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Introduction

A method of downscaling has been applied in the German side of the Rhine basin to
downscale extreme precipitation and temperature indices from a range of predictor variables
taken from the NCEP Reanalysis data set at a resolution of 2.5° x 2.5° Instead of
downscaling the daily series of precipitation of precipitation and temperature, the seasonal
extreme indices are directly downscaled from the predictors. For this purpose, seasonal
measures of extremes of the predictor variables were used.

Data

A range of potential predictor variables are selected from the NCEP Reanalysis data. These
include geopotential height, air temperature, and relative humidity at 500, 700, and 850hPa
levels. In addition, derived predictor variables such as vorticity and divergence at the same
three pressure levels, the east west direction moisture flux at 700 hPa level, and objective
circulation patterns obtained by classifying the sea level pressure using a Fuzzy rule approach
(presented in D10) were used.

Downscaling of the extreme indices was done for stations selected from the FIC data set that
are located in the desired study location. Based on the percentage of missing record (both for
temperature and precipitation) and homogeneity test results (for temperature series), 10
stations were selected for calibration and validation of the downscaling. The same stations
were selected for both temperature and precipitation. List of the selected stations is shown in
table 1.

Table 1: List of precipitation/temperature stations selected from the FIC data set for
downscaling.

Station_code | Latitude

Longitude

Elevation

Name

% comp(Tmin)

% comp(Tmax)

%comp(Tavg)

% comp(RF)

homo.
Test(Tmin)

homo.
Test(Tmax)

Homo
test(RF)

max
dTmin

max
dTmax

2320000

4788

800

1486

FELDBERG/SCHW. (WST)

%Tn-99

%Tx-99

%Tmd-99

%P-99

No

0

107270

4901

838

114

Karlsruhe

%Tn-99

%Tx-99

%Tmd-99

%P-99

Yes

31

2695000

4952

855

96

MANNHEIM (WST)

%Tn-99

%Tx-99

%Tmd-99

%P-99

49

2278000

4977

705

480

DEUSELBACH (AWST)

%Tn-99

%Tx-99

%Tmd-99

%P-99

2222000

5087

717

92

KOELN-WAHN (FLUGWEWA

%Tn-99

%Tx-99

%Tmd-99

%P-99

11

2609000

5058

870

186

GIESSEN (LIEBIGSH. W

%Tn-99

%Tx-99

%Tmd-99

%P-99

34

2674000

4977

997

268

WUERZBURG (WST)

%Tn-99

%Tx-99

%Tmd-99

%P-99

31

17

2105000

4922

712

320

SAARBRUECKEN-E(FLUGW

%Tn-99

%Tx-99

%Tmd-99

%P-99

29

1594000

5118

848

839

KAHLER ASTEN (WST)

%Tn-99

%Tx-99

%Tmd-99

%P-99

4081000

4950

1105

314

NUERNBERG-KRA.(FLUGW

%Tn-99

%Tx-99

%Tmd-99

%P-99

55

23

Method

A multiple linear regression model was used for downscaling the seasonal extreme indices.
They were downscaled from seasonal measures of the potential predictor variables. These
measures include the seasonal mean values and measures of extreme such as the 10
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percentile and the 90" percentile seasonal values of the predictors. These measures apply only
for predictors that have numerical values and a different measure should be used for the
circulation patterns. The seasonal percentage of the circulation patterns associated with the
wet days was used (D10). Table 2 shows the indices which are downscaled.

