selected is: wspd1000 = 0,25; wdir1000 = 0,25; wspd500 = 0,25; wdir500 = 0,25; 

 

The equal value of the four wp coefficients indicates that the four predictors (1000 and 500 

hPa geostrophic wind speed and direction), are equally important in precipitation diagnosis. 

The Pk selected coefficients stress the fact that closer wind features exert higher influence 

over precipitation. 1000 and 500 hPa “windows” are large enough to capture full sized 

synoptic waves, but 1000 hPa window is slightly shorter than 500 hPa one, resembling that 

precipitation is affected by closer structures at 1000 than at 500 hPa. 

 

Categorical estimation of daily precipitation field for a day “X” is obtained by means of a 

weighted average of the observed 6 (“n”=6) most analogous day‟s observed precipitation in 

that site. The weighting coefficient of each analogous day‟s field is the inverse of its 

similarity to the problem day “X”.  

 

 

2.2. Second step: the multiple linear regression analysis. 
 

The estimation procedure for temperatures requires, after the selection of the “n” 

analogous days described above, a further diagnosis by multiple linear regression. 

Although predictor/predictand relationships determined in this second step are linear, 
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an important part of the non-linear links of free atmosphere variables with surface 

temperatures is considered with the previous (analogical) stratification. For example, 

the two steps procedure allows to consider the strong non-linear influence of 

cloudiness on surface temperature, because the previous selection of very similar days 

regarding precipitation, is implicitly guarantying also very similar cloudiness 

conditions for the selected days, what makes the further diagnosis by multiple linear 

regression very accurate. 

 

The multiple linear regression employs a forward and backward stepwise selection of 

predictors. The potential predictors are three: 

 

1. Mean daily 1000/500 hPa thickness over the site, to include the strong relationship 

between lower troposphere and surface temperatures (meteorological factor), 

2. A sinusoid function of the day of the year with maximum in June 22
nd

, to consider the 

clear sky radiation influence on the warming/cooling of the surface air (seasonal factor), 

3. And a weighted average of the surface grid-point mean daily temperatures of the ten 

previous days, to account for the soil thermal inertia influence (soil memory factor). 

Weighting coefficients decrease linearly from a value of 10 for the D-1 day to a value of 1 

for the D-10 day.  

 

The non-linear influence of other important meteorological factors, like cloudiness, 

precipitation and low troposphere wind speed, is considered through the previous 

analogical stratification. In fact, the regression is performed over a population of “n” 

days that present very similar precipitation conditions, and subsequently, very similar 

cloudiness conditions. As the analogical selection searches for days with similar 1000 

and 500 hPa geostrophic wind fields to the problem day, low troposphere wind speed 

fields of the “n” days also tend to be very like. 

 

For each site (and each problem day), this regression is performed twice, using as 

predictands maximum and minimum temperatures. So, two diagnostic equations are 

developed (using the predictand and predictor values of the “n” analogous days 

population) and applied to estimate both daily temperatures, for each site and problem 

day. It is important to highlight that, in the equations application, even for the 

validation period, the 10 previous days temperature values used are the method 

previously estimated values for that gridpoint, and not the observed ones. This last 

option clearly improves the validation results but, obviously, couldn‟t be applied for 

future climate prospects. For the “averaged temperature of the ten previous days” 

predictor for the first days of the period to be downscaled, sensibility tests to several 

ºC modifications of the initial condition temperature values showed no influence over 

the mean estimated temperatures on multiyear scale, so the observed temperature 

values of 1961 January the 1st was finally used as the initial condition field. 

 

The number “n” of most similar days used in the operational calculus is 6 for precipitation 

estimation, and 150 for the temperature further linear analyses appliance. Although the higher 

the “n”, the lower is the global similarity among the selected days and the problem day, 

relatively big samples are necessary in order to keep low the risk of overfitting in the multiple 

linear regression process. In this regard, the F-to-enter threshold was set to 4. The F-to-enter 

parameter is a statistic employed to assess the risk of including a non-significant potential 

predictor in the regression equation. When F-to-enter is set to 4, and when working with three 

potential predictors this risk is some 10%.  
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Although the set of windows for each site and the centil values for each of the 32 sets and 

each of the four predictor fields (gestrophic wind speed and direction at 1000 and 50 hPa), 

can be obtained using the procedure described, the values used in FIC's application of the 

method are available for anyone that would like to get them. 
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UEA Contribution to D15 

Malcolm Haylock, UEA 

Introduction 

This document describes a downscaling method devised by UEA to model seasonal indices of 

extreme rainfall using mean large-scale circulation. 

