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Introduction 
 
A method of downscaling has been applied in the German side of the Rhine basin to 
downscale extreme precipitation and temperature indices from a range of predictor variables 
taken from the NCEP Reanalysis data set at a resolution of 2.5° × 2.5°. Instead of 
downscaling the daily series of precipitation of precipitation and temperature, the seasonal 
extreme indices are directly downscaled from the predictors. For this purpose, seasonal 
measures of extremes of the predictor variables were used. 
 
Data 
 
A range of potential predictor variables are selected from the NCEP Reanalysis data. These 
include geopotential height, air temperature, and relative humidity at 500, 700, and 850hPa 
levels. In addition, derived predictor variables such as vorticity and divergence at the same 
three pressure levels, the east west direction moisture flux at 700 hPa level, and objective 
circulation patterns obtained by classifying the sea level pressure using a Fuzzy rule approach 
(presented in D10) were used.  
 
Downscaling of the extreme indices was done for stations selected from the FIC data set that 
are located in the desired study location. Based on the percentage of missing record (both for 
temperature and precipitation) and homogeneity test results (for temperature series), 10 
stations were selected for calibration and validation of the downscaling. The same stations 
were selected for both temperature and precipitation. List of the selected stations is shown in 
table 1. 
 
Table 1: List of precipitation/temperature stations selected from the FIC data set for 
downscaling. 
 

Station_code Latitude Longitude Elevation Name % comp(Tmin) % comp(Tmax) %comp(Tavg) % comp(RF)
homo. 

Test(Tmin) 
homo. 

Test(Tmax) 
Homo 

test(RF) 
max 

dTmin
max 

dTmax 

2320000 4788 800 1486 FELDBERG/SCHW. (WST) %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes No No 0   

107270 4901 838 114 Karlsruhe            %Tn-99 %Tx-99 %Tmd-99 %P-99 No Yes No   31 

2695000 4952 855 96 MANNHEIM (WST) %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 49 0 

2278000 4977 705 480 DEUSELBACH (AWST) %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 0 0 

2222000 5087 717 92 KOELN-WAHN (FLUGWEWA %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 0 11 

2609000 5058 870 186 GIESSEN (LIEBIGSH. W %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 0 34 

2674000 4977 997 268 WUERZBURG (WST) %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 31 17 

2105000 4922 712 320 SAARBRUECKEN-E(FLUGW %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 29 0 

1594000 5118 848 839 KAHLER ASTEN (WST) %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes No No 0   

4081000 4950 1105 314 NUERNBERG-KRA.(FLUGW %Tn-99 %Tx-99 %Tmd-99 %P-99 Yes Yes No 55 23 

 
Method  
 
A multiple linear regression model was used for downscaling the seasonal extreme indices. 
They were downscaled from seasonal measures of the potential predictor variables. These 
measures include the seasonal mean values and measures of extreme such as the 10th 
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percentile and the 90th percentile seasonal values of the predictors. These measures apply only 
for predictors that have numerical values and a different measure should be used for the 
circulation patterns. The seasonal percentage of the circulation patterns associated with the 
wet days was used (D10). Table 2 shows the indices which are downscaled. 
 
 
Table 2: Extreme indices for which downscaling is done 
 
Designation   Index 
 
   Precipitation related indices 
 
Pav  Mean daily rainfall 
Pq90  90th percentile of rainday amounts 
Px5d  Greatest 5 day total rainfall 
Pint  Simple daily intensity 
Pxcdd  Maximum number of consecutive dry days 
Pf90  % of total rainfall from events > long-term 90th percentile of raindays 
Pn90  No. of events > long-term 90th percentile of raindays 
 
   Temperature related indices 
 
Txav  Mean maximum temperature 
Tnav  Mean minimum temperature 
Txq90  90th percentile maximum temperature 
Tnq10  10th percentile minimum temperature 
Tnfd  Number of frost days 
Txhw90 Heat wave duration index (percentile based) 
 
 
Results 
 
Table 3 and 4 show the predictor sets that are selected using the forward selection method for 
each of the precipitation and temperature indices respectively. The order of the predictors as 
they appear in the list indicates their rank in the selection procedure. It can be seen that 
generally, the best predictors for a given season for precipitation indices related to heavy 
precipitation conditions are the same. Similarly, the air temperature at 850 hPa pressure level 
appears to be the best predictor variable for temperature extreme indices. 
 
