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1. INTRODUCTION

The present document describes the development and testing of a satistical procedure to
downscale seasona temperature statistics for Switzerland. This work has been undertaken in
the context of the STARDEX project and follows its specifications for the rigorous comparison
of downscaling procedures.

The downscaling procedure developed here uses seasonally averaged atmospheric fields as
inputs. | chose to use such a coarse temporal resolution, firstly, in order to investigate the basic
question in as far variations of the Swiss temperature field can be explained from average large-
scae conditions. Secondly, in order to keep the downscaling models as simple and
parsimonous as possible. And finaly, in order to limit the input data needed to construct
regional climate change scenarios from climate model runs.

2. DATA & METHODS

The statistical downscaling procedure was based on Canonica Correlation Analysis (CCA) in
the space spanned by the first few Empirica Orthogona Functions (EOFs) of the predictor
(independent variables) and predictand (dependent variables) fields (VON STORCH & ZWIERS,
1999). In the present study | used varying numbers of predictor fields, according to the method
proposed by GYALISTRAS et al. (1994).

The predictors were given by large-scale fields for sealevel pressure (slp) and 4 further
atmospheric variables (see Table 1) at the 1000, 850, 700, 500 and 300 hPa levels. All fields
had a 2.5° x 25° longitude/latitude resolution and were derived from dally NCEP/NCAR
reanalysis data sets which were downloaded from the website of the Climatic Research Unit,
Norwich. The fields were evaluated for 6 different sectors of varying size, which were dl
centered over the region of the European Alps (Table 2).

Aspredictands | considered 6 seasonal statistics from 21 Swiss locations (Table 3). The data
were taken from the FIC data set. The statistics were derived from dailly minimum amd
maximum temperatures (Table 4) using the STARDEX Diagnostic Extremes Indices Software.
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Table 1: Predictor variables used to fit the downscaling models.

Predictor Variable Identifier ~ Unit
Pressure at sea-level dp hPa
Geopotentia height gph m
Temperature temp K
Specific humidity shum o/kg
Relative humidity rhum %

Table 2: Used large-scale sectors for the predictor variables.

Sector Longitudes (°) Latitudes (°N) #GP
Identifier Min. Max. Min. Max.

D1 -50 70 15 75 1225
D2 -40 60 20 70 861
D3 -30 50 25 65 561
D4 -20 40 30 60 325
D5 -10 30 35 55 153
D6 0 20 40 50 45

#GP: number of gridpoints on the used 2.5° x 2.5° longitude-latitude grid.

Table 3: Swisss |ocations considered.

Name Longitude Latitude Elevation
°B) (°N) (m.as.l.)
Altdorf 8.63 46.86 451
Arosa 9.68 46.78 1840
Bad Ragaz 9.50 47.01 496
Basd-Binningen 7.58 47.55 316
Bern-Liebefdd 7.41 46.93 570
Chateau-d'Oex 7.15 46.48 985
Chur-Ems 9.53 46.86 555
Davos 9.85 46.81 1590
Geneve-Cointrin 6.13 46.25 420
Glarus 9.06 47.03 470
Locarno-Monti 8.78 46.16 379
Lugano 8.96 46.00 273
Luzern 8.30 47.03 456
Meiringen 8.16 46.73 595
Montana 7.48 46.31 1495
Montreux-Clarens 6.90 46.45 405
Neuchatel 6.95 47.00 487
Saentis 9.35 47.25 2490
Schaffhausen 8.61 47.68 437
St. Gallen 9.40 47.43 779
Zuerich 8.56 47.38 556

Table 4: Predictand variables used to fit the downscaling models.

Predictand Variable Identifier Unit
Seasonal mean of daily maximum temperature txav °C
90th percentile of daily maximum temperature in a given season tmax90p °C
Heat wave duration (Tmax > daily long-term mean for at least 6 consecutive days) 144HWDI #days
Seasonal mean of daily minimum temperature tnav °C
10th percentile of daily daily minimum temperature in a given season tminl0p °C
Number of frost days (Tmin < 0 °C) 125Fd # days




D. Gyalistras Downscaling of Temperature Extremes for Switzerland

| conducted 4 types of downscaling experiments which are summarized in Table5. In dl
experiments the predictors used to fit a particular downscaling model were given by one or
several large-scale fields for a given season and the predictands by one of the 6 temperature
statistics (Table 4) at all 21 Swiss locations (Table 3) for that same season.

For all experiments the numbers of EOFs that were retained to perform the CCA were given by
as many EOFs were needed to explain 80% and 95% of the tota variance of dl predictors and
predictands, respectively. Estimation of the predictands from independent data (in the context of
model validation) was done using al canonica modes which showed a squared canonical
correlation coefficient = 10%.

Table 5: Overview of downscaling experiments.

Experiment Predictors YearsUsedfor  Trend Validation Method /

Type Model Fitting Remova Validation Period

I One predictor field (one variable at asingle 1958-2000 yes C / 1958-2000

pressure level and for asingle large-scal e sector)

Il Selected combination of several predictor fields 1958-2000 yes C / 1958-2000

1 Sameasin |l 1958-1978 U no C/1958-1978 U
1994-2000 1994-2000

v Sameasinll 1958-1978 U no P/ 1979-1994
1994-2000

C: leave-one-out cross-validation; P: prediction using independent data.

