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AUTH 

Introduction 
AUTH has developed three statistical downscaling models in order to identify the 
relationship between large-scale circulation and extreme temperatures / precipitation. 
ARPA-SMR used two models in order to downscale extreme events. A downscaling 
method has been applied by UEA that models seasonal indices of extreme rainfall at 
UK stations using large-scale circulation. Finally, FIC has developed a method using 
low-resolution atmospheric fields in order to estimate high-resolution surface for 
temperature and precipitation.  

Data 
Predictors and Predictands 
Different downscaling models with different predictors estimate the same predictands 
in order to evaluate the most efficient model for the Greek area. The predictands are 
the seasonal “core” extreme indices (Table 1). The majority of the predictors were 
selected from the NCEP reanalysis data (Table 2). The calibration period for all 
models is 1958-1978 & 1994-2000 and the validation period is 1979-1993. The skill 
measures of the models are Spearman correlation and Biases.  

Table 1. The “core” extreme indices of Predictands 
Precipitation related Indices 

Designation Description 

Pq90 90th percentile of rainday amounts (mm/day) 

Pxcdd Max no. consecutive dry days 

Px5d Greatest 5-day total rainfall 

Pint Simple Daily Intensity (rain per rainday) 

Pf90 No of events >long term 90th percentile 

Pn90 % of total rainfall from events>long term P90 

Temperature related indices 

Designation Description 

Txav Mean Maximum Temperature 

Tx90 Tmax 90th percentile 

Tnav Mean Minimum Temperature 

Tn10 Tmin 10th percentile 

Tnfd Number of frost days (Tmin <0o C) 

Txhw90 Heat wave duration 
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Table 2.Predictors of the different methods 

Greece 

Methods Multiple Regression 
Analysis  

Canonical Correlation 
Analysis (CCA) 

Artificial Neural 
Network (ANN) 

Precipitation Indices 
-Circulation types 500hPa  -Geopotential heights at 500hPa 

-Anomalies at 500hPa  

-Geopotential heights at 
500hPa 

-Anomalies at 500hPa  

Temperature Indices 
-Circulation types Thickness 
1000-500hPa  

-Thickness fields 1000-500hPa 

-Anomalies 1000-500hPa 

Thickness fields 1000-
500hPa 

-Anomalies 1000-500hPa 

Window 20oW-50oE and  

20oN-65oN 

0o-32.5oE and  

30oN-55oN 

0o-32.5oE and  

30oN-55oN 

Italy 

Methods Multiple Linear 
Regression Analysis 

Canonical Correlation 
Analysis (CCA) 

 

Precipitation Indices 

Temperature Indices 

The 4 PCs that derived from 

-Mean Sea Level Pressure 
(MSLP) 

-Geopotential height at 500hPa 

(Z500) 

-Temperature at 850hpa (T850) 

The 1st EOFs of predictands and 
predictors that explain 97.5% 
from the total variance 

Predictors: the same as MLR 

Predictands: the seasonal core 
extreme indices 

 

Window 30oW-30oE and 30oN-60oN 30oW-30oE and 30oN-60oN  

UK 

Methods Canonical Correlation Analysis (CCA) 

Precipitation Indices 

Temperature Indices 

-Mean Sea Level Pressure (MSLP) 

-Specific Humidity at 700hPa (SH700) 

-Relative humidity at 700hPa (RH700) 

-Temperature at 700hPa (T700) 
Window  60oW-60oE and 20oN-80oN   

Spain 

Methods FIC Method 

 -Thickness fields 1000-500hPa 

-Sinusoid function of the day of the year with maximum in June 22nd, to consider the clear sky 
radiation influence on the warming/cooling of the surface air (seasonal factor) and  

-Weighted average of the surface grid-point mean daily temperatures of the ten previous days, to 
account for the soil thermal inertia influence (soil memory factor).  

  2.5oE-45oE and 30oN-55oN   
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Methods 
The different methods used are:  

A) Greece 
A1) Multiple Regression Analysis using the circulation types approach 
According to the results of D10, the classification of the circulation types for the 

500hPa has proven to be the most appropriate of the construction of the Multiple 
Regression Model for the precipitation indices. On the other hand, the classification of 
the circulation types for the thickness (1000 – 500hPa) has proven to be the most 
appropriate for the construction of the model, in order to simulate the temperature 
indices. For every index, season and station, a different model has been constructed, 
according to the relationship of the circulation types, the precipitation indices and the 
temperature indices. The selection of the most efficient model has been done by 
combining the correlation coefficient values of the observed with the simulated as 
well as the RMSE values (Maheras et al., 2000; Maheras and Anagnostopoulou, 2003; 
Maheras et al., 2004). 

