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Abstract: Extreme weather and climate events (including extreme temperatures) severely influence 
ecosystems and human society. Impacts of climate change are likely to result rather from changes in 
climate variability and extremes than from an increase in the mean temperature, which underlines the 
need for validation of extreme events in present climate simulations. This study compares 20- and 50-
year return values of annual maximum and minimum temperatures and heat/cold waves (periods of 
high/low temperature) in (i) observation, (ii) GCM simulated control climates, (iii) statistical 
downscaling from observation, and (iv) statistical downscaling from GCMs, in central Europe. 
The comparison of the 20- and 50-year return values does not appear to be sensitive to what statistical 
method of the estimation of parameters of extreme value distribution is used. The skill of GCMs in 
reproducing extreme high and low temperatures is limited; the statistical downscaling from GCMs 
tends to improve the results although it generally yields extremes that are too moderate. On the other 
hand, heat and cold waves are better reproduced by GCMs than by statistical downscaling. Different 
results hold also when various methods of treating the missing variance in downscaling are compared: 
while the 20- and 50-yr return values are better captured by downscaling with noise additions, heat 
and cold waves are much better reproduced if variance inflation is performed. 
 

 

1. Introduction 

Extreme weather and climate phenomena are a subject of investigation because of both their 
current impacts on ecosystems and society and the threat of their possible increases in 
frequency, duration and severity in the climate perturbed by enhanced concentrations of 
greenhouse gases in the atmosphere. Impacts of climate change are expected to result rather 
from changes in climate variability and extreme event occurrence than from an increase in 
mean temperature (Watson et al. 1996, Parmesan et al. 2000) and even relatively small shifts 
in the means and variances of climate variables can induce considerable changes in the 
severity of extreme events (Katz and Brown 1992, Colombo et al. 1999). 

General circulation models (GCMs) are currently the most frequently used tool in climate 
modelling. They are able to reproduce many features of the observed climate system not only 
in terms of means but also naturally occurring variability; however, they were not designed 
for simulating local climates and their reliability decreases with increasing spatial and 
temporal resolution required. There are several ways of obtaining site-specific daily time 
series, which are to a different extent based on GCM outputs, one of them being the statistical 
downscaling. Statistical downscaling takes advantage of the fact that GCMs simulate large-
scale upper-air fields more accurately than the surface local variables (Huth 1999). It consists 
in identifying in the observed data the relationships between the upper-air variables and the 
local surface ones, and applying them to control and/or perturbed GCM runs. The downscaled 
time series are fitted to a specific site and, if applied to the present climate, can be adjusted to 
reproduce the original mean and variance. 

Growing attention to extreme events has recently been paid in GCM studies, both in 
validating the simulated present-day climate and analyzing the possible future climate (Meehl 
et al. 2000). As regards extremes of surface temperature, relatively little work has been done 



in GCM and downscaling studies. Recently, Zwiers and Kharin (1998) and Kharin and 
Zwiers (2000) analysed return periods of annual maxima and minima of surface air 
temperature in two GCMs of the Canadian Centre for Climate Modelling and Analysis; Trigo 
and Palutikof (1999) examined heat and cold waves in the HadCM2 GCM and in the 
downscaling from the same GCM; McGuffie et al. (1999) compared return periods for 
extreme temperatures in five GCMs with a coarse spatial resolution; and Huth et al. (2001a) 
dealt with heat and cold waves in two GCMs and in downscaled and stochastically generated 
temperature series. Generally, GCMs reproduce extreme temperature events better than 
extreme precipitation events (where sub-grid scale processes play a more important role in 
producing observed extremes) but their skill remains limited. 

Here we focus on the comparison of extreme high/low one-day maximum/minimum air 
temperatures (examining the distribution and 20- and 50-yr return values of annual 
maximum/minimum temperature) and periods of extreme high/low temperatures lasting at 
least 3 days, but typically about a week or longer (heat/cold waves). The analysis was 
performed at 4 sites in central Europe and the comparison involved the observed, GCM-
simulated (3 models) and downscaled (4 models) temperature series. 

