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Introduction

AUTH has developed three statistical downscaling models in order to identify the
relationship between large-scale circulation and extreme temperatures / precipitation.
ARPA-SMR used two models in order to downscale extreme events. A downscaling
method has been applied by UEA that models seasonal indices of extreme rainfall at
UK stations using large-scale circulation. Finally, FIC has developed a method using
low-resolution atmospheric fields in order to estimate high-resolution surface for
temperature and precipitation.

Data

Predictors and Predictands

Different downscaling models with different predictors estimate the same predictands
in order to evaluate the most efficient model for the Greek area. The predictands are
the seasonal “core” extreme indices (Table 1). The majority of the predictors were
selected from the NCEP reanalysis data (Table 2). The calibration period for all
models is 1958-1978 & 1994-2000 and the validation period is 1979-1993. The skill
measures of the models are Spearman correlation and Biases.

Table 1. The “core” extreme indices of Predictands

Precipitation related Indices

Designation | Description

Pq90 90™ percentile of rainday amounts (mm/day)
Pxcdd Max no. consecutive dry days

Px5d Greatest 5-day total rainfall

Pint Simple Daily Intensity (rain per rainday)
P90 No of events >long term 90™ percentile
Pn90 % of total rainfall from events>long term P90

Temperature related indices

Designation | Description

Txav Mean Maximum Temperature
Tx90 Tmax 90™ percentile

Tnav Mean Minimum Temperature
Tn10 Tmin 10™ percentile

Tnfd Number of frost days (Tmin <0° C)
Txhw90 Heat wave duration
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Table 2.Predictors of the different methods

Greece
Methods Multiple Regression Canonical Correlation Artificial Neural
Analysis Analysis (CCA) Network (ANN)
-Circulation types 500hPa -Geopotential heights at 500hPa  -Geopotential heights at
Precipitation Indices -Anomalies at S00hPa S500hPa
-Anomalies at 500hPa
-Circulation types Thickness -Thickness fields 1000-500hPa Thickness fields 1000-

Temperature Indices

1000-500hPa -Anomalies 1000-500hPa

500hPa
-Anomalies 1000-500hPa

Window 200W-500E and 00-32.50F and 00-32.50F and
200N-650N 300N-550N 300N-550N
Italy
Multiple Linear Canonical Correlation
Methods Regression Analysis Analysis (CCA)
The 4 PCs that derived from The 1** EOFs of predictands and

Precipitation Indices

Temperature Indices

-Mean ~Sea Level Pressure from the total variance

(MSLP)
Predictors: th MLR
-Geopotential height at 500hPa redictors: the same as
Predictands: the seasonal core
(2500) extreme indices

-Temperature at 850hpa (T850)

predictors that explain 97.5%

Window 300W-309E and 300N-60°N 300W-309E and 300N-60°N
UK
Methods Canonical Correlation Analysis (CCA)

Precipitation Indices

Temperature Indices

Window

-Mean Sea Level Pressure (MSLP)

-Specific Humidity at 700hPa (SH700)
-Relative humidity at 700hPa (RH700)

-Temperature at 700hPa (T700)

609W-609E and 200N-800N

Spain

Methods

FIC Method

-Thickness fields 1000-500hPa

-Sinusoid function of the day of the year with maximum in June 22™, to consider the clear sky
radiation influence on the warming/cooling of the surface air (seasonal factor) and

-Weighted average of the surface grid-point mean daily temperatures of the ten previous days, to

account for the soil thermal inertia influence (soil memory factor).

2.50E-450E and 300N-550N
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Methods

The different methods used are:

A) Greece
A1) Multiple Regression Analysis using the circulation types approach

According to the results of D10, the classification of the circulation types for the
500hPa has proven to be the most appropriate of the construction of the Multiple
Regression Model for the precipitation indices. On the other hand, the classification of
the circulation types for the thickness (1000 — 500hPa) has proven to be the most
appropriate for the construction of the model, in order to simulate the temperature
indices. For every index, season and station, a different model has been constructed,
according to the relationship of the circulation types, the precipitation indices and the
temperature indices. The selection of the most efficient model has been done by
combining the correlation coefficient values of the observed with the simulated as
well as the RMSE values (Maheras et al., 2000; Maheras and Anagnostopoulou, 2003;
Maheras et al., 2004).