Data and Methodology 

Canonical correlation analysis (CCA) is used to model the seasonal precipitation indices 

directly using seasonal means of circulation variables. Four potential predictors were chosen 

by examining correlations between the indices and the circulation variables. These are sea 

level pressure, relative humidity at 700hPa, specific humidity at 700hPa and temperature at 

700hPa. For each season and precipitation index a CCA was carried out using all 15 possible 

combinations of the four predictors. The best set of predictors was selected using cross 

validation in the training period, whereby each year was removed and the model trained on 

the remaining years. The missing year was then hindcast and the skill measured by averaging 

across all stations the Spearman correlation between the observed and hindcast indices. 

Therefore the predictor set varies between indices and seasons but is the same for all the grid 

points in the region. 

The canonical patterns and series were calculated using a singular value decomposition of the 

cross-covariance matrix of the principal components (PCs) of the two fields. This is 

numerically more stable than the more common method of working with the joint variance-

covariance matrix (Press et al., 1986) and also incorporates the pre-filtering of the data by 

using just the significant PCs (Barnett and Preisendorfer, 1987). The number of PCs retained 

for the analysis was selected by a Monte Carlo process, whereby 1000 PC analyses were 

carried out using data randomly resampled in time from the original series (Preisendorfer et 

al., 1981). In each of the 1000 analyses the eigenvalues were calculated. Each of the 

eigenvalues of the real observations was then compared against the distribution of the 1000 

randomly generated values to determine if they were greater than the rank 50 eigenvalue 

(equivalent to p<0.05). Therefore the number of eigenvectors retained was different for each 

predictor, predictand and season. 

Innovation 

Previous approaches to downscaling precipitation have modelled the entire daily precipitation 

distribution. By modelling indices of extremes we focus just on the extremes, which may have 

a different relationship to predictors than the lower magnitude events. 

Strengths 

 Computationally efficient. 

 Transparent with easily accessible diagnostics. 

 Reveals orthogonal statically-coupled modes.   

Weaknesses 

 No downscaled daily data. 

 Models large-scale behaviour of entire network at once, which means that statistically 

independent stations will be poorly reproduced. 

Improvements 

Currently 95% of the computation is taken up with the scree test for assessing the number of 

significant PCs to include in the CCA. This could be reduced by using a different approach 

e.g. selecting the number of PCs that account for 90% of the total variance. This would 

greatly speed up the cross-validation for predictor selection thereby enabling a larger set of 

potential predictors to be included. 
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Method provides: Y/N Comments/Notes 

Station-scale information Y  

Grid-box information Y  

European-wide information Y  

Daily time series N  

Seasonal indices of extremes Y  

Temporally consistent temperature 

and precipitation
1
 

Y  

Spatially consistent multi-site 

information
2
 

Y  

Temporally consistent multi-site 

information
3
 

Y  

Information at sites with no 

observations  

N  

Method requirements : Relatively high/medium/low Comments/Notes 

Computing resources medium  

Volume of data inputs low  

Availability of input data high  

Application criteria for statistical and dynamical downscaling 
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1. Multiple linear regression model 

 

This model is implemented for the downscaling of the standard seasonal extreme precipitation 

and temperature related indices from seasonal measures of a set of large scale circulation 

variables. 

 

Each index is expressed as a linear function of a set of predictors selected from a range of 

potential predictors. The potential predictors for the precipitation and temperature indices 

were selected from correlation analysis of the indices and the large scale circulation variables 

as part of D10. Since the indices to be downscaled are measures of extremes of the 

meteorological variables, measures of extremes of the large scale variables were also used in 

the regression equation as predictors. In addition to the seasonal mean values of the predictor 

variables, their seasonal 90
th

 and 10
th

 percentiles were considered as potential predictor 

variables. Predictors corresponding to each index are then selected among the potential 

predictors using the forward selection method. The predictor values in the regression equation 

are taken as the average over the nearest four grid points to the target location. 

 

The potential predictor variables include relative humidity, geopotential height, temperature, 

vorticity, and divergence at 500, 700, and 850 hPa levels as well as eastward moisture flux at 

700hPa level and objective circulation patterns constructed by classifying sea level pressure. 

Since the circulation pattern is not a numerical variable, the seasonal frequency of circulation 

patterns associated with wet days is used in the regression equation. 

