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Introduction

The purpose of deliverable D12 is to compare different downscaling methods based on the NCEP
reanalysis. This partner report describes the results for precipitation of the local rescaling method
for ten stations in the Alpine region from the FIC station data set.

Method

As our main predictor we use GCM simulated precipitation, and as a secondary predictor the
1000 hPa geopotential height field. Four statistical downscaling methods are investiaged: (i) lo-
cal rescaling of GCM simulated precipitation (LOC), (ii) local rescaling with bias correction for
precipitation frequency and intensity (LOCI), (iii) local rescaling with a dynamical correction
(DYN), and (iv) local rescaling with a dynamical correction and bias correction for precipitation
frequency and intensity (DYNI) (see also Widmann and Bretherton, 2003). The intended appli-
cation for these four methods is to downscale from the GCM scale to the regional scale in order
to produce mesoscale gridded precipitation fields. However, for the purpose of this intercompar-
ison, the methods are applied directly to station data. The first two methods use GCM simulated
precipitation as their only predictor. The third and fourth method require in addition to the GCM
simulated precipitation a proxy of the large-scale flow. Here the first three principal components
of the geopotential height field at 1000 hPa is used. While the first two methods are calibrated on
a monthly basis, the latter two methods are calibrated seasonally. The two latter methods can be
regarded as a flow-dependent bias correction of GCM precipitation.

Local Rescaling

The downscaled precipitation P̂ for a given station can be written as

P̂ (t) = s(τ)P m(t)

where P m is the (GCM) model precipitation, τ represents the month of the year and

s(τ) =
µ(P ≥ P0, τ)

µm(P m ≥ P m
0

, τ)

is a scaling factor. The scaling factor for LOC (LOCI) is equal to the fraction of the unconditional
(conditional) mean of observed versus model precipitation. For LOCI, the wet-day cutoff for the
observations is P0 = 1 mm. The wet-day cutoff for the model precipitation P m

0
is determined

such that the model precipitation frequency equals the observed precipitation frequency.

Dynamical Rescaling

The downscaled precipitation P̂ for a given station can be written as

P̂ (t) = s(τ, Zm

k )P m(t)

where the scaling factor s now depends on the large-scale circulation, and τ represents the season
of the year. For details of the basic method see Widmann and Bretherton (2003)
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Data

This evaluation is based on ten stations in the Alpine region from the FIC station data set, and
NCEP data interpolated onto HadAM grid points (see Fig. 1). For each station the grid point with
the highest correlation with the corresponding daily station data is selected (see Table. 1).
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Figure 1: The 18 HadAM grid points and the 10 Alpine stations from the FIC station data set (see
Table 1).

Table 1: The ten stations in the Alpine region from the FIC station data set. The column GP
indicates the HADAM grid point used for downscaling.

Station lon lat height GP
Innsbruck 11.38 47.25 578 172
Montelimar 4.73 44.58 74 146
Nice 7.20 43.65 10 123
München 11.50 48.16 515 172
Bologna 11.25 44.48 60 126
Lazzaro Albernoi 9.71 45.03 50 149
Bobbio 9.36 44.76 270 125
Arosa 9.68 46.78 1840 171
Zürich 8.56 47.38 556 170
Locarno-Monti 8.78 46.16 379 147

The downscaling methods are calibrated using the data from 1958–1978 and 1994–2000 and
validated for the ERA-15 period 1979–1993. Seasonal values of all STARDEX indices were
calculated for every year for the downscaled data. The present analysis is, however, restricted to
the indices listed in Table 2.