Prior to fitting of the CCA models the data were prepared as follows: First, the annua cycles
were removed from dl predictor and predictant time series by subtracting from each seasonal
value the long-term mean of the respective season. The years used to determine the long-term
mean were given by the mode fitting period (Table 5). Second, the predictor and predictand
data sets were detrended by first computing for each season and timeseries the respective linear
43-year trend and then subtracting it from the timeseries (experiments of Type | and 11 only).
Finally, in order to account for the decreasing grid-cell size with increasing latitude, the
anomalies for the predictor variables were weighted with the square root of their latitude cosine.
The predictand time series where always scaled to unit variance, such that al 21 regiona time
series entered the subsequent analysis with the same weight.

Each fitted single model was tested either by means of leave-one-out cross-validation
(Experiment Types I-111), or by applying the modd to independent predictor data from the
period 1979-1994 (Experiment Type 1V). The origind and the dtatistically downscaled time
series were compared using 5 different statistics (Table 6). Some critica values for the used
correlation statistics are shown in Table 7.

The experiments of Type | were used to assess the prediction potential of individual
atmospheric fields. They involved the fitting and cross-validation of ((1 predictor variable x 1
level) + (4 predictor variables x 5 levels)) x 6 sectors x 6 predictand variables x 4 seasons =
3024 individua downscaling models.
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Table 6: Statistics used to evaluate the performance of the downscaling models.

Statistic Identifier Definition

Bias (Mean error) BIAS (to beinserted)
Root mean square error with biasremoved RMSEBR (to be inserted)
Squared simple correlation coefficient R2 (to be inserted)
Spearman rank correlation coefficient SRC (to beinserted)
Reduction of error RE (to beinserted)

Table 7: Critical values of correlation statistics used to validate the downscaling models.

Statistic  Sample Size Critical Vaues
a(2=0.1 «(2)=0.05 «(2)=0.01
R2 43 (Expers. | and 1) 6% % 14%
28 (Exper. 111) %o 13% 21%
15 (Exper. 1V) 17% 23% 3%
SRC 43 (Expers. 1 and I1) 0.25 0.30 0.39
28 (Exper. 111) 0.32 0.38 0.48
15 (Exper. 1V) 0.45 0.52 0.60

a,(2): significance level for two-tailed testing of the null hypothesis “ Statistic = 0”.

The experiments of Type Il explored the simultaneous use of several predictor fields. The large
number of fields precluded a systematic investigation of all possible combinations of predictors.
Therefore | attempted to determine optimal combinations of predictor fields based on the results
from the Type | experiments as follows:

First, for each predictor variable, level, predictand variable and season | determined the sector
(Table 2) which yielded the highest cross-validated R2. If this R2 was = 10% (cf. Table 6),
the given field was retained as a candidate predictor field, otherwise it was not considered any
further. Thisyielded N¢1 candidate fields. In a second step, these fields were sorted by their
R2 in descending order, and a series of N¢1 downscaling models were fitted, where the n-th
model used the n < N¢1 first candidate fields from the sorted list. In athird step, a second set
of N¢2 candidate fields was compiled by determining dl fields that gave an increase of the
cross-validated R2 when they had been added as predictors in the previous step. Finaly for
these new candidate fields again a series of n <= Ng downscaling models with increading
numbers of predictor fields were fitted, and the best model in terms of R2 was selected as the
“best performing” model.

The resulting “best” models, one per predictand variable and season, were then used to conduct
the Typelll and IV experiments. These experiments served to cross-check the cross-validation
results from experiment Types| and Il by using different years and methods for the fitting and
testing of the downscaling models (see Table 5).
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3. REsuLTs

The R2 results from the Type | experiments for the regiona variables related to the daly
maximum temperatures are summarized in Figure 1. R2-values above 0.3 (highlighted in
orange or red) were obtained for txav in al seasons and for tmax90p in winter and summer. In
all other cases the downscaling models performed rather poorly. The best predictor field varied
with predictand and season. Generaly, the lower-tropospheric temperature fields for the sectors
D4-D6 yielded the best resullts.

The cross-vaidation results for the regiona statisticsrelated to the daily minimum temperatures
are summarized in Figure 2. Here, R2-values above 0.3 were obtained in al seasons for tnav,
and for tmin10p and125Fd in winter and spring. The best predictor fields were again in most
cases the lower-tropospheric temperature fields for the sectors D4-D6, but the dynamica (dp
and gph) and moisture fields (rhum, shum) also showed in several cases reasonable skill.

Table 8 summarizes the results of the Type Il experiments. It can be seen that in 50% of the
cases the use of several predictor fields (#F > 1 in Table 8) lead to improved downscaling
models as opposed to the use of individual fields only. Generally, in cases where the
prediction skill was low for the individua fields, such as for the predictands 144 HWDI and
125Fd, no combination of fields could be found that improved the results.

The most frequently used predictor fields were the temperature a the 1000 hPa leve
(occurrence in 14 downscaling models), followed by the 850 and 700 hPa temperatures (7
occurrences each), the specific humidity at 1000 hPa (6 occurrences) and sea-level pressure (4
occurrences). The most frequently used sector was sector D6 (33 occurrences), followed by
sectors D5 (14 occurrences), D2 (6 occurrences) and D3 (4 occurrences).