Selection of the predictors and calibration of the downscaling model was performed for the 
period 1958-1978 and 1994-200 and finally validated for the period 1979-1993. Three skill 
measures were used to evaluate the downscaled indices: bias, debiased root mean square, and 
Spearman rank correlation between the observed and the downscaled indices. 
 
The mean seasonal precipitation is the only precipitation index that is downscaled consistently 
well in all seasons. For the other extreme precipitation indices, the best performance was 
generally obtained for the winter season followed by spring. The worst performance was 
noticed for summer. The only exception is the maximum number of dry days, for which the 
best skill measures were obtained in summer. Table 5 shows summary of the mean correlation 
and mean square mean error values of the 10 stations for the precipitation indices in the 
validation period. 
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The temperature indices were generally found to be downscaled well in all seasons. The 
correlations were found to be very high for all seasons. However, the model performance for 
downscaling the heat wave duration index is not that satisfactory, with modest correlation and 
high ratio of standard deviation between the downscaled and the observed values. Table 6 
shows summary of the mean correlation and mean square root error values of the stations for 
the validation period. 
 
 
Table 3: Predictor variables for extreme precipitation indices 
 

Index Winter Spring Summer Autumn Annual 
Pav mflx-avg(700) CP-wet rhum-avg(700) mflxavg(700) CP-wet  

  CP-wet rhum-avg(850) CP-wet CP-wet mflx-avg(700) 
     hgt-avg(850) hgt-avg(500) rhum-avg(700) 
     dvg-avg(850)    
            

Pq90 mflx-P90(700)  CP-wet  rhum-P90(700)  dvg-P10(700,850)  CP-wet  
  vort-P90(700)  air-P10(850)  vort-P90(500)  mflx-P90(700)  hgt-P10(850)  
  air-P10(500)  dvg-P90(500)    CP-wet  rhum-P90(500)  
    air-P10(500)    air-P90(500,700,850)    
        vort-P90(700)    
            

Px5d mflx-P90(700)  CP-wet  rRhum-P90(700) dvg-P10(500,700)  mflx-P90(700)  
  hgt-P90(500,850) air-P10(700)  vVort-P90(500)  air-P90(500,700)  rhum-P90(500,850) 
  dvg-P90(850)  rhum-P90(700)  CP-wet  rhum-P90(700)  vort-P90(500)  
  air-P10(700)      hgt-P90(500)  dvg-P90(850)  
            

Pint mflxp90(700)  CP-wet  rhum-P90(700)  dvg-P10(500,700,850) CP-wet  
    rhum-P90(700)  dvg-P90(500,700) rhum-P90(700)  mflx-P90(700)  
    air-P10(850)  hgt-P90(850)  hgt-P90(500,700)  rhum-P90(500)  
        air-P90(500)  hgt-P10(850)  
          vort-P90(500)  
            

Pxcdd hgt-P90(700,500) CP-wet  rhum-P10(850)  rhum-P10(850)  mflx-P10(700)  
  dvg-P90(500)  dvg-P10(700)  vort-P90(500)  CP-wet    
  air-P90(700)  vort-P90(850)  mflx-P10(700)  air-P10(500,700)    
    rhum-P90(500,700)       
            

Pf90 mflx-P90(700)  CP-wet  rhum-P90(700)  dvg-P10(850,700)  vort-P90(500,700) 
    mflx-P90(700)  vort-P90(500)  CP-wet  mflx-P90(700)  
    vort-P10(500)  CP-wet  air-P90(500,700,850)  rhum-P90(700,850) 
    dvg-P10(500)    hgt-P90(500)  hgt-P10(850)  
            