 

2. Data 

a. GCMs 

Simulations of present climate of three GCMs were used in this study. 

ECHAM3. The ECHAM GCM originates from the European Centre for Medium Range 
Weather Forecast model, modified in Max-Planck-Institute for Meteorology in Hamburg. Its 
version 3 is described in DKRZ (1993). It has a resolution corresponding to a 2.8° gridstep 
both in longitude and latitude; years 11 to 40 of the control run, in which climatological SSTs 
and sea ice extent were employed, are examined. 

AGCM2 (denoted CCCM2 in Huth et al. 2001a, Kyselý 2002a and Kyselý et al. 2001). The 
Canadian Centre for Climate Modelling and Analysis model of the second generation is 
described in McFarlane et al. (1992). Its resolution corresponds to a 3.75° x 3.75° grid and 
the atmospheric model was run with a mixed layer ocean model and a thermodynamic sea ice 
model; 20 years of its control integration were available. 

CGCM1. The first version of the Canadian Global Coupled Model is described in Flato et al. 
(2000). The atmospheric component of the model is essentially AGCM2 which was coupled 
to the ocean dynamic model. Daily data are available for one of three transient climate change 
simulations for the period 1900-2100, which uses an effective greenhouse gas forcing change 
corresponding to that observed from 1850 to the present, and a forcing change corresponding 
to an increase in CO2 at a rate of 1% per year thereafter until 2100. The period 1961-1990 was 
used as a control one. 

The first two GCMs discussed here were used in several previous validation studies dealing 
with central European temperature series (Nemešová and Kalvová 1997; Kalvová and 
Nemešová 1998; Kyselý and Kalvová 1998; Huth et al. 2000; Huth et al. 2001a; Kyselý 
2002a - ECHAM3; Kalvová et al. 2000; Huth et al. 2001a; Kyselý 2002a - AGCM2). The 
coupled model CGCM1 has not yet been examined from this point of view. 

Since AGCM2 simulates winter temperatures in central Europe unrealistically (Zwiers and 
Kharin 1998, Kalvová et al. 2000) due to deficiencies in parametrization schemes for soil 
moisture (Palutikof et al. 1997, Laprise et al. 1998), annual minimum temperatures are not 



examined in this model. Recent analyses indicate that the same problem persists in the 
coupled version of the model, CGCM1 (Kharin and Zwiers 2000), whose winter temperatures 
are omitted here as well. 

Since the downscaled temperatures reproduce the observed means and variances (see below), 
for a fair comparison between direct GCM outputs and downscaling, distributions of GCM-
produced temperatures were resized to have the observed mean and standard deviation (for 
periods May-September and November-March separately), and both these versions of GCMs 
(the resized one and non-resized one) were analysed and compared. The standard de-biasing 
procedure consisted in subtracting the mean of the simulated series, multiplying the anomalies 
by the ratio stdobs / stdmod where stdobs is the observed and stdmod the simulated standard 
deviation, and adding the observed mean. 

 

b. Downscaling 
The downscaled temperatures were calculated by the linear regression with stepwise 
screening from gridded 500 hPa heights and 1000/500 hPa thickness over the region which 
covers large portion of Europe and the adjacent Atlantic Ocean (for a detailed description of 
the procedure see Huth 1999, Huth et al. 2001a). The relationships between large-scale fields 
and local daily maximum and minimum temperatures were identified in observations for two 
seasons (May-September, November-March) separately and then applied both to observations 
and control GCM outputs. Two possible ways of retaining the variance of the downscaled 
series, namely the variance inflation (Karl et al. 1990) and the addition of a white noise 
process (cf. Wilby et al. 1999, Zorita and von Storch 1999) were applied in downscaling from 
observations and are compared here (the models are denoted DWI and DWW, respectively). 
As to the downscaling from GCMs, inflation of variance was used as a standard procedure; 
the downscaling was applied for ECHAM3 (denoted DWE) and AGCM2 (DWC). 