A2) Canonical Correlation Analysis (CCA) 
This method isolates linear combinations of multiple predictor variables and linear 

combinations of multiple predictand variables that have maximum correlation 
coefficients. This approach assumes that the relationship between predictor and 
predictand will remain stable in the future climate, an assumption based on physical 
interpretability of the relationship found and in the ability of the statistical model to 
reconstruct local climate anomalies form the large scale observation in an independent 
historical period (Barnett and Preisendorfer 1987; Von Storch and Zwiers 1999). 

For the simulation of the precipitation indices, SLP and 500hPa geopotential 
values have been used, while for the simulation of the temperature indices the 
thickness (1000-500hPa) values have been used. 

A3) Artificial Neural Network (ANN) 
Artificial Neural Network models have a structure based on human neural system. 

Acting as black box models permit the estimation of a number of parameters from 
predictor parameters, the two groups been connected by non-linear relations. These 
models have three layers (input – hidden – output) or a more complex structure. The 
main advantage of ANNs is that no initial transfer function is needed to be chosen and 
the system is self-training (Trigo and Palutikof, 1999).  

As for the previous models, for the construction of the model for the simulation of 
the precipitation indices, SLP and 500hPa geopotential values have been used, while 
for the simulation of the temperature indices the thickness (1000-500hPa) values have 
been used. 

B) Italy 
The downscaling models developed by ARPA-SMR in order to downscale extreme 
events from Greece are based on two methods: 

1. the multiple linear regression based on the principal  components of the data 
sets used in the analysis (MLR); 

2. the multivariate regression based on canonical correlation analysis (CCA) 
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Both methods are based on a multiple linear regression with predictors derived from 
NCEP reanalysis: geopotential height at 500mb (Z500), mean sea level pressure 
(MSLP), temperature at 850mb (T850) and specific humidity at the levels: 1000mb, 
950mb, 850mb, 750mb, while the predictands are the seasonal “core” extreme indices 
(7 indices for precipitation and 6 indices for temperature). 

The predictors used in the MLR method are the first 4 PCs of the above fields. The 
downscaling based on CCA analysis has been performed using like input data the first 
EOFs of predictands and predictors that explain 97.5% from the total variance, while 
the CCA pairs used in the downscaling model has been selected such as the 
correlation between them to be statistically significant.  

The model has been calibrated on the period 1958-1978+1994-2000 and validated on 
the period 1979-1994. 

The skill of the statistical models evaluated by the BIAS, RMSE and Spearman rank-
correlation coefficient has been revealed that the seasons with best performances is 
winter followed by autumn. High performances have been obtained for mean fields 
(mean daily precipitation, mean maximum and minimum temperature) and some 
extreme of precipitation and temperature (number of consecutive dry days, 90th 
percentile of maximum temperature, 10th percentile of winter minimum temperature, 
number of winter frost days). The comparison between two statistical downscaling 
methods reveals that the skill of the CCA is in generally better than those provided by 
the MLR methods. 

C) United Kingdom 
A downscaling method is being developed to the applied to the entire European 
regional dataset which models the STARDEX indices of rainfall extremes using large 
scale patterns of circulation. Rather than modelling the daily rainfall itself, then 
calculating the indices, this method will use seasonal measures of large-scale 
circulation variability to model the seasonal indices of extremes directly. The 
predictands will be the six core STARDEX indices of rainfall extremes calculated 
seasonally. Predictors will be selected from circulation variables, calculated over the 
entire European and East Atlantic region. From our work preparing D10, the best 
predictor seems to be sea level pressure but other variables will be considered 
including temperature, geopotential height and relative humidity at three atmospheric 
levels as well as sea surface temperature. The model uses canonical correlation 
analysis. Two methods to select predictors will be tested: using just the variable with 
the best correlation with the indices (MSLP); and a cross-validation of all possible 
predictor combinations.  
 