 

The important improvement in this approach is that measures of extremes of the predictor 

variables are used instead of the mean of their distribution to predict indices related to 

extremes of precipitation and temperature. 

 

The strengths of the method lie in that: 

 

 it is simple in its structure and is fast. 

 

 it provides better skill in downscaling indices since it is calibrated against the indices 

themselves. 

 

Weaknesses of the model are: 

 

 It doesn‟t take the spatial structure of the indices into account making it weaker as a 

tool for multi site downscaling 

 

 Doesn‟t give any information about the time series of the precipitation and 

temperature making it of limited use for hydrological impact assessment. 

 

 

Further development of the method by extending it to include the spatial structure of the 

variables would result in a better tool for multi-site downscaling. 
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Table 1: Application criteria for the mlr model 

 

Method provides: Y/N Comments/Notes 

Station-scale information Y  

Grid-box information Y  

European-wide information - Not verified 

Daily time series N  

Seasonal indices of extremes Y  

Temporally consistent temperature 

and precipitation
1
 

-  

Spatially consistent multi-site 

information
2
 

N Spatial structure is not taken 

into account 

Temporally consistent multi-site 

information
3
 

-  

Information at sites with no 

observations  

N  

   

Method requirements : Relatively 

high/medium/low 

Comments/Notes 

Computing resources low  

Volume of data inputs relatively high Uses many predictors 

Availability of input data relatively high  

 

 
1
  i.e., the temperature/precipitation co-variance is similar for the downscaled validation series 

and observed series  
2
  i.e., the downscaled validation series has a similar spatial pattern to the observed series  

3
  i.e., the downscaled validation series has similar daily inter-site correlations to the observed 

series  
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2. Mutivariate autoregressive model 

 

This is a classification based downscaling approach based on the modified version of the 

space-time model described in Bárdossy and Plate (1992). The model is used to generate daily 

series of both precipitation and temperature at multiple locations simultaneously by taking 

into account the spatial correlation of the observed series between observation locations. 

Atmospheric circulation patterns are used to condition the model parameters. Any kind of 

classification of the circulation patterns can be used. Objective circulation patterns defined by 

classifying the distribution of anomalies of sea level pressure or geopotential heights of other 

pressure levels using a fuzzy rule-based classification scheme (Bárdossy, et al, 1995; 2002) 

are implemented in this work. Different criteria were used to classify circulation patterns for 

precipitation and temperature downscaling (Bárdossy, et al, 2002) and therefore the 

circulation patterns used for downscaling of precipitation and temperature are different. 

 

The important development in this model is that the spatial structure of the variable is taken in 

to account and maintained in downscaling them, rendering the method a suitable tool for 

multi-site downscaling. Besides the impact of moisture flux on the precipitation amount is 

taken account of in downscaling daily series of precipitation.  

 

2.1 Precipitation model 

 

Usually, the probability of occurrence of dry days is relatively high and the rainfall amounts 

on days with precipitation are described by means of continuous distribution. Therefore, 

random variables with mixed (discrete-continuous) distributions are required to describe daily 

precipitation. Dry and wet days generally occur in cluster, which is caused by persistence of 

atmospheric circulation patterns. 

 

Let  m ,...,1A  be a set of possible atmospheric circulation patterns. Let tA
~

be the random 

variable describing the actual atmospheric circulation pattern, taking its values from A. Let 

the daily precipitation amount at time t and point u in the region U be modelled as the random 

function  utZ , . The distribution of rainfall amounts at a selected location is skewed. In order 

to relate this mixed distribution to a simple normally distributed random function  utW , , the 

following power transformed relationship is introduced: 

 

 
 

   








0, if    ,

0, if               0
,

utWutW

utW
utZ


        2.1 

 

Where β is an appropriate positive coefficient, which is introduced to account for the skewed 

nature of the distribution of daily precipitation. This transformation is done since multivariate 

processes can be modelled much easier if the process is normal. The problem of intermittence 

of occurrence of precipitation is also handled by this transformation, as the negative values of 

W are declared as dry days and dry locations. As the process  utZ , depends on the 

atmospheric circulation pattern, so does  utW , . 
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From earlier analysis, it was found that there is a strong relationship between the precipitation 

amount and moisture flux. For stations located in the Rhine basin, the highest relationship was 

found for the eastward moisture flux at 700hPa level. Therefore, in addition to the circulation 

pattern type, the moisture flux is used as an additional variable to estimate the expected value 

of the daily precipitation amount. The expected value of  utW , for a given circulation pattern 

i and moisture flux  utMF , is therefore given by: 

 

            utMFuutwutMFAutWEutw
iii it ,,,;

~
|,,       

 2.2 

 

Where  u
i

  is a circulation pattern dependent coefficient. The first term of the above 

equation,  utw
i

,
 , is assumed to have a circulation pattern dependent annual cycle, which is 

expressed using a Fourier series: 

 

 
 

        



K

k

kk tkuwbtkuwa
uwa

utw
ii

i

i

1

**0* sin,cos,
2

,
,  



    2.3 

 

Where *t is the Julian date and the frequency ω is 3652 . 