The validation statistics from al 4 types of downscaling experiments are juxtaposed in Table 9.
The BIAS was found to be generdly small. The experiments of Type IV tended to give
somewhat higher values than the other experiments.

The mean RMSEBR from all experiments and seasons for txav was 0.8 °C, and for tnav it was
0.6 °C. Larger mean RMSEBR values were obtained for the percentile statistics tmax90p (1.3
°C). and tmin10p (1.4 °C). For 144HWDI and 125Fd the mean RMSEBR was 4.4 d and 4.7 d,
respectively.

The validation statistics R2 and SRC showed generally high values for txav and tnav: the mean
SRC from al experiments and seasons was in both cases 0.78. Less good results were
obtained for 125Fd (average SRC: 0.43), tminl0p (0.39), and tmax90p (0.37). The tests
suggested no skill for 144HWDI (-0.18).

According to the last statistic shown in Table 9, N(RE>0.5), the downscaling models were
able to reconstruct txav and thav on average over al experiments and seasons with RE > 0.5 &
12.4 and 13.3 of the 21 stations, respectively. Good results (here defined as RE > 0.5 a more
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than 10 stations) were also obtained for tmax90p, tminl0p and 125Fd in winter. Note, the
generally good results obtained for 125Fd in summer are not very representative, since in the
warm season for most locations and years 125Fd was zero.

Table9 aso gives an indication of the improvement obtained thanks to the use of several
predictor fields (cf. Table 8). The average increases in R2 that were obtained for the Type Il
multi-predcitor models as compared to the respective Type | models was 0.05 for tmax90p and
tnav, 0.04 for txav and tmin10p, and 0.03 for 125Fd.

As can be seen from Table 9, the best results were generally obtained for winter. Interestingly,
the largest individual increasesin R2 dueto the use of severa predictor fields (Typell vs. Type
| experiments) were also found for the cold season. The found gain in wintertime R2 was
+0.07 for tnav, +0.06 for tmax90p and tminl10p, and +0.05 for txav.
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txav

DJF D1 D2 D3 D4 D5 D6 MA M D1 D2 D3 D4 D5 D6 JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6

slp 42 .45 38 .42 .13 .20 sip slp A7 - - A1 - 27 sip - A1 -- - 15 A7
gpn.1000 |.43 .43 35 42 .13 .20f | gph.1000 gph1000 |.20 -- -- 1L -- 24| | gphi000 |.10 .1T -- -- .16 .18
gph.850 |.41 .42 45 .44 12 12 gph.850 gph.850 |.19 .15 - 13 - - gph.850 | -- - - - - 13
gph.700 |.43 . 50 .47 46 .18 gph.700 gph.700 |.24 .18 .13 -- .12 .24 gph.700 - - .11 25 18 .15
gph.500 |.43 . 28 gph.500 gph.500 |.19 .13 -~ - 18 38 gph.500 |- - .20 29 28 37
gph.300 |.45 37 gph.300 gph.300 |.13 -- gph.300 | -- .12 .23 29 33 41
Temp.1000 |.42 . Temp.1000 |. Temp.1000 .24 .27 . Temp.1000 |.21 .24 4W1
temp.850 |.34 . temp.850 temp.850 |.29 .32 . temp.850 |.22 .27 .31 .35 .49
temp.700 temp.700 temp.700 |.22 .13 . temp.700 |.23 .32 .37 .42 .46
temp.500 temp.500 temp.500 |.18 .12 temp.500 |.11 .17 .32 .40 .40 48
temp.300 . temp.300 13 11 . temp.300 | -- - . temp.300 | - -- - 17 21 23
Shum. 100 0 Shum.1000 |.12 .29 .36 .37 .36 .81| [shum.1000| -- -- -- - .14 12| |shum.1000 |.11 .16 .19 .31 .43 .39
shum.850 .48 shun.850 | -- .13 .16 .23 .25 .16 shum.850 | -- -- .10 .15 .24 .20 shun850 | -- -- -- 22 .32 .29
shum.700 .33 .45 shum.700 | -- -- .14 .15 24 -- shum.700 | -- -- - -- .10 -- shun.700 | -- -- -- .12 .17 .15
shum.500 |.23 .13 .13 .33 .33 .28 shum500 | -- - - - 12 -- shum.500 | -- - - - - - shums500 | -- - - - - 11
shum300 | -- -- -- .33 .35 35 shun.300 | -- -- - - - - shun300 | -- - - - - - shun300 | -- -- -- -- .13 --
Thum.1000 |.17 .22 .24 .32 .21 .14} [thum.1000 |.22 .22 .29 .11 _-- .10| |[thum.1000 |.13 .21 .24 .28 .35 23| [rhum.1000 | - -- -- - .11 11
rhum.850 |.31 .32 31 .22 .26 .17 rhum.850 |.26 .32 .29 .17 .27 .21 rhum.850 |.26 .37 .38 .39 .44 .46 rhum.850 |.10 -- -- .10 -- .10
rhum.700 |.30 .40 .39 .37 .38 .24 rhum.700 |.23 .31 .30 .32 .37 .19 rhum.700 |.16 .24 .31 .33 41 .36 rhum.700 - - - 12 - -
rhum.500 |.21 .20 .22 30 .25 -- rhum.500 |.17 .19 21 29 46 .29| | rhumsoo | -- -- - .16 .30 .22| | rhums00 |-- - - - - a3
rhum.300 se ee e ee em - rhum.300 |.20 .19 .15 .13 .16 -- rhum300 | -- - - - - - rhum.300 m. e e ee e -