 

c. Observations 
The models have been evaluated against observations (covering the period 1961-1990) at four 
sites in central Europe (Fig. 1): Neuchâtel (Switzerland), Hamburg, Würzburg (both 
Germany) and Prague (the Czech Republic). All datasets span 30 years except for AGCM2 
and downscaling from AGCM2, which cover 20 years. 



 
Fig. 1.  Location of stations (NEU = Neuchâtel; WUR = Würzburg; HAM = Hamburg; PRA = Prague) 
and the closest GCM gridpoints (bold crosses for ECHAM, thin ones for AGCM2 and CGCM1). 

 

3. Methods 

a. Extreme value analysis 
The extreme value analysis was performed by fitting the generalized extreme value (GEV) 
distribution (sometimes called the Fisher-Tippett distribution) to the sample of annual 
extremes of surface air temperature. The GEV distribution is expressed as 
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where F(x) is the distribution function of random variable X and ξ, β and k are the location, 
scale and shape parameters of the distribution, respectively. The two-parameter Gumbel 
distribution is a special case (k=0) of the GEV distribution. The introduction of the shape 
parameter k in the GEV distribution improves the fit to the upper tail if the extremes are not 
Gumbel distributed; for k < 0 (k > 0) the probability density function of the GEV distribution 
converges more slowly (more rapidly) to zero compared to k = 0. 



Various methods are used to estimate the parameters of the Gumbel / GEV distribution. The 
maximum likelihood estimators (Jenkinson 1969) are asymptotically optimal but they are not 
necessarily the best ones for finite sample sizes. Recently a new and in some aspects superior 
method of the estimation of the parameters of extreme value distributions has emerged that is 
based on L moments (Hosking 1990); their brief description is given e.g. in Kharin and 
Zwiers (2000) and Kyselý (2002a, 2002b). Recent studies mostly employed either of the two 
methods (Brown and Katz 1995, Zwiers and Kharin 1998, Kharin and Zwiers 2000) to 
estimate parameters of the GEV distribution; however, results obtained by different methods 
were only rarely compared to each other (as e.g. by Angel and Huff 1992). Here, both the L 
moment and maximum likelihood estimators are calculated and compared. 

The decision whether to use the Gumbel or the GEV distribution was based on results of the 
hypothesis testing, where the null-hypothesis was that the shape parameter of the GEV 
distribution k equals zero (Kyselý 2002a); three tests (the median test, Gumbel 1965; the 
maximum likelihood test, Otten and Van Montfort 1980; and the probability-weighted 
moments test, Hosking et al. 1985; see also Faragó and Katz 1990 for their brief description) 
were performed. The results of the hypothesis testing were different for annual maximum and 
minimum temperatures: Whereas for maximum temperatures, the null-hypothesis was 
rejected in about 50% datasets (at α = 0.10), which means that the introduction of the third 
parameter k improves the fit and the Gumbel distributions cannot be applied, for minimum 
temperatures, the null-hypothesis is rejected only in 10-15% cases. However, the fact that the 
null-hypothesis was rejected at two of the four stations in the observed data prevented the 
Gumbel distribution from being used in the comparison for annual minima as well. 

Also the standard Kolmogorov-Smirnov goodness-of-fit test was applied for both the GEV 
and Gumbel distribution in all datasets. Since parameters of the distributions were estimated 
from the same sample which is compared in the test, commonly used critical values from 
statistical tables should not be employed (von Storch and Zwiers 1999). In such cases, a 
parametric bootstrap procedure (Efron 1982) yields more appropriate estimates of the critical 
values (Kharin and Zwiers 2000, Kyselý 2002a). From each fitted GEV and Gumbel 
distribution (for all datasets) 300 samples of the same size as observed or modelled series of 
annual maxima and minima were generated, and the 90% quantile of the distribution of 
statistic MAX used in the Kolmogorov-Smirnov test 
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where F(x) denotes the fitted distribution function and G(x) the empirical distribution function 
estimated from the sample, was taken as the critical value of the test at the significance level 
α = 0.10. (These critical values are smaller in most datasets compared to the values given in 
tables.) The null-hypothesis that the annual extremes are drawn from the distribution F(x) is 
not rejected in any data for the GEV distribution, and in a few cases only for the Gumbel 
distribution. This indicates that both these distributions may be appropriate for annual 
maximum and minimum temperatures, but particularly for annual maxima the GEV 
distribution fits the data (as measured by MAX) considerably better than the Gumbel 
distribution. 