Results

Mean annual cycle

The mean annual cycle for the indices AV, FRE, INT, and Q90 for the NCEP and downscaled data
is shown in Fig. 2-5. The deviations from the observed annual cycle represent the bias of the data.
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Table 2: STARDEX Diagnostic Extreme Indices considered in the present analysis.
name description
AV mean precipitation
FRE precipitation frequency
INT precipitation intensity
Q90 90th percentile of rainday amounts
X3D maximum 3-day total precipitation
XCWD max no consecutive wet days
PDD mean dry-day persistence
XCDD max no consecutive dry days

Thus, with respect to the bias, the two standard methods (LOC and DYN) and also the intensity
downscaling methods (LOCI and DYNI) perform very similarly. For AV all four methods have
a similarly high skill. For the other three indices (FRE, INT, Q90), the intensity scaling methods
perform significantly better than the standard methods. Larger differences between DYNI and
LOCI are only found for Q90. For some stations (e.g. Locarno-Monti, Zürich, and Arosa) DYNI
is closer to the observations than LOCI.

Interannual variations

The skill in reproducing the correct interannual variability is illustrated for four typical stations in
the Taylor diagrams shown in Fig. 6-9. Note the large differences in the skill from one index to
another, and from one season to another, but also from one station to another. Generally higher
skills are obtained for AV, FRE, and PDD, while generally lower skills are found for INT and
Q90. Of the four stations, Locarno-Monti shows the overall best performance, followed by Zürich
and Nice, and finally Bologna. Notice that the main difference between the methods is not in the
correlation skill, but in the magnitude of the interannual variations (e.g. standard devation ratio).
For Locarno-Monti, for instance, the best results are obtained for DYNI. This method is closest to
the correct interannual variability (variance) for most seasons and most indices.

Fig. 10 shows a a direct comparison of the dynamical intensity scaling method (DNYI) with
the raw NCEP data. In winter the downscaled data shows higher correlations for all indices and
most stations. For the other three seasons (not shown) the picture is less uniform. For some
indices and stations the correlation skill of the downscaled data is higher, while for other indices
and stations it is lower. As was already found with the Taylor diagrams, the main improvement
of the downscaled data is its magnitude of interannual variability (Fig. 11-14. As can be seen, for
most stations and most indices the standard deviation ratio is closer to one for the downscaled data
than for the raw NCEP data. Some example time series for four stations for Q90 and X3D are
shown in Fig. 15 and 16.

The mean skill obtained for the ten Alpine stations for the raw NCEP and downscaled data is
summarized in Table 3.

Conclusion

It has been found, that the downscaling skill varies considerably from station to station, from
season to season, and from index to index. These variation are often larger than the differences
between the different downscaling methods. Overall the intensity scaling methods (LOCI and
DYNI) achieve higher skills than the standard methods (LOC and DYN). For most stations and
indices, the added value of performing a flow-dependent scaling (DYN and DYNI) is relatively
small.
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Table 3: Mean skill for the ten Alpine stations for the downscaled and ncep raw data.
model Correlation RMSE

wi sp su au wi sp su au
AV

(NCEP) 0.57 0.47 0.37 0.71 1.00 1.26 1.60 1.82
(DYNI) 0.63 0.52 0.47 0.68 0.60 0.84 0.96 1.03
(DYN) 0.66 0.56 0.51 0.71 0.56 0.75 0.86 0.98
(LOCI) 0.57 0.47 0.31 0.67 0.70 1.03 1.24 1.16
(LOC) 0.57 0.49 0.35 0.69 0.66 0.92 1.07 1.10

FRE
(NCEP) 0.75 0.55 0.48 0.74 0.12 0.18 0.26 0.11
(DYNI) 0.79 0.53 0.39 0.71 0.05 0.07 0.08 0.06
(DYN) 0.79 0.58 0.52 0.75 0.11 0.19 0.23 0.15
(LOCI) 0.79 0.58 0.38 0.70 0.06 0.08 0.08 0.07
(LOC) 0.80 0.56 0.49 0.75 0.12 0.19 0.24 0.15

INT
(NCEP) 0.27 0.16 0.11 0.47 5.28 5.04 6.01 7.74
(DYNI) 0.44 0.21 0.12 0.45 2.70 2.03 3.37 3.35
(DYN) 0.46 0.18 0.24 0.49 4.03 4.12 5.71 5.38
(LOCI) 0.28 0.22 0.04 0.43 3.00 2.19 3.12 3.43
(LOC) 0.25 0.18 0.11 0.45 4.47 4.80 6.39 6.00

