STAtistical and Regional dynamical Downscaling of EXtremes for European regions: some results from the STARDEX project

Clare Goodess*, Malcolm Haylock*, Christoph Frei, Phil Jones*, Torben Schmith & Andras Bardossy *Climatic Research Unit, UEA, Norwich, UK

A project within the EC 5th Framework Programme 1 February 2002 to 31 July 2005

<u>http://www.cru.uea.ac.uk/projects/stardex/</u> <u>http://www.cru.uea.ac.uk/projects/mps/</u>

The STARDEX consortium

Organisation name	Key persons
University of East Anglia, UK	Clare Goodess Malcolm Haylock Gavin Cawley Phil Jones
King's College London, UK	Rob Wilby Colin Harpham
Fundación para la Investigación del Clima, Spain	Jaime Ribalaygua Rafael Borén Manuel Blanco
University of Bern, Switzerland	Evi Schuepbach
Centre National de la Recherche Scientifique, France	Guy Plaut Eric Simonnet
Servizio Meteorologico Regional, ARPA-Emilia Romagna, Italy	Carlo Cacciamani Valentina Pavan Rodica Tomozeiu
Atmospheric Dynamics Group, University of Bologna, Italy	Ennio Tosi
Danish Meteorological Institute, Denmark	Torben Schmith
Eidgenössische Technische Hochschule, Switzerland	Christoph Frei Juerg Schmidli
Fachhochschule Stuttgart – Hochschule für Technik, Germany	Hans Caspary
Institut für Wasserbau, Germany	András Bárdossy Yeshewatesfa Hundecha
University of Thessaloniki, Greece	Panagiotis Maheras Christina Anagnostopoulou

STARDEX general objectives

- To rigorously & systematically inter-compare & evaluate statistical and dynamical downscaling methods for the reconstruction of observed extremes & the construction of scenarios of extremes for selected European regions & Europe as a whole
- To identify the more robust downscaling techniques & to apply them to provide reliable & plausible future scenarios of temperature & precipitation-based extremes

Consistent approach:

e.g., indices of extremes

STARDEX Diagnostic extremes indices software

- Fortran subroutine:
 - 19 temperature indices
 - 35 precipitation indices
 - least squares linear regression to fit linear trends
 & Kendall-Tau significance test
- Program that uses subroutine to process standard format station data
- User information document

http://www.cru.uea.ac.uk/projects/stardex/

STARDEX core indices

- 90th percentile of rainday amounts (mm/day)
- greatest 5-day total rainfall
- simple daily intensity (rain per rainday)
- max no. consecutive dry days
- % of total rainfall from events > long-term P90
- no. events > long-term 90th percentile of raindays
- Tmax 90th percentile
- Tmin 10th percentile
- number of frost days Tmin < 0 degC</p>
- heat wave duration

1958-2000 trend in frost days

Days per year Blue is increasing

1958-2000 trend in summer rain events > long-term 90th percentile

Scale is days/year Blue is increasing

Investigation of causes, focusing on potential predictor variables

e.g., SLP, 500 hPa GP, RH, SST, NAO/blocking/ cyclone indices, regional circulation indices

Winter R90N relationships with MSLP, Malcolm Haylock

R90N Canonical Pattern 1. Variance = 11.3%.

MSLP Canonical Pattern 1. Variance = 44.4%.

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

Analysis of GCM/RCM output & their ability to simulate extremes and predictor variables (and their relationships)

Mean

HadRM3

HIRHAM

90% quantile

Christoph Frei, ETH

Inter-comparison of improved downscaling methods with emphasis on extremes

Radial Basis Function: Colin Harpham/Rob Wilby

NW England, 90th percentile for DJF Validation period: 1979-1993 Red: observations Blue: predictors selected using stepwise regression, r=0.34 Black: predictors selected using compositing, r=0.24

At the end of the project (July 2005) we will have:

- Recommendations on the most robust downscaling methods for scenarios of extremes
- Downscaled scenarios of extremes for the end of the 21st century
- Summary of changes in extremes and comparison with past changes
- Assessment of uncertainties associated with the scenarios

http://www.cru.uea.ac.uk/projects/stardex/ http://www.cru.uea.ac.uk/projects/mps/