A2) Canonical Correlation Analysis (CCA)

This method isolates linear combinations of multiple predictor variables and linear
combinations of multiple predictand variables that have maximum correlation
coefficients. This approach assumes that the relationship between predictor and
predictand will remain stable in the future climate, an assumption based on physical
interpretability of the relationship found and in the ability of the statistical model to
reconstruct local climate anomalies form the large scale observation in an independent
historical period (Barnett and Preisendorfer 1987; Von Storch and Zwiers 1999).

For the simulation of the precipitation indices, SLP and 500hPa geopotential
values have been used, while for the simulation of the temperature indices the
thickness (1000-500hPa) values have been used.

A3) Artificial Neural Network (ANN)

Artificial Neural Network models have a structure based on human neural system.
Acting as black box models permit the estimation of a number of parameters from
predictor parameters, the two groups been connected by non-linear relations. These
models have three layers (input — hidden — output) or a more complex structure. The
main advantage of ANNSs is that no initial transfer function is needed to be chosen and
the system is self-training (Trigo and Palutikof, 1999).

As for the previous models, for the construction of the model for the simulation of
the precipitation indices, SLP and 500hPa geopotential values have been used, while
for the simulation of the temperature indices the thickness (1000-500hPa) values have
been used.

B) Italy

The downscaling models developed by ARPA-SMR in order to downscale extreme
events from Greece are based on two methods:

1. the multiple linear regression based on the principal components of the data
sets used in the analysis (MLR);

2. the multivariate regression based on canonical correlation analysis (CCA)
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Both methods are based on a multiple linear regression with predictors derived from
NCEP reanalysis: geopotential height at 500mb (Z500), mean sea level pressure
(MSLP), temperature at 850mb (T850) and specific humidity at the levels: 1000mb,
950mb, 850mb, 750mb, while the predictands are the seasonal “core” extreme indices
(7 indices for precipitation and 6 indices for temperature).

The predictors used in the MLR method are the first 4 PCs of the above fields. The
downscaling based on CCA analysis has been performed using like input data the first
EOFs of predictands and predictors that explain 97.5% from the total variance, while
the CCA pairs used in the downscaling model has been selected such as the
correlation between them to be statistically significant.

The model has been calibrated on the period 1958-1978+1994-2000 and validated on
the period 1979-1994.

The skill of the statistical models evaluated by the BIAS, RMSE and Spearman rank-
correlation coefficient has been revealed that the seasons with best performances is
winter followed by autumn. High performances have been obtained for mean fields
(mean daily precipitation, mean maximum and minimum temperature) and some
extreme of precipitation and temperature (number of consecutive dry days, 90
percentile of maximum temperature, 10" percentile of winter minimum temperature,
number of winter frost days). The comparison between two statistical downscaling
methods reveals that the skill of the CCA is in generally better than those provided by
the MLR methods.

C) United Kingdom

A downscaling method is being developed to the applied to the entire European
regional dataset which models the STARDEX indices of rainfall extremes using large
scale patterns of circulation. Rather than modelling the daily rainfall itself, then
calculating the indices, this method will use seasonal measures of large-scale
circulation variability to model the seasonal indices of extremes directly. The
predictands will be the six core STARDEX indices of rainfall extremes calculated
seasonally. Predictors will be selected from circulation variables, calculated over the
entire European and East Atlantic region. From our work preparing D10, the best
predictor seems to be sea level pressure but other variables will be considered
including temperature, geopotential height and relative humidity at three atmospheric
levels as well as sea surface temperature. The model uses canonical correlation
analysis. Two methods to select predictors will be tested: using just the variable with
the best correlation with the indices (MSLP); and a cross-validation of all possible
predictor combinations.

D) Spain — FIC

D1) Description of the method.
The method estimates high-resolution surface meteorological fields for a day "X", in
two steps: in the first step, the "n" most similar days to the "X" day, attending to their

low-resolution atmospheric fields, are selected from a reference dataset. In the second
one, high-resolution surface information is estimated in a different way for
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precipitation and temperature. Rainfall estimations for a point are done by means of a
simple average of the observed precipitation amounts in the "n" analogous days, in
that point. Temperature is obtained applying a further multiple linear regression
analysis that searches for relationships (in the "n" day’s population) between some
atmospheric variables (predictors) and the surface temperature (predictand).