 

b. Heat and cold waves 
Heat and cold waves are defined as in Huth et al. (2000, 2001a) and Kyselý et al. (2001). The 
definition consists of three requirements imposed on a period to be treated as a heat / cold 
wave; they are 



(i) TMAX (daily maximum air temperature) ≥ T1 in at least 3 days; (ii) mean TMAX over the 
whole period ≥ T1; and (iii) TMAX ≥ T2 in each day - for heat waves, and 

(i) TMIN (daily minimum air temperature) ≤ T1 in at least 3 days; (ii) mean TMIN over the 
whole period ≤ T1; and (iii) TMIN ≤ T2 in each day - for cold waves. 

The threshold values in the heat wave definition were set to T1=30.0 °C, T2=25.0 °C, in 
accordance with a practice commonly applied in the Czech Republic which refers to the days 
with TMAX reaching or exceeding 30.0 °C and 25.0 °C as tropical and summer days, 
respectively. For cold waves, the threshold values were set to T1=-12.0 °C, T2=-5.0 °C so 
that the probabilities of TMIN lower than T1 (T2) would be comparable with frequencies of 
TMAX higher than T1 (T2) at the stations under study; see Huth et al. (2001a). 

 

4. Simulation of extreme one-day temperatures 

a. Reproduction of the shape parameter of the GEV distribution 
In evaluating the performance of the models as regards annual extremes, one may look first 
whether the models reproduce the shape parameter (k) of the GEV distribution (Table 1). For 
annual maximum temperatures, k is positive at all the four stations in the observed data, 
which means that the probability density function of the GEV distribution converges more 
rapidly to zero compared to that of the Gumbel distribution. This is reproduced by all the 
models at all stations except for downscaling from AGCM2 in Würzburg where k is slightly 
negative (-0.05). Also the value of the shape parameter averaged over the stations (k ~ 0.3) is 
captured well by all the models (k ~ 0.20-0.37) except for downscaling from AGCM2 (k = 
0.13). For annual minimum temperatures, k is positive again at all the stations (but close to 
zero in Neuchâtel); the downscaling methods produce shape parameters that are mostly close 
to zero (with some exceptions), and so does the ECHAM GCM (except for Neuchâtel where 
the value is 0.33). It is obvious that the shape of the distribution of extremes is captured in the 
models much better for annual maximum than minimum temperatures. 
Table 1. Maximum likelihood estimates of the shape parameter k of the GEV distribution in observed, 
GCM-simulated and downscaled datasets of annual maximum (a) and minimum (b) temperatures. The 
average over the stations is shown in the last row. OBS stands for observations, ECHAM, AGCM2 
and CGCM1 are the three GCMs; DWI (DWW) denotes downscaling from observations with variance 
inflation (white noise addition) and DWE (DWC) downscaling from ECHAM (AGCM2). na denotes 
that the model was not analysed because of an unrealistic simulation. 

a. annual maximum temperatures 
station OBS ECHAM AGCM2 CGCM1 DWI DWW DWE DWC 

Neuchâtel 0.30 0.31 0.30 0.17 0.20 0.32 0.47 0.30 
Würzburg 0.14 0.25 0.40 0.33 0.28 0.25 0.40 -0.11 
Hamburg 0.48 0.37 0.21 0.12 0.60 0.17 0.33 0.05 
Prague 0.23 0.32 0.23 0.16 0.39 0.47 0.27 0.28 
mean 0.29 0.31 0.29 0.20 0.37 0.30 0.37 0.13 

b. annual minimum temperatures 
station OBS ECHAM AGCM2 CGCM1 DWI DWW DWE DWC 

Neuchâtel 0.06 0.33 na na 0.14 0.40 0.06 -0.11 
Würzburg 0.56 0.06 na na -0.02 0.16 0.19 0.26 
Hamburg 0.49 -0.11 na na 0.03 -0.17 -0.05 -0.19 
Prague 0.26 -0.02 na na 0.03 -0.15 0.08 -0.50 
mean 0.34 0.07   0.05 0.06 0.07 -0.14 