Table 2: Extreme indices for which downscaling is done

Designation Index

Precipitation related indices

Pav Mean daily rainfall

Pq90 90™ percentile of rainday amounts

Px5d Greatest 5 day total rainfall

Pint Simple daily intensity

Pxcdd Maximum number of consecutive dry days

Pf90 % of total rainfall from events > long-term 90™ percentile of raindays
Pn90 No. of events > long-term 90™ percentile of raindays

Temperature related indices

Txav Mean maximum temperature

Tnav Mean minimum temperature

Txq90 90™ percentile maximum temperature
Tngl0 10™ percentile minimum temperature

Tnfd Number of frost days

Txhw90 Heat wave duration index (percentile based)
Results

Table 3 and 4 show the predictor sets that are selected using the forward selection method for
each of the precipitation and temperature indices respectively. The order of the predictors as
they appear in the list indicates their rank in the selection procedure. It can be seen that
generally, the best predictors for a given season for precipitation indices related to heavy
precipitation conditions are the same. Similarly, the air temperature at 850 hPa pressure level
appears to be the best predictor variable for temperature extreme indices.

Selection of the predictors and calibration of the downscaling model was performed for the
period 1958-1978 and 1994-200 and finally validated for the period 1979-1993. Three skill
measures were used to evaluate the downscaled indices: bias, debiased root mean square, and
Spearman rank correlation between the observed and the downscaled indices.

The mean seasonal precipitation is the only precipitation index that is downscaled consistently
well in all seasons. For the other extreme precipitation indices, the best performance was
generally obtained for the winter season followed by spring. The worst performance was
noticed for summer. The only exception is the maximum number of dry days, for which the
best skill measures were obtained in summer. Table 5 shows summary of the mean correlation
and mean square mean error values of the 10 stations for the precipitation indices in the
validation period.
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The temperature indices were generally found to be downscaled well in all seasons. The
correlations were found to be very high for all seasons. However, the model performance for
downscaling the heat wave duration index is not that satisfactory, with modest correlation and
high ratio of standard deviation between the downscaled and the observed values. Table 6
shows summary of the mean correlation and mean square root error values of the stations for
the validation period.

Table 3: Predictor variables for extreme precipitation indices

Index Winter Spring Summer Autumn Annual
Pav |mflx-avg(700) [CP-wet rhum-avg(700)  |mflxavg(700) CP-wet
CP-wet rhum-avg(850) CP-wet CP-wet mflx-avg(700)
hgt-avg(850) hgt-avg(500) rhum-avg(700)
dvg-avg(850)
Pq90 [mflx-P90(700) [CP-wet rhum-P90(700) |dvg-P10(700,850) CP-wet

vort-P90(700)
air-P10(500)

air-P10(850)
dvg-P90(500)
air-P10(500)

vort-P90(500)

mflx-P90(700)
CP-wet
air-P90(500,700,850)
vort-P90(700)

hgt-P10(850)
rhum-P90(500)

Px5d

mflx-P90(700)
hgt-P90(500,850)
dvg-P90(850)
air-P10(700)

CP-wet
air-P10(700)
rhum-P90(700)

rRhum-P90(700)
vVort-P90(500)
CP-wet

dvg-P10(500,700)
air-P90(500,700)
rhum-P90(700)
hgt-P90(500)

mflx-P90(700)
rhum-P90(500,850)
vort-P90(500)
dvg-P90(850)

Pint [mflxp90(700)  |CP-wet rhum-P90(700) |dvg-P10(500,700,850)[CP-wet
rhum-P90(700) dvg-P90(500,700)[rhum-P90(700) mflx-P90(700)
air-P10(850) hgt-P90(850) hgt-P90(500,700) rhum-P90(500)

air-P90(500) hgt-P10(850)
vort-P90(500)

Pxcdd|hgt-P90(700,500)|CP-wet rhum-P10(850) [rhum-P10(850) mflx-P10(700)

dvg-P90(500)
air-P90(700)

dvg-P10(700)
vort-P90(850)
rhum-P90(500,700)

vort-P90(500)
mflx-P10(700)

CP-wet
air-P10(500,700)

Pf90

mflx-P90(700)

CP-wet
mflx-P90(700)
vort-P10(500)
dvg-P10(500)

rhum-P90(700)
\vort-P90(500)
CP-wet

dvg-P10(850,700)
CP-wet
air-P90(500,700,850)
hgt-P90(500)

vort-P90(500,700)
mfix-P90(700)
rhum-P90(700,850)
hgt-P10(850)