The first step selection of the "n" days is an analogical technique. Precipitation is
known to present strong non-linear relationships with its potential predictor variables,
what makes analogical techniques, that, do not assume any hypothesis about
predictor/predictand relationships, specially indicated for its diagnosis. The method’s
level of performance depends upon the extension and quality of the atmospheric and
surface reference datasets and, very remarkably, upon the similarity measure used to
determine similarity among days. In this sense, the similarity measure must contain
diagnostic capability regarding high-resolution precipitation fields (low-resolution
atmospheric fields considered similar by the measure must be associated with similar
high-resolution precipitation fields).

Regarding temperature, the two steps procedure is necessary to consider the non-
linear influence of cloudiness over the surface temperatures. Precipitation is strongly
related to cloudiness, so the previous selection of very similar days regarding
precipitation, is implicitly guarantying also very similar cloudiness conditions for the
selected days, what makes the further diagnosis by multiple linear regression very
accurate. In this regard, Lorenz, suggested that if linear analyses were applied to
analogous synoptic situations, the non-linear character of the atmosphere would be
more tractable.

o First step: the analogical technique

As pointed earlier, in the first step, the "n" most similar days to the "X" day, attending
to their low-resolution atmospheric fields, are selected from a reference dataset. The
similarity measure must contain diagnostic capability regarding high-resolution
precipitation fields. In this sense, the similarity measure must assess the likeness of as
many as possible precipitation forcings associated to the low resolution atmospheric
configurations of the days being compared.

In an initial selecting procedure, the mean daily geostrophic flux fields at 1000 and
500hPa were found to offer the best performance, among the many different predictor
sets tested.

The similarity measure between two days must be a scalar magnitude (to allow
ordering), that summarises the resemblance of this two days with regard to their mean
geostrophic 1000 and 500 hPa wind fields.

The good performance of Euclidean distances is backed up by analogue technique
literature.

The similarity between two days is calculated determining (and standardising)
independently those days likeness regarding each of the final four predictor fields "p":
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1000 hPa wind speed field, 1000 hPa wind direction field, 500 hPa wind speed field
and 500 hPa wind direction field.
The likeness of days "i" and "j" regarding each predictor field "p" (for example,
1000hPa geostrophic wind speed), is calculated as an euclidean distance with:

A7
> (Spd10004, - Spd1000 ) B,
Dsp:z‘lﬂ[llil [i,j:l - |= i

2.5
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where Spd 1000y is the value of the 1000 hPa geostrophic wind speed of the day "i", at
the grid point "k" of the grid used to represent atmospheric fields; Py is the weighting
coefficient of the "k" grid point . P, coefficients are necessary to consider the greater
influence on Iberian precipitation of the wind features closer to the Peninsula. P;
coefficients can be different for 1000 and 500 hPa predictors. "N" is the number of the
atmospheric grid points, that is determined by the spatial domain and the resolution of
the referred grid.

Once Dy,a1000(i,j) has been calculated, it has to be standardised. The standardisation is
done by means of substituting Dy,q1000(,j) by centy,aio00, thatis the closest centil of the
reference population of Euclidean distances among predictor fields "spd1000", to the
Dygparooo(ij) value. The centil values are previously determined, obiously
independently for each "p" predictor field, over a reference population of more than
3.000.000 values of D,, calculated applying the previous formulae, with the same Py
values, to randomly selected days (i.e., days multiple of 3). If the closest value to
Dspd1000(i,]) 18 centspdinoo = C, that means that about the ¢% of the 3.000.000 Dspd1000
values are lower than Dy,q;000(i,j). The use of centil instead of the original distance
allows to consider adimensional and initially equally weighted variables, in the

measure.

After the four D,(i,j) independent calculation and standardisation (determination of
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the closest four cent,), the final similarity measure between days "i" and "]
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where w), 1s the weighting coefficient of the predictor field "p". The w, combination
finally selected is: wypazo00 = 0,25; Wair1000 = 0,25; Wypasoo = 0,255 Wairsoo = 0,255

e Second step: the multiple linear regression analysis.
The estimation procedure for temperatures requires, after the selection of the "n"
analogous days described above, a further diagnosis by multiple linear regression.
Although predictor/predictand relationships determined in this second step are linear,
an important part of the non-linear links of free atmosphere variables with surface
temperatures is considered with the previous (analogical) stratification. Linear
regression performs pretty well to estimate surface maximum and minimum
temperatures, due to the near-normal statistical distribution of those variables. It is
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necessary to remember that, when using linear regression, the predictand quantity is
bound to have essentially the same statistical distribution as the predictor/s variable/s.
In this regard, potential predictors should present close-to-normal distributions.