 

b. Reproduction of 20- and 50-yr return values of annual maximum and minimum 
temperatures 
The performance of the models is evaluated in Fig. 2 using the mean error and the mean 
absolute error of the 20- and 50-yr return values of annual maximum temperature calculated 
for the four stations. The mean error (Fig. 2a) measures the model bias; among the 
downscaling methods, only downscaling from observations with white noise addition (and 
only for annual maxima) does not yield extremes that are too moderate. Both AGCM2 and 
CGCM1 strongly underestimate the 20- and 50-yr return values; the de-biasing procedure 
(after which means and variances are the same as in observations) leads to a slight but not 
satisfactory improvement for AGCM2 whereas the performance of CGCM1 is considerably 
improved. This may indicate that the newer coupled version of the Canadian climate model 
simulates the shape of the temperature distribution somewhat better although it still yields (if 
unadjusted) too low summer temperatures in central Europe. Conspicuous is the improvement 
of downscaling from AGCM2 compared to the AGCM2 direct output, and a relatively good 
performance of both the non-resized and resized versions of ECHAM (particularly the mean 
absolute error is reduced in the latter; see Fig. 2b). The differences between the L moment 
estimators (left pair of bars) and maximum likelihood estimators (right pair) are small. 
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Fig. 2. Mean error (left) and mean absolute error (right) of the 20- and 50-yr return values of annual 
maximum temperature in the modelled series. The light (dark) pair of bars is for 20-yr (50-yr) return 
values, the left (right) pair for values derived using the L moment (maximum likelihood) estimators. 
OBS stands for observations, ECHAM-r, AGCM-r and CGCM-r are the resized versions of the 
ECHAM3, AGCM2 and CGCM1 GCMs; DWI (DWW) denotes downscaling from observations with 
variance inflation (white noise addition) and DWE (DWC) downscaling from ECHAM (AGCM2). 
 

For annual minimum temperatures, there are only 6 models since AGCM2 and CGCM1 
outputs were not analysed. The mean error (Fig. 3a) reveals that all the downscaling methods 
tend to provide extremes that are too moderate, and that the resized version of ECHAM does 
not yield better results compared to the non-resized one. Downscaling with the white noise 
addition attains again at least slightly better results compared to downscaling with variance 
inflation, and the downscaling from ECHAM performs comparably to ECHAM direct output. 
The latter holds, however, only when the mean error is considered; downscaling from 
ECHAM yields much better results when measured by the mean absolute error than ECHAM 
directly (Fig. 3b). 



An interesting feature in Fig. 3b is that for 20-yr return values, the non-resized and resized 
ECHAM versions perform similarly, whereas for 50-yr values the performance of the resized 
version is much worse. This indicates that the application of the standard resizing procedure 
based on shifts in the mean and standard deviation may considerably worsen the model 
performance in tails of the temperature distribution. The differences between values derived 
using L moment and maximum likelihood estimators are for annual minima somewhat larger 
than those for annual maxima, but the conclusions are again unaffected by the choice of the 
method. Worth noting is that downscaling from AGCM2 leads to relatively good results also 
for annual minimum temperatures, which supports the idea that the completely unrealistic 
simulation of winter temperatures in this model in central Europe is caused by deficiencies in 
parametrizations of land surface processes (Palutikof et al. 1997, Laprise et al. 1998), 
whereas the large-scale upper-air circulation and temperature fields and their temporal 
variability are reproduced reasonably well at least over large parts of Europe and the adjacent 
Atlantic Ocean (Huth and Pokorná 2001). 
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Fig. 3. The same as in Fig. 2 except for annual minimum temperature. 