tmax90p

DJF D1 D2 D3 D4 D5 D6 MAM D1 D2 D3 D4 D5 D6 JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6

slp .30 .34 24 28 -- .24 slp s slp - - -- .16 .16 .29 slp - - - - - 21
gph.1000 |31 .35 .24 .28 - .22f [ gph.1000 | - - -- - - - gph.1000 | -- - -- .15 .16 .25| | gph.1000 | - - -- - - 21
gph850 |.33 .37 36 .31 - .16 gph850 [ -- - - - - - gph.850 |.12 10 -- 22 - - gph.850 |- - - - o~ -
gph.700 .34 39 39 .34 33 .11 gph 700 R - - gph.700 .15 .16 -- - - 17 gph.700 N - -
gph500 |.87 .40 .40 .41 35 .18 g ph500 - e e e - 14 gph.500 |.14 .13 -- -- .11 .27 gph.500 - e e e - 12
gph300 |.38 .42 41 45 46 .25 gph300 |-- - - - 11 .16 gph.300 |- - - - 12 24 gph.300 |-~ - - o o
temp.1000|.12 .23 .26 .33 .39 .42 temp.2000} -- - -- - - .16 temp.1000 | -- -- .17 .27 .29 42 temp.1000| -- .11 -- - - -
temp.850 |.27 .33 .38 .41 .48 .48 temp.850 | -- - - -- - g temp.850 | .12 .15 .14 .21 .22 .39 temp.850 .10 -- - - - -
temp.700 |.29 .35 .40 .46 temp.700 | -- -- - -- .10 .20 temp.700 .10 -- -- -- .18 .31 temp.700 | -- - - - - 12
temp.500 | .34 .37 .41 44 - temp.500 | -- - - - - temp.500 | -- -- - -- - 28 temp.500 | -- - - -- - -
temp.300 | .28 .26 .26 .26 .31 .36 temp.300 | --  -- - -- - - temp.300 | -- .11 .11 -- - Y temp.300 | --  -- - -- - -
shum.1000 | .37 .46 .47 .50 .47 .44 shum.1000 | -- - - - - - shum.1000 | -- - -  -- - .- shum.1000 | -- - - - -~ -
shum.850 | .25 .29 .31 .33 .27 .25 shum8s50 | -- - - -- 11 -- shumg850 | -- -- - - .15 .11 shum850 | -- - - - - -
shum.700 |.17 .27 .17 .23 .16 .14 shum700 [ -- - -- -- .13 -- shum.700 | -- - - -- - - shum700 | -- - - - - -
shum.500 |.16 .12 .11 .15 .12 .14 shum.500 | -- - - - - - shum500 | -- -- .10 -- - - shum500 | -- - - -- .14 10
shum.300 | -- -- .10 .19 .13 .16 shum.300 | .11 .12 -- -- - - shum.300 | -- -- - -- - -- shum300 | -- - - - - -
rhum.1000 [ .12 .19 .26 .27 .25 -- rhum.1000 | -- - - -- - - rhum.1000 | -- -- .11 .15 .21 .14 rhum.1000 | -- - - -- - -
rhum.850 | .30 .33 .34 .22 27 -- rhum.850 | -- - - - - - rhum.850 | -- .11 .17 .22 .23 26 rhum.850 | -- - - - - -
rhum.700 | .26 .31 .28 .30 .28 -- rhum.700 - - - 11 17 - rhum.700 | -- .12 .15 .20 .25 .23 rhum.700 - - - - - -
rhum.500 |.16 .14 .15 .19 .24 .11 rhum.500 - - - - e - rhum500 | -- - - -- 13 -- rhum.500 - e e e - -
rhum.300 | -- - .- - - - rhum300 | -- - - - - rhum.300 | -- - - - - - rhum300 | -- - - - - -

144 HWDI

DJF D1 D2 D3 D4 D5 D6 MA M D1 D2 D3 D4 D5 D6 JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6