Q90
(NCEP) 0.22 0.23 0.16 0.29 15.77 14.11 18.85 22.25
(DYNI) 0.38 0.19 0.25 0.35 10.28 7.96 12.19 12.24
(DYN) 0.35 0.20 0.25 0.38 12.74 11.81 17.45 16.06
(LOCI) 0.24 0.22 0.16 0.26 10.91 8.90 14.61 13.02
(LOC) 0.19 0.20 0.17 0.31 13.85 13.63 19.52 17.94

X3D
(NCEP) 0.33 0.29 0.32 0.41 38.38 38.75 48.42 63.84
(DYNI) 0.42 0.31 0.33 0.41 25.89 25.74 35.12 42.94
(DYN) 0.44 0.33 0.37 0.41 27.38 29.04 40.62 45.01
(LOCI) 0.31 0.29 0.28 0.35 29.61 30.98 43.76 46.74
(LOC) 0.31 0.25 0.27 0.30 32.22 36.41 49.77 51.73

PDD
(NCEP) 0.62 0.40 0.28 0.69 0.08 0.10 0.13 0.07
(DYNI) 0.66 0.42 0.41 0.70 0.05 0.08 0.07 0.05
(DYN) 0.69 0.42 0.39 0.71 0.07 0.09 0.11 0.08
(LOCI) 0.65 0.44 0.42 0.68 0.05 0.08 0.08 0.06
(LOC) 0.67 0.37 0.35 0.70 0.08 0.10 0.12 0.08

XCWD
(NCEP) 0.27 0.21 0.41 0.45 3.41 7.43 10.00 3.01
(DYNI) 0.39 0.15 0.18 0.39 2.14 3.44 3.13 1.92
(DYN) 0.35 0.10 0.42 0.40 3.61 7.81 9.02 4.01
(LOCI) 0.33 0.26 0.20 0.39 2.30 2.48 2.74 1.84
(LOC) 0.34 0.16 0.41 0.37 3.78 7.13 9.00 3.89

XCDD
(NCEP) 0.67 0.35 0.21 0.61 11.13 6.55 9.63 8.08
(DYNI) 0.72 0.36 0.14 0.65 9.34 6.66 10.57 7.39
(DYN) 0.66 0.36 0.18 0.62 10.39 6.67 9.02 7.96
(LOCI) 0.72 0.25 0.13 0.60 9.48 7.20 11.96 8.31
(LOC) 0.67 0.35 0.17 0.63 10.91 6.63 9.27 7.89
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Figure 2: Mean annual cycle of AV for the ten Alpine stations deduced from observations (solid
line), NCEP, and downscaled data.
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Figure 3: As Fig. 2, but for FRE.
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Figure 4: As Fig. 2, but for INT.
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Figure 5: As Fig. 2, but for Q90.
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Figure 6: Taylor diagrams of interannual variability for Nice.
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Figure 7: Taylor diagrams of interannual variability for Bologna.
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Figure 8: Taylor diagrams of interannual variability for Zürich.
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Figure 9: Taylor diagrams of interannual variability for Locarno-Monti.
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Figure 10: Correlation skill of dynamical intensity rescaling (DNYI) versus raw NCEP reanalysis
for the winter season.

Figure 11: Standard deviation ratio skill of dynamical local rescaling versus raw NCEP reanalysis
for the winter season.
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Figure 12: As in Fig. 11, but for spring.

Figure 13: As in Fig. 11, but for summer.
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Figure 14: As in Fig. 11, but for autumn.
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Figure 15: Time series of Q90 for four typical stations in winter.

15



STARDEX

NIC BOL

ZUR LOC

Figure 16: Time series of X3D for four typical stations in winter.
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