D) Spain – FIC 

D1) Description of the method.  

The method estimates high-resolution surface meteorological fields for a day "X", in 
two steps: in the first step, the "n" most similar days to the "X" day, attending to their 
low-resolution atmospheric fields, are selected from a reference dataset. In the second 
one, high-resolution surface information is estimated in a different way for 
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precipitation and temperature. Rainfall estimations for a point are done by means of a 
simple average of the observed precipitation amounts in the "n" analogous days, in 
that point. Temperature is obtained applying a further multiple linear regression 
analysis that searches for relationships (in the "n" day’s population) between some 
atmospheric variables (predictors) and the surface temperature (predictand). 

The first step selection of the "n" days is an analogical technique. Precipitation is 
known to present strong non-linear relationships with its potential predictor variables, 
what makes analogical techniques, that, do not assume any hypothesis about 
predictor/predictand relationships, specially indicated for its diagnosis. The method’s 
level of performance depends upon the extension and quality of the atmospheric and 
surface reference datasets and, very remarkably, upon the similarity measure used to 
determine similarity among days. In this sense, the similarity measure must contain 
diagnostic capability regarding high-resolution precipitation fields (low-resolution 
atmospheric fields considered similar by the measure must be associated with similar 
high-resolution precipitation fields).  

Regarding temperature, the two steps procedure is necessary to consider the non-
linear influence of cloudiness over the surface temperatures. Precipitation is strongly 
related to cloudiness, so the previous selection of very similar days regarding 
precipitation, is implicitly guarantying also very similar cloudiness conditions for the 
selected days, what makes the further diagnosis by multiple linear regression very 
accurate. In this regard, Lorenz, suggested that if linear analyses were applied to 
analogous synoptic situations, the non-linear character of the atmosphere would be 
more tractable.  

• First step: the analogical technique 

As pointed earlier, in the first step, the "n" most similar days to the "X" day, attending 
to their low-resolution atmospheric fields, are selected from a reference dataset. The 
similarity measure must contain diagnostic capability regarding high-resolution 
precipitation fields. In this sense, the similarity measure must assess the likeness of as 
many as possible precipitation forcings associated to the low resolution atmospheric 
configurations of the days being compared. 

In an initial selecting procedure, the mean daily geostrophic flux fields at 1000 and 
500hPa were found to offer the best performance, among the many different predictor 
sets tested.  

The similarity measure between two days must be a scalar magnitude (to allow 
ordering), that summarises the resemblance of this two days with regard to their mean 
geostrophic 1000 and 500 hPa wind fields. 

The good performance of Euclidean distances is backed up by analogue technique 
literature. 

The similarity between two days is calculated determining (and standardising) 
independently those days likeness regarding each of the final four predictor fields "p": 
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1000 hPa wind speed field, 1000 hPa wind direction field, 500 hPa wind speed field 
and 500 hPa wind direction field. 

The likeness of days "i" and "j" regarding each predictor field "p" (for example, 
1000hPa geostrophic wind speed), is calculated as an euclidean distance with:  

, (*) 

where Spd1000ik is the value of the 1000 hPa geostrophic wind speed of the day "i", at 
the grid point "k" of the grid used to represent atmospheric fields; Pk is the weighting 
coefficient of the "k" grid point . Pk coefficients are necessary to consider the greater 
influence on Iberian precipitation of the wind features closer to the Peninsula. Pk 
coefficients can be different for 1000 and 500 hPa predictors. "N" is the number of the 
atmospheric grid points, that is determined by the spatial domain and the resolution of 
the referred grid. 

Once Dspd1000(i,j) has been calculated, it has to be standardised. The standardisation is 
done by means of substituting Dspd1000(i,j) by centspd1000, that is the closest centil of the 
reference population of Euclidean distances among predictor fields "spd1000", to the 
Dspd1000(i,j) value. The centil values are previously determined, obiously 
independently for each "p" predictor field, over a reference population of more than 
3.000.000 values of Dp, calculated applying the previous formulae, with the same Pk 
values, to randomly selected days (i.e., days multiple of 3). If the closest value to 
Dspd1000(i,j) is centspd1000 = c, that means that about the c% of the 3.000.000 Dspd1000 
values are lower than Dspd1000(i,j).The use of centil instead of the original distance 
allows to consider adimensional and initially equally weighted variables, in the 
measure. 