S| - - - - 20 .17 s| - - .- - .- 13 s| - e - - 11 slp - 11 .22 17 -- .15
gph.1000 | -- - -- -- .20 17Q [ gph.1000 | -- - -- - - 13| [ gph1000 |- -- -- - -- 11| [ gphi000 |-- .1I .22 .16 -- .14
gph.850 | -- - - - 11 - gph.850 | - - - o~ - gph.850 | -- - - - - 12 gph.850 | -- .12 .19 14 - 12
gph.700 - e e e s gph.700 B gph.700 R T gph.700 - .12 17 - - 11
gph.500 - e e e e gph.500 R gph.500 e e e e e gph.500 - 11 - - - -
gph.300 S - - - - - gph.300 - - - - === gph.300 S - - - - - gph.300 - - 11 - - -
temp.1000 | -- - - - -- - temp.1000 | -- - - - - - temp.1000 | -- - - - - - temp.1000| -- - - - - -
temp.850 | -- -- -- -- .10 .10 temp.850 | -- - - - - - temp.850 | -- - - - - - temp.850 | -- - - - - -
temp.700 | -- -~ - - 10 a2]]| temp700 | -- - - - - - temp.700 | - - - - - - temp.700 | - - - - - -
temp.500 | -- -- - - 11 .aof| temps00 | -- - - - - - temp.500 | -- - - - - - temp.500 | - - - - 11 -
temp.300 § -- -~ - - - - temp.300 | -- -~ - -- - .15 temp.300 § -- -~ o= - - - temp.300 | -- -- .11 .13 -- -
shum.1000 (.14 .11 -- -- -- - shum.1000| -- -- - -- - - shum.1000| -- -- - -- - - shum.1000 | --  -- - - - -
shum.850 |.17 .12 -- -- - -- shum.850 | -- - - - - - shum.850 | -- - - - - - shum.850 | -- - - - - -
shum.700 |.12 .10 -- -- - - shum.700 | -- - - - - 12 shum.700 | -- - - - - - shum.700 | -- - - - - -
shum500 | -- - - - - - shun500 | - -- - - - 13 shum500 | -- - - - - - shun500 | -- - - - - -
shum300 .12 -- - - - - shun300 | - -- - - 10 -- shun.300 }.12 .12 -- - - - shun300 | - - - - - -
rhum.1000 | - -- - - - .- rhum.1000 | --  -- - - - -- rhum.1000 | --  -- - - - - rhum.1000 | --  -- - - - --
rhum.850 |.11 .11 -- - - - rhum.850 | -- - - - - - rhum.850 | -- - - - - - rhum.850 | -- - - - - -
rhum.700 |.12 -- - - - - rhum.700 | -- - - - - - rhum.700 | -- - - - - - rhum.700 | -- - - - - -
rhum.500 | -- - - - - - rhum.500 | -- - -- - - - rhum.500 | -- - - - - - rhum.500 | --  -- .- o= - -
rhum.300 | -- - - - - - rhum300 | -- - - - -- 10 rhum.300 | -- - - - - - rhum300 | -- - - - - -