The multiple linear regression employs a forward and backward stepwise selection of
predictors. The potential predictors are three:

1. mean daily 1000/500 hPa thickness above the surface grid-point, to include the
strong relationship between lower troposphere and surface temperatures
(meteorological factor),

2. a sinusoid function of the day of the year with maximum in June 22™ to
consider the clear sky radiation influence on the warming/cooling of the
surface air (seasonal factor),

3. and a weighted average of the surface grid-point mean daily temperatures of
the ten previous days, to account for the soil thermal inertia influence (soil
memory factor). Weighting coefficients decrease linearly from a value of 10
for the D-1 day to a value of 1 for the D-10 day.

The non-linear influence of other important meteorological factors, like cloudiness,
precipitation and low troposphere wind speed, is considered through the previous
analogical stratification. In fact, the regression is performed over a population of "n"
days that present very similar precipitation conditions, and subsequently, very similar
cloudiness conditions. As the analogical selection searches for days with similar 1000
and 500 hPa geostrophic wind fields to the problem day, low troposphere wind speed
fields of the "n" days also tend to be very like.

Results

A) Precipitation indices

From the analysis of the results for the two regions (Western and Eastern Greece),
derives that all methods provide relatively similar results for each season and for
each index. The results in wintertime are better than all the other seasons while the
lowest correlation coefficients are found in the case of autumn. In should be
mentioned that the indices concerning the mean precipitation (Pav) and the dry
days (Pxcdd) are the ones with the highest correlation coefficients during all
seasons. On the other hand although the biases in the case of the Pav are the
lowest, the biases of the Pxcdd are quite high. Generally, it can be mentioned that
the results for Western Greece are more satisfying than the results in the Eastern
region with the exception of the spring results (figures 1-4).

From the comparison of the common methods of CCA it is noticed that although
the methods are the same the selection of the predictors and the NCEP data
window is decisive and differentiates the results (figures 5-6). For example, in
some cases two of the three methods present satisfying correlation coefficients for
the precipitation indices, while the correlation coefficients of the third method are
either very low of even negative. On the other hand, the two models of MLR It
and the one of the MLR AUTH don’t present similar results (figures 7-8) due to
the fact that the predictors in the MLR AUTH are the circulation types, which
result to a complete different technical approach.
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B) Temperature indices

Concerning the temperature indices for western and eastern Greece, it is obvious
that the correlation coefficients from the application of all methods are much
higher than the ones in the case of precipitation. During winter and spring, these
correlation coefficients reach the value of 0.9 in some of the temperature indices.
On the contrary, only in the case of autumn, for some indices, the correlation
coefficients are found negative (figures 9-10). It is remarkable that the FIC
method provides better results, with high correlation coefficients values,
comparing to the other methods especially in eastern Greece. The efficiency of the
methods in simulating the temperature indices is clear also for the analysis of the
biases figures, which in most of the cases are very small (figures 11-12).
Comparing the common methods for the temperature indices it could be noticed
that their behaviour during winter is similar. On the contrary, the MLR-Z500
presents negative correlation coefficients in the case of summer and autumn
(figures 13-14). Figures 15 and 16 indicate that the three common CCA methods
appear to have small biases for the majority of the temperature indices, while the
MLR _AUTH for the second group of common methods presents slightly higher
biases from the other two methods.

COCLUSIONS

The temperature indices present more satisfactory results with high correlation
coefficients and low values for Biases. On the other hand the results for the
precipitation indices are not so good. For all the indices the results for the western part
of the study region are better than in the eastern part, except for the case of FIC
temperature results which are better in eastern Greece.

The methods used give quite satisfactory results, but it is difficult to choose
the most efficient model as their results vary from season to season and from station
to station. Generally, it could be concluded that the most prevailing factors in the
efficiency of a method in simulating temperature and precipitation indices are, the
appropriate selection of the predictors and the size and the position of the grid data
window.

More specifically, from the three methods used by the AUTH partner, the
most efficient one is the Neural Net method, giving the highest correlation
coefficients, mostly in the case of the precipitation indices. This could be due to the
different way that this method is functioning. On the contrary, from the analysis of the
biases the MLR method using the circulation type approach gives the most satisfying
results — the lowest biases.