 

c. Reproduction of mean annual extremes 
Generally, mean annual extremes (shown in Kyselý 2002a) are simulated much better than the 
20- and 50-yr return values by downscaling methods and the resized GCM outputs, 
particularly for minimum temperatures (Table 3). The white noise addition in downscaling 
captures also the mean annual extremes better than the variance inflation, and the resized 
versions of GCMs perform in all cases considerably better compared to the non-resized ones. 
For direct GCM outputs, the simulation of the mean annual extremes is comparable to that of 
the 20- and 50-yr return values (AGCM2) or even worse (ECHAM). This is because ECHAM 
tends to underestimate the mean annual maxima, and the right tail of the distribution of daily 
temperatures in summer is flatter in ECHAM than in observations (Huth et al. 2000) which 
leads to a smaller underestimation of the 20- and 50-yr return values. A similar explanation 
holds for annual minima which are overestimated in ECHAM, but the left tail of daily winter 
temperatures is again flatter compared to observations. 

 

5. Simulation of heat and cold waves 

Generally, GCMs (provided that they are adjusted to reproduce the observed mean and 
variance) yield better results than statistical downscaling as regards the simulation of heat and 
cold waves (Table 2 and 3, Fig. 4; see Huth et al. 2001a and Kyselý et al. 2001 for more 



details). The ECHAM3 GCM is the best among the models in simulation of cold waves 
(although the unadjusted temperatures are too high); of the models analyzed in Huth et al. 
(2001a), including two versions of the four-variable stochastic weather generator, the 
ECHAM3 GCM is the only one that does not underestimate the extremity of cold waves. All 
the three GCMs are relatively successful in reproducing frequencies (Table 2) and some other 
properties of heat waves, e.g. the temporal evolution with the highest temperature typically 
reached in the second half of their duration (Kyselý et al. 2001). Due to the overestimated 
persistence of TMAX (Kalvová and Nemešová 1998), heat waves are too long in ECHAM 
(Fig. 4a), peak at too high temperatures and the inclusion of tropical days into prolonged 
periods is overestimated. As to heat wave characteristics, AGCM2 and CGCM1 yield better 
results than ECHAM3. A deformation of the temperature annual cycle with a maximum 
shifted towards August leads to an unrealistic position of a typical heat wave in a year in all 
the three GCMs analyzed. Since the errors in temperature persistence and annual cycles over 
continents appear to be common to many GCMs, at least some of the heat wave 
characteristics are likely to be misreproduced by other GCMs as well. 

Since physical processes are explicitly included in GCMs only, some properties of time series 
that are related to them (mainly to the radiation balance and atmospheric fronts) cannot be 
reproduced by statistical models. Too low frequency of both heat and cold waves in the 
downscaled times series is influenced by the unrealistic symmetry of the day-to-day 
temperature change distribution and (if variance is retained by adding white noise) by a too 
high interdiurnal variability. The underestimation is more pronounced in winter when it is 
strongly influenced by a lower number of extremely cold days due to an unrealistic symmetry 
of the TMIN distribution. The white noise addition leads to temperature series that are too 
variable, and is therefore unsuitable if one is concerned with the time structure and heat and 
cold waves. The statistical downscaling from GCMs does not improve heat and cold wave 
characteristics derived from direct (adjusted) GCM outputs. 

 
Table 2. Mean annual frequencies of heat and cold waves. Model abbreviations are given in Tab. 1, -r 
denotes re-sized versions of GCM outputs with means and variances the same as observed ones. 

a. heat waves 
station OBS ECHAM -r AGCM2 -r CGCM1 -r DWI DWW DWE DWC 
Neuchâtel 0.60 0.90 0.75 0.53 0.30 0.33 0.17 0.45 
Würzburg 0.77 0.87 0.80 0.53 0.43 0.20 0.33 0.50 
Hamburg 0.20 0.40 0.20 0.07 0 0.07 0 0 
Prague 0.50 0.77 0.75 0.53 0.33 0.13 0.20 0.35 

b. cold waves 
station OBS ECHAM -r   DWI DWW DWE DWC 
Neuchâtel 0.17 0.03   0.03 0 0.03 0 
Würzburg 0.62 0.52   0.17 0.07 0.34 0.11 
Hamburg 0.59 0.48   0.14 0.03 0.34 0.05 
Prague 1.38 0.97   0.72 0.38 0.90 0.63 
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Fig. 4. Mean duration of heat waves (left) and cold waves (right). Models’ abbreviations are the same 
as in Fig. 2, four bars for each model represent four stations. Because of a very low frequency of heat 
waves in Hamburg and cold waves in Neuchâtel, Strážnice (the Czech Republic) was used as the 
fourth station in both cases (see Kyselý et al. 2001). 
 