Figure 1. Cross-vaidation results for the prediction of seasona statistics of daily maximum
temperatures from individual atmospheric predictor fields. Shown are the average squared
correlations (R2) between the origina and cross-validated time series (n = 43) from 21 Swiss
locations (see Table 3). txav: seasonal mean of daily maximum temperatures; tmax90p: 90th
percentile of daily maximum temperatures, 144HWDI: heat wave duration index; slp: sealeve
pressure; gph.x: geopotential height of pressure level x; temp.x, shum.x, rhum.x: temperature,
specific humidity and relative humidity at pressure level x; D1-D6: sectors used to define the
extent of the predictor field (see Table 2); --: R2 < 0.1; whitefields: : 0.1 <= R2 < 0.15; yellow
fields: 0.15 < R2 < 0.3; orangefields: 0.3 <R2<0.5; redfields: 0.5<R2< 1.
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tnav
DJF D1 D2 D3 D4 D5 D6 MAM D1 D2 D3 D4 D5 D6 JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6
sl 22 26 .25 .29 - s 31 34 27 11 -- .35 s| 10 - - - - .19 s| - 13 15 .11 -- .15
+gp 1000 [.23 .26 .24 .29 - .20 | _h_P_gp 1000 |.33 35 .27 .11 - .39 _h_lgp 71000 |11 - - - - .21 gph.1000 .13 .14 .15 .11 - .14
gphsso |28 32 37 32 - - gph850 |34 36 28 -- - - gph850 |.16 14 -~ - - 21 gph.850 |- .12 16 .14 20 .19
gph.700 31 37 43 34 27 14 gph.700 34 35 31 .21 .18 .21 gph.700 20 15 - - 11 .14 gph.700 - .11 .19 .23 31 .19
gph.500 [.33 .40 .46 .38 .38 21 gph.500 gph500 |12 - - 11 19 24 gph500 |-~ .11 22 29 .35 .18
gph.300 §.35 43 45 39 gph.300 gph.300 - - - - [23NESl gph.300 - 16 .26 .34 40 .26
temp.1000 §.28 .32 .32 .42 temp.1000 temp.1000 |.22 .26 .33 .42 temp.1000 .16 .23 2 .39 .48
temp.850 §.28 .34 .40 .49 temp.850 temp.850 |.31 .35 .25 .33 .45 temp.850 |.20 .26 .34 .38
temp.700 §.32 .39 .43 .49 temp.700 |.34 .37 temp.700 | .37 .27 .23 .27 .36 .41 temp.700 |.18 .26 .33 .41 .46 .46
temp.500 §.33 .38 .40 temp.500 temp.500 .18 .13 .11 .13 .23 .31 temp.500 |.12 .20 .28 .36 .42 .40
temp.300 §.20 .20 temp.300 . temp.300 - - - - - -- temp.300 - - 12 .17 .21 .23
Shum.1000 |-40 42 _sm%. 38 . Shum.1000 | - -~ 15 23 .25 .23 | [shum.1000 |13 .18 .27 .43 [odnnd|
shum.850 §.28 .39 shum.850 a 5 4 4 shum.850 - - .14 22 .38 .30 shum.850 - 11 20 .39 45 .49
shum.700 § -- .20 shum.700 | -- - .21 .25 .32 .24 shum700 | - - - - 17 - shum.700 | -- - - 29 36 .37
shum.500 - - - 2127 e shum.500 - - - .15 21 - shum.500 - - - 11 - .14 shum.500 - - - - e
shum.300 -- - -- 238523 WSSl shum.300 - - -- - [238 .13 shum.300 - - - - - N6 shum.300 - - - - .13 R20
thum.1000 | — - .14 .18 .15 - thum.1000 | - .13 .15 - .11 - Thum.1000 | — .14 .17 .24 .27 - | frhum.1000 | - - - - - -
rhum.g50 §.22 26 14 -- 15 11| | rhumsso |.10 15 13 - - 13| |rhumsso |26 32 33 32 37 .18 |f rhumsso |11 - - - 10 -
rhum.700 §.16 .24 .21 .23 .26 .19 rhum.700 .14 20 20 .20 .14 .20 rhum.700 .22 .30 31 .32 .37 .16 rhum.700 - .13 .14 15 12 -
rhum.500 .15 .15 .17 .17 .13 -- rhum.500 12 14 14 20 - - rhum.500 - - - 12 14 - rhum.500 - - - - - 10
rhum.300 S e e e === rhum.300 - 11 11 - - - rhum.300 - - e === - rhum.300 - e === =
tmin10p
DJF D1 D2 D3 D4 D5 D6 MAM D1 D2 D3 D4 D5 D6 JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6
slp 123p23anl8a22n - - slp 24 24 15 - - 15 slp —- e = e e - slp A1 17 17 .13 .10 .18
gpn.1000 |22 .23 .18 22 - - gph.1000 |.24 .24 .15 - - - gpn.1000 | - - - - - - gph.1000 |.16 .16 .17 .13 .10 .18
gph.850 .23 256 25 26 - - gph.850 22 22 16 - - - gph.850 - - - - - 12 gph.850 A1 14 15 12 - 18
gph.700 J.25 .27 .30 .31 .23 .16 gph.700 .19 .18 15 .11 .12 11 gph.700 - - - - - 120 gph.700 - 12 14 13 - 17
gph.500 .29 32 35 .34 .28 .23 gph.500 6 .15 .14 .17 17 .22 gph.500 - - - - - 10 gph.500 - .10 12 12 - -
gph.300 |32 33 34 29 28 .26 gph.300 |.12 .12 .13 .14 .16 .19 gph300 |- - -~ - - - gph300 |- 12 15 11 - -
temp.1000 §.29 .33 .34 .37 .36 .39 temp.1000 |.13 .19 .30 .33 .35 .40 temp.1000 |.19 .24 .20 .18 .24 .22 temp.1000 | -- - - .11 .15 -
temp.850 §.34 .37 .41 43 .47 43 temp.850 |.11 .17 .22 .27 .29 .31 temp.850 |.21 .20 .12 .12 .17 .15 temp.850 - - - - 11 -
temp.700 §.36 .39 42 42 42 .38 temp.700 |.15 .16 .14 .22 .24 24 temp.700 |.13 -- - - .12 .10 temp.700 - - 11 12 - -
temp.500 §.32 .35 .33 .30 .33 .31 temp.500 |.11 .13 .15 .17 .16 .17 temp.500 R - temp.500 - - 14 13 - -
temp.300 §.14 11 - - - - temp.300 - - R temp.300 - .14 14 - - 10 temp.300 - - - - [N 13
shum.1000 §.27 31 .36 .40 .41 .30 shum.1000 | -- - .17 21 .22 .22 shum.1000 | -- - - - - 12 shum.1000 | -- - - - - -
shum.850 §.25 .29 .38 .42 .39 .26 shum.850 - - - .12 13 .18 shum.850 - e e e e - shum.850 R
shum.700 § -- .14 .22 .29 .30 .17 shum.700 | - - - - - - shum.700 | - - - - - - shum.700 | - - -~ - - -
shum.500 f -- - - .15 .16 .11 shum500 | - - - - - - shums00 | - - - .16 .23 - shums00 |- - - - - -
shum300 - - - - - 14 shum300 |- - - - - - shum300 - - - - - - shum300 | -- - - - - -
rhum.1000 §.11 .18 .13 .15 .11 -- rhum.1000 | -- - - - - - rhum.1000 | - 12 - - - - rhum.1000 | -- - - - - -
rhum.850 §.13 21 .13 - - - rhum.850 - - - - - 14 rhum.gs0 |.13 .18 .18 - - - rhum.850 - - - = - -
rhum.700 §.13 .20 .18 .14 .15 - rhum.700 - - - - - E5 rhum.700 - 10 11 - - - rhum.700 - - - - -
rhum.500 .13 .16 .17 .16 .13 -- rhum.500 - - - - - - rhum.500 - - = - - - rhum.500 - - = = - -
rhum.300 - - - - - - rhum.300 - - - - - - rhum.300 - - - - - - rhum.300 - - - e - -
125Fd
DJF D1 D2 D3 D4 D5 D6 MAM JJA D1 D2 D3 D4 D5 D6 SON D1 D2 D3 D4 D5 D6
SIE .27 /.32 34 31 .23 .18 slp slp - - - - - 13 slp 19 21 21 .18 - -
gph.1000 |.28 32 34 31 .23 .18 gph.1000 gph.1000 - - - - - 15 gph.1000 |19 20 21 .17 - .11
gph.850 29 .33 34 32 .19 .14 gph.850 gph.850 - - - - 11 - gph.850 17 19 20 .15 .18 .20
gph.700 .29 [ESSEESORENSAN .24 | .13 gph.700 gph.700 14 - - - 14 13 gph.700 .15 .16 .18 .17 .16 .25
gph500 |27 32 34 32 24 11 gph.500 |. gph500 |- - -~ 11 13 22 gph500 |12 15 16 17 15 -
h.300 .28 .32 .31 .30 .31 .13 h.300 . ph.300 - - == - == 2 Jph.300 .13 .15 .17 .18 .15 .10
JLermp. IT 22 21 28 37 47| JP—lTRRermp. temp.1000 | - - - - .12 .12 | ftemp.1000 | - - - .13 .18 .15
temp.850 §.14 .17 .21 25 .33 .30 temp.850 temp.850 - = = = - 15 temp.850 - - - - 1517
temp.700 §.19 .24 26 .30 .35 .30 temp.700 temp.700 I ¢ temp.700 - .14 14 14 14 12
temp.500 .25 .27 .28 .26 .31 .30 temp.500 temp.500 | - - - - - 19 temp.500 |.11 .15 .16 .18 .13 .13
temp.300 §.14 .18 .17 .12 .14 .19 temp.300 | - - - - - - temp.300 | - - - - - 12 temp.300 | - - - - - -
Shum.1000 |30 20 33 .37 .45 .49 | [Shum.1000 | -- .13 .20 24 26 .28 | [shum1000 | - - - - 13 .8 | fshum.1000 | - - - 13 .15 .14
shum.850 §.25 .27 .29 .33 .41 44 shum.850 - - .13 .18 .22 .20 shum.850 - - - .21 15 .15 shum850 .10 -- - - .15 .13
shum.700 .15 .21 .24 22 .33 .30 shum.700 - - - 11 .13 - shum.700 - - - - 17 22 shum.700 - - - - 13 -
shum.500 §.11 .17 .16 .23 .31 .32 shum.500 | - - - - - - shums00 | - - - .11 .18 .21 shums00 |- - - - - -
shum.300 § - -- .15 .24 29 .32 shum.300 | - - - - - - shum300 |- - - - - - shum300 |- - - - - -
rhum.1000 - - - 112 - rhum.1000 | - - - e = e rhum.1000 | - - - - .10 .14 rhum.1000 - - - - 10 12
rhum.850 .12 .15 .13 .11 .15 -- rhum.850 - - - - - rhum.850 - - - - 11 1 rhum.850 - - - - 11 m
rhum.700 §.16 .20 .23 .20 .20 .10 rhum.700 - - - - - N20 rhum.700 - = = - 11 - rhum.700 - = - - 10 -
rhum500 §.16 .16 .17 .17 .10 -- rhum.500 L - A1 - - rhum.500 - = = - - 13 rhum.500 - - 11 11 - -
rhum.300 - .10 13 - - .11 rhum.300 - - - e e- e rhum.300 - e e= e - - rhum.300 - - .10 .12 - -