Pn90

mflx-P90(700)
hgt-P90(500)

CP-wet
vort-P10(500)

rhum-P90(700)

rhum-P90(700)
vort-P90(500)
CP-wet

mfix-P90(700)
air-P90(500,700,850)

rhum-P90(700)

CP-wet
mflx-P90(700)

rhum-P90(700)

3
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Table 4: Predictor variables for extreme temperature indices

Index Winter Spring Summer Autumn Annual

Txav [air-avg(850) air-avg(850) air-avg(850) air-avg(850) air-avg(850)
mflx-avg(700) [rhum-avg(700)

Tnav |airavg(850) air-avg(850) air-avg(850) air-avg(850) air-avg(850)
CP-wet rhum-P90(700) |rhum-avg(850) CP-wet
vort-avg(850) vort-avg(850,700)
rhum-avg(850)

Txq90 |air-P90(850) air-P90(850) air-P90(850) air-P90(850) air-P90(850)
mflx-p90(700)

Tngl0 |air-P10(850,700)jair-P10(850,700) air-P10(850,700)[air-P10(850) air-P10(850)
CP-wet
dvg-P90(700)
mflx-P90(700)

Tnfd  [air-P10(850) air-P10(850) air-P10(850) air-P10(850)
mflx-P10(700) |vort-P90(500) rhum-P10(850) CP-wet
vort-P90(850)  [rhum-P90(500) air-P10(700) \vort-P90(850)

Txhw90lair-P90(850) rhum-P90(500) air-P90(850,700)[air-P90(850) rhum-P90(500,700,850)
CP-wet air-P90(500,700,850)[vort-P90(500)  |vort-P90(500,700,850)jair-P90(500,850)
vort-P90(850)  [mfIx-P90(700) dvg-P90(850) |dvg-P90(850) CP-wet
rhum-P90(850) |dvg-P90(500)

Table 5: Summary of mean correlation and root mean square values for precipitation indices

Index Correlation RMSE

Winter | Spring Summer | Autumn Winter Spring | Summer | Autumn
Pav 0,717 | 0,6533 0,4965 0,4994 0,4562 0,508 0,6504 0,5166
Pint 0,4001 | 0,3208 0,079 0,2779 1,0064 1,0759 1,3745 1,258
Pg90 0,3746 | 0,033 0,2029 0,2632 2,6377 3,7121 3,4968 4,0202
Px5d 0,4415 | 0,401 0,3373 0,3046 | 15,1434 | 15,7781 | 17,7507 | 19,4892
Pxcdd 0,4178 | 0,4532 0,5409 0,4043 4,4486 3,7597 3,9828 5,7837
Pf90 0,3135 | 0,0972 0,0932 0,1294 0,1177 0,1491 0,1392 0,1455
Pn90 0,4168 | 0,462 0,2695 0,2499 1,839 1,7505 1,6385 1,6504
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Table 6: Summary of mean correlation and root mean square values for temperature indices

Index Correlation RMSE

Winter | Spring Summer | Autumn | Winter | Spring Summer | Autumn
Txav 0,8985 | 0,9363 0,8977 0,7629 | 0,7159 | 0,3791 0,5168 0,5339
Txq90 0,7575 | 0,9019 0,8444 0,85 0,9462 | 0,8479 0,7325 1,1012
Thav 0,8743 | 0,9247 0,8793 0,7958 | 0,8132 | 0,3661 0,3339 0,3927
Tngl0 0,8751 | 0,662 0,7026 0,8433 | 1,5354 | 1,1543 0,5063 1,2061
Tnfd 0,7248 | 0,6951 0,8336 | 7,5983 | 4,5527 3,9995
Txhw90 0,624 | 0,4714 0,6125 0,2525 | 2,1686 | 2,0238 1,3476 1,9877
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