Concerning the evaluation of the common methods (CCA) from the three
partners it can be noticed that for the temperature indices the correlation coefficients
are high and almost similar for all the methods. The differences in the results for the
precipitation indices and the fact that the highest coefficients are found for the
methods used by the AUTH partner, could be attributed to the different predictors and
window that have be used.
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Figure 1. Spearman correlation for precipitation indices, average over the four
stations from western Greece for the different downscaling methods.
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Figure 2. Spearman correlation for precipitation indices, average over the four
stations from eastern Greece for the different downscaling methods.
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Figure 5. Spearman correlation for precipitation indices, average over the four
stations from western Greece of the two groups of the common downscaling
methods (Canonical Correlation Analysis CCA and Multiple Linear
Regression_MLR).

14



STARDEX

1 Winter 1 Winter
0.8 0.8
c
c
S o6 2
£ £
E 0.4 3
o p
c
E 0.2 E
g 2
g 0 @
Pav pint Pq90 Px5d pxcdd pfigo pnig0 Pqe0 Px5d pxcdd
0.2
Precipitation Indices Precipitation Indices
- 0.4
0.4
1 CCA UEA B CCA It OOCCA Auth EIMLR-Z500_It BMLR-T850_It CIMLR Auth
. Spring
4 Spring 1
0.8
c
S 06 2
: :
g 0.4 8
o c
§ 02 H g
£ g
]
3 Q
-3 0 T T T )
@ xcdd
02l P Pq90 Px5d  pxcdd pfI90 pnigo p
' Precipitation Indices Precipitation Indices
0.4
0.4
‘DCCA UEA BCCA It O CCA Adth B MLR-Z500_It B MLR-T850_It EIMLR Auth
1 1
0.8 0.8
s s
g 0.6 1 ] 0.6 4
§ 0.4 1 § 0.4 1
o o —
§ 02 § 02
& a . .
P pint Pg90  Px5d  pxcdd  pfi90 prig0 P Y Pg0  Px5d  pxdf pfi%0 pnigo
Precipitation Indices Precipitation Indices
0.4 0.4
‘ 0 CCA_UEA B CCA It O CCA Auth ‘ ‘D MLR-500_It B MLR-T850_It OOMLR_ Auth ‘
Autt Autt
1 1
08 08
c
c
2 o S 06
3 ®
E 04 E o4 -
° ] —
é 0.2 § o2
i 5
a g o : : : ; ‘ 1
20.21 Px5d pxcdd pfi%0 pniso 02 Pav pint Pq90 X pxcdd pnig0
Precipitation Indices Precipitation Indices
-0.4 -0.4
‘E‘ CCA_UEA BICCA_It OCCA _Auth ‘ ‘ O MLR-Z500_It BIMLR-T850_It OJMLR Auth ‘

Figure 6. Spearman correlation for precipitation indices, average over the four
stations from eastern Greece of the two groups of the common downscaling
methods (Canonical Correlation Analysis CCA and Multiple Linear
Regression_MLR).
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Figure 7. Biases for precipitation indices, average over the four stations from
western Greece of the two groups of the common downscaling methods
(Canonical Correlation Analysis CCA and Multiple Linear Regression_ MLR).
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Figure 8. Biases for precipitation indices, average over the four stations from
eastern Greece of the two groups of the common downscaling methods
(Canonical Correlation Analysis CCA and Multiple Linear Regression_ MLR).
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Figure 9. Spearman correlation for temperature indices, average over the four
stations from western Greece for the different downscaling methods.
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Figure 10. Spearman correlation for temperature indices, average over the four
stations from eastern Greece for the different downscaling methods.
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Figure 11. Biases for temperature indices, average over the four stations from

western Greece for the different downscaling methods.
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Figure 12. Biases for temperature indices, average over the four stations from
eastern Greece for the different downscaling methods.
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Figure 13. Spearman correlation for temperature indices, average over the four
stations from western Greece of the two groups of the common downscaling

methods

(Canonical

Regression_ MLR).
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Figure 14. Spearman correlation for temperature indices, average over the four
stations from eastern Greece of the two groups of the common downscaling

methods

(Canonical

Regression MLR).
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Figure 15. Biases for temperature indices, average over the four stations from
western Greece of the two groups of the common downscaling methods
(Canonical Correlation Analysis CCA and Multiple Linear Regression_ MLR).
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Figure 16. Biases for temperature indices, average over the four stations from
eastern Greece of the two groups of the common downscaling methods
(Canonical Correlation Analysis CCA and Multiple Linear Regression_ MLR).
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