Figure 2: Cross-vdidation results for the prediction of seasona statistics of daily minimum
temperatures from individual atmospheric predictor fields. Shown are the average squared
correlations (R2) between the origina and cross-validated time series (n = 43) from 21 Swiss
locations (see Table 3). tnav: seasona mean of daily minimum temperatures; tminlOp: 10th
percentile of daily minimum temperatures; 125Fd: number of frost days;, dSlp: sealevel pressure;
gph.x: geopotential height of pressure level x; temp.x, shum.x, rhum.x: temperature, specific
humidity and relative humidity at pressure level x; D1-D6: sectors used to define the extent of the
predictor field (see Table 2); --: R2< 0.1; whitefields:: 0.1 < R2 < 0.15; yellow fields: 0.15
= R2<0.3; orangefields: 0.3 < R2<0.5; redfields: 0.5 < R2< 1.
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Table 8: Overview of the found best combinations of predictor fields.

#F Predictor slp gph temp shum rhum

Leve 700 500 300 1000 850 700 500 300 1000 850 700 500 300 1000 850 700 500
Predictand Season

txav 4 DJF D6 D5 D5 D4
4 MAM D6 D5 D2 D5
3 JA D6 D6 D5
3 SON D6 D6 D6
tmax90p 6 DJF D2 D4 D6 D5 D6 D4
1 MAM D6
4 JIA D6 D6 D6 D5
1 SON D6
144HWDI 1 DJF D5
1 MAM D6
1 JA D2
1 SON D3
tnav 6 DJF D6 D6 D6 D5 D5 D6
1 MAM D6
3 JA D6 D6 D5
4 SON D6 D6 D5 D5
tmin10p 4 DJF D3 D6 D5 D3
1 MAM D6
6 JJA D2 D1 D1 D6 D2 D2
1 SON D6
125Fd 3 DJF D3 D6 D6
1 MAM D6
1 JA D6
1 SON D6