After the four Dp(i,j) independent calculation and standardisation (determination of 
the closest four centp), the final similarity measure between days "i" and "j" is: 

, 

where wp is the weighting coefficient of the predictor field "p". The wp combination 
finally selected is: wspd1000 = 0,25; wdir1000 = 0,25; wspd500 = 0,25; wdir500 = 0,25; 

• Second step: the multiple linear regression analysis. 

The estimation procedure for temperatures requires, after the selection of the "n" 
analogous days described above, a further diagnosis by multiple linear regression. 
Although predictor/predictand relationships determined in this second step are linear, 
an important part of the non-linear links of free atmosphere variables with surface 
temperatures is considered with the previous (analogical) stratification. Linear 
regression performs pretty well to estimate surface maximum and minimum 
temperatures, due to the near-normal statistical distribution of those variables. It is 
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necessary to remember that, when using linear regression, the predictand quantity is 
bound to have essentially the same statistical distribution as the predictor/s variable/s. 
In this regard, potential predictors should present close-to-normal distributions. 

The multiple linear regression employs a forward and backward stepwise selection of 
predictors. The potential predictors are three: 

1. mean daily 1000/500 hPa thickness above the surface grid-point, to include the 
strong relationship between lower troposphere and surface temperatures 
(meteorological factor),  

2. a sinusoid function of the day of the year with maximum in June 22nd, to 
consider the clear sky radiation influence on the warming/cooling of the 
surface air (seasonal factor),  

3. and a weighted average of the surface grid-point mean daily temperatures of 
the ten previous days, to account for the soil thermal inertia influence (soil 
memory factor). Weighting coefficients decrease linearly from a value of 10 
for the D-1 day to a value of 1 for the D-10 day.  

The non-linear influence of other important meteorological factors, like cloudiness, 
precipitation and low troposphere wind speed, is considered through the previous 
analogical stratification. In fact, the regression is performed over a population of "n" 
days that present very similar precipitation conditions, and subsequently, very similar 
cloudiness conditions. As the analogical selection searches for days with similar 1000 
and 500 hPa geostrophic wind fields to the problem day, low troposphere wind speed 
fields of the "n" days also tend to be very like. 

Results 
A) Precipitation indices  
From the analysis of the results for the two regions (Western and Eastern Greece), 
derives that all methods provide relatively similar results for each season and for 
each index. The results in wintertime are better than all the other seasons while the 
lowest correlation coefficients are found in the case of autumn. In should be 
mentioned that the indices concerning the mean precipitation (Pav) and the dry 
days (Pxcdd) are the ones with the highest correlation coefficients during all 
seasons. On the other hand although the biases in the case of the Pav are the 
lowest, the biases of the Pxcdd are quite high. Generally, it can be mentioned that 
the results for Western Greece are more satisfying than the results in the Eastern 
region with the exception of the spring results (figures 1-4).  
From the comparison of the common methods of CCA it is noticed that although 
the methods are the same the selection of the predictors and the NCEP data 
window is decisive and differentiates the results (figures 5-6). For example, in 
some cases two of the three methods present satisfying correlation coefficients for 
the precipitation indices, while the correlation coefficients of the third method are 
either very low of even negative. On the other hand, the two models of MLR_It 
and the one of the MLR_AUTH don’t present similar results (figures 7-8) due to 
the fact that the predictors in the MLR_AUTH are the circulation types, which 
result to a complete different technical approach.  
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B) Temperature indices  
Concerning the temperature indices for western and eastern Greece, it is obvious 
that the correlation coefficients from the application of all methods are much 
higher than the ones in the case of precipitation. During winter and spring, these 
correlation coefficients reach the value of 0.9 in some of the temperature indices. 
On the contrary, only in the case of autumn, for some indices, the correlation 
coefficients are found negative (figures 9-10). It is remarkable that the FIC 
method provides better results, with high correlation coefficients values, 
comparing to the other methods especially in eastern Greece. The efficiency of the 
methods in simulating the temperature indices is clear also for the analysis of the 
biases figures, which in most of the cases are very small (figures 11-12). 
Comparing the common methods for the temperature indices it could be noticed 
that their behaviour during winter is similar. On the contrary, the MLR-Z500 
presents negative correlation coefficients in the case of summer and autumn 
(figures 13-14). Figures 15 and 16 indicate that the three common CCA methods 
appear to have small biases for the majority of the temperature indices, while the 
MLR_AUTH for the second group of common methods presents slightly higher 
biases from the other two methods. 