 

Using the following notation for the multivariate random variables: 

 

      nutWutWt ,,...,, 1W          2.4a 

      nutZutZt ,,...,, 1Z          2.4b 

      nutwutwt
iii

,,...,, 1  w         2.4c 

 

The random process describing  tW  is described by using the following multivariate AR(1) 

model: 

 

              ttttttrt
iii  wΨCwWW 



** 11      2.5 

 

Where        nutψutψt ,,...,, 1Ψ  is a random vector of independent  1,0N  random 

variables. i and i are the circulation pattern types on day t and the previous day respectively. 

 *tr is the lag-1 day autocorrelation function. The lag-1 autocorrelation of daily precipitation 

doesn‟t vary strongly in space and therefore it is assumed in the model to be equal at all 

locations. It doesn‟t also depend on the circulation pattern, but has an annual cycle which is 

approximated by a Fourier series: 

 

      



K

k

kk tkBtkA
A

tr
1

**0* sincos
2

       

 2.6 

 

The advantage of Fourier series approximation (instead of simple polynomial fit) is that 

adding new kA and kB  parameters does not change the values of the former ones. For very 
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large K, the Fourier approximation is identical with the observed series. Usually the first three 

Fourier parameters are enough to simulate the annual cycle of the autocorrelation.  

 

 *t
i

C is an n × n matrix that takes the spatial variability of the process into account, where n 

is the number of locations at which downscaling is done. It is related to  tW  through (Bras 

and Rodriguez-Iturbe, 1985): 

 

            ttttEt TT

iii  wWwWΓ *

0        2.7 

 

            ttttEt TTT

iii  wWwWΓ  11*

1       2.8 

 

           *

1

*1

0

*

1

*

0

** tttttt TT

iiiiii  ΓΓΓΓCC
       2.9 

 

Where  *

0 t
i

Γ  is the spatial covariance matrix and  *

1 t
i

Γ is the space-time covariance 

matrix for the time lag of one day. Assuming these two matrices are related to each other 

through: 

 

     *

1

*

0

* tttr
ii  ΓΓ           2.10 

 

Leads to: 

 

        *

0

*2** 1 ttrtt
iii

T

 ΓCC          2.11 

      

 

Parameter estimation 

 

The expected value of the transformed daily precipitation amount  utW ,  is expressed as the 

sum of a term which has a CP dependent annual cycle and a term which accounts for the 

effect of the moisture flux (eq.2.2). Substituting eq. 2.3 into eq 2.2: 

 

           
 

        






K

k

kk tkuwbtkuwa

uwa
utMFuutMFuutwutw

ii

i

iiii

1

**

0*

sin,cos,                                                             

2

,
,,,,











 2.12 

 

The standard deviation of the transformed precipitation amount is also assumed to have a CP 

dependent annual cycle, which is approximated by a Fourier series: 

 

 
 

        



K

k

kk tkuwdtkuwc
uwc

ut
ii

i

i

1

**0* sin,cos,
2

,
,  



     2.13 

 

Where *t is the Julian date corresponding to t. The parameters in the above two equations can 

then be estimated using the maximum likelihood method together with a numerical 

optimisation algorithm.  
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The spatial structure of the rainfall is described using a circulation pattern dependent 

covariance structure of the matrix  *

0 t
i

Γ  as shown in eq. 2.11. The covariance structure is 

assumed to be translation invariant but depends on time of the year: 

 

         *,**,cov
tqyxh

yx
i

ii

etptZZ 




  

 

Where h(x,y) is the distance between points x and y. The parameters  *tp
i

and  *tq
i

 

depend on the circulation pattern and day of the year and are modelled by means of Fourier 

series. The parameters of the spatial covariance matrix are estimated using the least squares 

approach. 