#F: number of predictor fieldsin the found best performing downscaling model; slp: sealevel pressure; temp:
temperature; shum: specific humidity; rhum: relative humidity; txav: seasonal mean of daily maximum
temperatures; tmax90p: 90th percentile of daily maximum temperatures; 144HWDI: heat wave duration index;
tnav: seasonal mean of daily minimum temperatures; tminl10p: 10th percentile of daily minimum temperatures;
125Fd: number of frost days, DJF. December—ebruary; MAM: March-May; JJA: June-August; SON:
September—November; D1-D6: sectors used to define the extent of the predictor field (see Table 2). Bold face
denotes the best performing individual predictor field for the given predictant and season (cf. Figs. 1 and 2).
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Table 9: Summary of results from the validation of the downscaling models. The shown statistics refer to 21
Swiss locations (Table 3) and 4 different types of downscaling experiments (Table 5).

Predictand Statistic M( BIAS) M( RMSEBR) M(R2) M( SRC) N( RE>0.5)
Exper. | mnmm wv | T 11 I A VAR o m v mnm v v
Season
txav DJF -02 -06 -.08 .08 0.8 11 12 11 .69 .74 .74 .85 .81 .84 .81 .90 17 20 20 20
MAM .00 .00 .00 46 0.7 07 0.8 06 .64 .69 .64 .80 .77 .80 .78 .85 14 14 12 11
JJA -01 -01 -01 .01 06 06 0.8 05 .66 .67 .54 .76 .76 .77 .68 .85 13 14 7 2
SON .01 00 .01 .32 07 06 07 05 .57 .60 .58 .66 .73 .75 .71 .75 9 11 13 2
tmax90p DJF -03 -05 -04 3 12 12 14 13 .53 .59 .60 .64 .70 .75 .74 .69 0 15 15 13
MAM .02 02 01 30 14 14 14 14 .20 .20 .08 .39 34 34 21 . 56 0 O O O
JIA -01 -02 -02 26 09 09 11 08 .42 .45 .32 .60 .61 .65 .51 .74 0 1 O 2
SON .01 01 .01 -31 17 17 18 16 .21 21 27 07 -28 -28-49 09 0 O O O
144HWDI DJF .04 04 .05 -62 49 49 42 6.1 .20 .20 .04 03 -32 -32 -27-04 0 O O 1
MAM .00 .00 .01 187 54 54 59 46 .15 .15 .18 .05 -19 -19 -17 05 O O O O
JIA -07 -07 -09 98 44 44 43 30 .12 .12 19 09 -22 -22 -31-06 0 O O 4
SON .00 .00 .00 -.71 33 33 32 34 22 22 10 .05 -27 -27 -05-08 0 O 1 3
tnav DJF -04 -03 -04 .04 08 10 09 09 .62 .69 .72 .75 .76 .83 .78 .90 13 19 18 19
MAM .01 .01 .00 .04 06 06 0.7 05 .67 .67 .59 .74 .82 .82 .77 .85 16 16 8 15
JIA .00 .00 -01 .11 04 04 06 04 .58 .63 .61 .64 .74 .79 .73 .79 7 9 13 9
SON .00 .00 -03 -.04 06 0.6 08 05 .57 .61 .54 .61 .72 .75 .70 .69 11 15 14 10
tminlOp DJF .00 -02 .04 30 16 15 17 12 .47 .52 .48 .68 .61 .66 .58 .83 3 6 1 12
MAM 01 .01 .01 -46 14 14 14 15 .40 .40 .46 .40 .63 .63 .68 .60 0 0 2 1
JJA .01 -01 .02 04 09 09 10 09 .24 .27 10 .17 48 .49 29 39 0 O o0 oO
SON .00 00 .00 .32 16 16 16 1.7 .18 .18 .17 .11 -24 -24 -34 13 0 O O O
125Fd DJF .23 .09 .70 235 65 6.0 85 6.8 .49 .52 .37 .45 .66 .70 .54 .66 8 11 7 3
MAM -03 -03 -06 85 55 55 57 57 .38 .38 .42 .42 .61 .61 .61 .61 O 0 1 1
JJA .00 .00 .00 -22 06 0.6 06 0.6 .27 .27 .20 .07 .64 .64 .71 .74 15 15 15 16
SON -02 -02 -02 -15 57 57 61 51 25 25 22 07 -29 -29 -31 08 0 O O O

M(): mean value from all 21 locations, BIAS: mean error; RMSEBR: root mean square error with bias
removed; R2: squared simple correlation coefficient; SRC: Spearman rank correlation coefficient; N(RE>0.5):
number of climate stations with reduction of error > 0.5; |-1V: Types of downscaling experiments; txav:
seasona mean of daily maximum temperatures, tmax90p: 90th percentile of daily maximum temperatures;
144HWDI: heat wave duration index; tnav: seasonal mean of daily minimum temperatures; tminlOp: 10th
percentile of daily minimum temperatures, 125Fd: number of frost days, DJF:. December—February; MAM:
March-May; JJA: June-August; SON: September—November. Bold face denotes for R2 and SRC values
significantly different from zero at the 99% confidence level, for N(RE>0.5) it is used to highlight numbers of
stations > 10.
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