 

COCLUSIONS 
The temperature indices present more satisfactory results with high correlation 

coefficients and low values for Biases. On the other hand the results for the 
precipitation indices are not so good. For all the indices the results for the western part 
of the study region are better than in the eastern part, except for the case of FIC 
temperature results which are better in eastern Greece.  

The methods used give quite satisfactory results, but it is difficult to choose 
the most efficient model as their results vary from season to season and from station 
to station. Generally, it could be concluded that the most prevailing factors in the 
efficiency of a method in simulating temperature and precipitation indices are, the 
appropriate selection of the predictors and the size and the position of the grid data 
window.  

More specifically, from the three methods used by the AUTH partner, the 
most efficient one is the Neural Net method, giving the highest correlation 
coefficients, mostly in the case of the precipitation indices. This could be due to the 
different way that this method is functioning. On the contrary, from the analysis of the 
biases the MLR method using the circulation type approach gives the most satisfying 
results – the lowest biases.  

Concerning the evaluation of the common methods (CCA) from the three 
partners it can be noticed that for the temperature indices the correlation coefficients 
are high and almost similar for all the methods. The differences in the results for the 
precipitation indices and the fact that the highest coefficients are found for the 
methods used by the AUTH partner, could be attributed to the different predictors and 
window that have be used. 
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Figure 1. Spearman correlation for precipitation indices, average over the four 
stations from western Greece for the different downscaling methods. 
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Figure 2. Spearman correlation for precipitation indices, average over the four 
stations from eastern Greece for the different downscaling methods. 
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Figure 3. Biases for precipitation indices, average over the four stations from 
western Greece for the different downscaling methods. 
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Figure 4. Biases for precipitation indices, average over the four stations from 
eastern Greece for the different downscaling methods. 
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Figure 5. Spearman correlation for precipitation indices, average over the four 
stations from western Greece of the two groups of the common downscaling 
methods (Canonical Correlation Analysis_CCA and Multiple Linear 
Regression_MLR). 
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Figure 6. Spearman correlation for precipitation indices, average over the four 
stations from eastern Greece of the two groups of the common downscaling 
methods (Canonical Correlation Analysis_CCA and Multiple Linear 
Regression_MLR). 
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Figure 7. Biases for precipitation indices, average over the four stations from 
western Greece of the two groups of the common downscaling methods 
(Canonical Correlation Analysis_CCA and Multiple Linear Regression_MLR). 
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Figure 8. Biases for precipitation indices, average over the four stations from 
eastern Greece of the two groups of the common downscaling methods 
(Canonical Correlation Analysis_CCA and Multiple Linear Regression_MLR). 
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Figure 9. Spearman correlation for temperature indices, average over the four 
stations from western Greece for the different downscaling methods. 
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Figure 10. Spearman correlation for temperature indices, average over the four 
stations from eastern Greece for the different downscaling methods. 
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Figure 11. Biases for temperature indices, average over the four stations from 
western Greece for the different downscaling methods. 
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Figure 12. Biases for temperature indices, average over the four stations from 
eastern Greece for the different downscaling methods. 
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Figure 13. Spearman correlation for temperature indices, average over the four 
stations from western Greece of the two groups of the common downscaling 
methods (Canonical Correlation Analysis_CCA and Multiple Linear 
Regression_MLR). 
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Figure 14. Spearman correlation for temperature indices, average over the four 
stations from eastern Greece of the two groups of the common downscaling 
methods (Canonical Correlation Analysis_CCA and Multiple Linear 
Regression_MLR). 
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Figure 15. Biases for temperature indices, average over the four stations from 
western Greece of the two groups of the common downscaling methods 
(Canonical Correlation Analysis_CCA and Multiple Linear Regression_MLR). 
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Figure 16. Biases for temperature indices, average over the four stations from 
eastern Greece of the two groups of the common downscaling methods 
(Canonical Correlation Analysis_CCA and Multiple Linear Regression_MLR). 
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