 

Once the parameters related to the annual cycle of the distribution of the transformed daily 

precipitation and the spatial covariance are estimated, the precipitation series are generated on 

the daily basis for a set of points simultaneously using eq. 2.5 and the transformation given in 

eq. 2.1. 

 

 

2.2 Temperature model 

 

For temperature downscaling, the daily temperature is related to the average elevation of a 

pressure level (such as 700 or 500hPa). Average elevation of the 700hPa pressure level is 

used in this work. The circulation patterns are also classified based on the elevation field of 

the same pressure level. In addition to the circulation pattern and the average elevation of the 

pressure level, the daily temperature depends on the previous day‟s temperature and the 

precipitation on the same day. 

 

        tuZtuTAtHuFtuT tp ,,1,,
~

,,,         2.14 

 

The link between precipitation and temperature is established using an indicator  tI z , which 

takes a value of 1 if the areal precipitation at location u is greater than a certain threshold 

value 0z  defined to distinguish between dry and wet days and 0 otherwise. The areal 

precipitation can be estimated either using kriging techniques from nearby precipitation 

stations or as a mean precipitation from stations located within a certain distance from u.  

 

Using the following notations: 

 

      tuTtuTt m ,,...,,1T                 2.15a 

         tIctIctI zmzz ,...,1c                2.15b 

         tIdtIdtI zmzz ,...,1d                2.15c 

 

The relationship between the daily temperature and the average elevation of the pressure level 

can be expressed as: 

 

            ttItHtItE
izpz RdcT          2.16 
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Where  t
i

R  is a circulation pattern dependent residual, which has an annual cycle, whose 

components are expressed with Fourier series: 

 

          



K

k

kk tkuRbtkuRatuR
iii

0

cos,sin,,        2.17 

 

The daily temperature is then simulated using the multivariate AR(1) model: 

 

           

               tttItHtIt

ttItHtIt

ii

i

zpz

zpz

ΨSRdcTP

RdcT

i 







11111          
  2.18 

 

Where       mututt ,,...,, 1 Ψ  is a random vector of independent N(0,1) random 

variables; 
i

P is the circulation pattern dependent matrix of the autoregressive part of the 

process. 
i

S , like in the precipitation model, takes the spatial covariance structure into 

account.  

 

In the autoregressive model above, one should notice that the expectation of the previous day 

is calculated using the circulation pattern of the current day. 

 

Parameters of the model are estimated in a similar fashion as in the precipitation model. As no 

transformation of variables is required, the temperature model is simpler than the precipitation 

model. 

 

The model was originally used to downscale mean daily temperature. As both daily minimum 

and maximum are of interest in this work, a simultaneous downscaling of the minimum and 

maximum daily temperature is done by the model. In order to keep the minimum always less 

than the maximum, a circulation pattern dependent annual cycle of the difference between the 

maximum and minimum temperatures is used to correct the simulated difference if the model 

gives inconsistent maximum and minimum.  

 

2.3 Further comments on the model 

 

Specifically, the strength of the model lies in that: 

 

 The spatial covariance structure of the daily precipitation and temperature are 

maintained. 

 

 It can be used to generate areal values of precipitation and temperature on grids using 

the spatial structure from observation locations, which can be used for hydrological 

impact study. 

 

 

The weakness of the model is: 

 Performance of the model in estimating extremes is not as good as that of the mean. 
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Further development of the model in such a way that more emphasis is given to the extreme 

part of the distribution of the daily precipitation would improve the estimation of the indices 

related to extremes. Work is underway on this issue. 

 

 

 

 

 

 

 

 

Table 2: Application criteria for the mar model 

 

Method provides: Y/N Comments/Notes 

Station-scale information Y  

Grid-box information Y  

European-wide information - Not verified 

Daily time series Y  

Seasonal indices of extremes Y Calculated from the 

downscaled daily series 

Temporally consistent 

temperature and precipitation
1
 

Y  

Spatially consistent multi-site 

information
2
 

Y  

Temporally consistent multi-site 

information
3
 

Y  

Information at sites with no 

observations  

Y Computed from the spatial-

temporal structure  

   

Method requirements : Relatively 

high/medium/low 

Comments/Notes 

Computing resources Relatively high  

Volume of data inputs low  

Availability of input data relatively high  

 

 
1
  i.e., the temperature/precipitation co-variance is similar for the downscaled validation series 

and observed series  
2
  i.e., the downscaled validation series has a similar spatial pattern to the observed series  

3
  i.e., the downscaled validation series has similar daily inter-site correlations to the observed 

series  
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