Pn90 mflx-P90(700)  CP-wet  rhum-P90(700)  mflx-P90(700)  CP-wet  
  hgt-P90(500)  vort-P10(500)  vort-P90(500)  air-P90(500,700,850)  mflx-P90(700)  
    rhum-P90(700)  CP-wet  rhum-P90(700)  rhum-P90(700)  
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Table 4: Predictor variables for extreme temperature indices 
 

Index Winter Spring Summer Autumn Annual 
Txav air-avg(850) air-avg(850) air-avg(850) air-avg(850) air-avg(850) 
  mflx-avg(700) rhum-avg(700)       
            
Tnav airavg(850) air-avg(850) air-avg(850) air-avg(850) air-avg(850) 
  CP-wet   rhum-P90(700) rhum-avg(850) CP-wet 
  vort-avg(850)     vort-avg(850,700)   
  rhum-avg(850)         
            
Txq90 air-P90(850)  air-P90(850)  air-P90(850)  air-P90(850)  air-P90(850)  
  mflx-p90(700)          
            
Tnq10 air-P10(850,700) air-P10(850,700)  air-P10(850,700) air-P10(850)  air-P10(850)  
          CP-wet  
          dvg-P90(700)  
          mflx-P90(700)  
            
Tnfd air-P10(850)  air-P10(850)    air-P10(850)  air-P10(850)  
  mflx-P10(700)  vort-P90(500)    rhum-P10(850)  CP-wet  
  vort-P90(850)  rhum-P90(500)    air-P10(700)  vort-P90(850)  
            
Txhw90 air-P90(850) rhum-P90(500) air-P90(850,700) air-P90(850) rhum-P90(500,700,850)
  CP-wet air-P90(500,700,850) vort-P90(500) vort-P90(500,700,850) air-P90(500,850) 
  vort-P90(850) mflx-P90(700) dvg-P90(850) dvg-P90(850) CP-wet 
  rhum-P90(850) dvg-P90(500)       

 
  
Table 5: Summary of mean correlation and root mean square values for precipitation indices 
 

Index Correlation RMSE 
  Winter Spring Summer Autumn Winter Spring Summer Autumn 

Pav 0,717 0,6533 0,4965 0,4994 0,4562 0,508 0,6504 0,5166 
Pint 0,4001 0,3208 0,079 0,2779 1,0064 1,0759 1,3745 1,258 
Pq90 0,3746 0,033 0,2029 0,2632 2,6377 3,7121 3,4968 4,0202 
Px5d 0,4415 0,401 0,3373 0,3046 15,1434 15,7781 17,7507 19,4892 
Pxcdd 0,4178 0,4532 0,5409 0,4043 4,4486 3,7597 3,9828 5,7837 
Pf90 0,3135 0,0972 0,0932 0,1294 0,1177 0,1491 0,1392 0,1455 
Pn90 0,4168 0,462 0,2695 0,2499 1,839 1,7505 1,6385 1,6504 
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Table 6: Summary of mean correlation and root mean square values for temperature indices 
 

Index Correlation RMSE 
  Winter Spring Summer Autumn Winter Spring Summer Autumn 

Txav 0,8985 0,9363 0,8977 0,7629 0,7159 0,3791 0,5168 0,5339 
Txq90 0,7575 0,9019 0,8444 0,85 0,9462 0,8479 0,7325 1,1012 
Tnav 0,8743 0,9247 0,8793 0,7958 0,8132 0,3661 0,3339 0,3927 
Tnq10 0,8751 0,662 0,7026 0,8433 1,5354 1,1543 0,5063 1,2061 
Tnfd 0,7248 0,6951   0,8336 7,5983 4,5527   3,9995 
Txhw90 0,624 0,4714 0,6125 0,2525 2,1686 2,0238 1,3476 1,9877 
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