6. Conclusions 

This contribution tries to compare a set of climate models employing two views of the 
simulation of surface air temperature extremes: namely that of one-day extremes and of multi-
day extremes. Although there is a growing number of studies dealing with extremes in climate 
models (mainly in GCMs), various methods of construction daily data were only occasionally 
compared as regards extreme events (Trigo and Palutikof 1999, Kyselý 2000, Huth et al. 
2001a) and no study discussing and comparing results of two or more views of what is 
considered an ‘extreme event’ in temperature series in the context of climate modelling is 
known to the authors. 

The skill of GCMs in reproducing extremely low and high temperatures is limited; of the 
GCMs analysed here, only ECHAM in summer is partly able to simulate extremely high 
temperatures. When GCM outputs are resized to preserve the observed mean and variance, 
their performance is much better for heat and cold waves, but not generally for one-day 
temperature extremes; it is partly better only for annual maxima but even worse in ECHAM 
for annual minima, particularly if 50-yr return values are compared. This implies the need for 
a more appropriate, likely non-parametric adjustment procedure (used e.g. by Trewin and 
Trewitt 1996, and proposed for validations of climate models by Huth and Kyselý 2001) to 
de-bias a control GCM output since the standard resizing procedure which adjusts the first 
two statistical moments may deteriorate the model’s performance in tails of the distribution. 
This can happen even if the original (non-resized) distribution is not severely distorted (which 
is the case of ECHAM). 

Various methods of treating the missing variance in downscaling were only rarely compared 
with each other as well (cf. von Storch 1999). Here the results are rather ambiguous since the 
one-day temperature extremes are much better reproduced by the white noise addition 
whereas heat and cold waves are better captured by downscaling with variance inflation. The 
relatively good simulation of one-day extremes in downscaling with white noise may be 
explained by much larger (compared to variance inflation) day-to-day temperature variability 
that further leads to more extreme annual maxima and minima; however, the same (enhanced) 
temperature variability prevents longer periods of hot / cold weather from being simulated 
and leads to a very bad reproduction of heat / cold waves. 
 



Table 3. Models’ ability to reproduce selected properties of extreme temperature events (summary). 
OK (OK) denotes a relatively good (very good) simulation, - (--) underestimation (strong 
underestimation), + (++) overestimation (strong overestimation) in the involved characteristics. na 
indicates that the characteristics was not analyzed in the model. Models’ abbreviations are the same as 
in Tab. 1, -r denotes re-sized versions of GCM outputs with means and variances the same as observed 
ones. Inclusion of T1 days means the ratio of days with TMAX ≥ 30.0 °C (TMIN ≤ -12.0 °C) 
occurring within heat (cold) days to their total counts; shape parameter is the parameter k of the GEV 
distribution. 

a. annual maximum and minimum temperatures 
 maximum temperatures minimum temperatures 
model shape 

parameter 
20-/50-yr 

values 
mean 

annual 
extremes 

shape 
parameter 

20-/50-yr 
values 

mean 
annual 

extremes 
ECHAM3 -r OK OK OK - -- OK 
AGCM2 -r OK + OK na na na 
CGCM1 -r OK OK OK na na na 
ECHAM3 OK - - - + ++ 
AGCM2 OK -- -- na na na 
CGCM1 OK -- -- na na na 
DWI OK - OK - ++ + 
DWW OK OK OK - + OK 
DWE OK -- - - OK OK 
DWC - - OK -- ++ + 

 

b. heat and cold waves 
 heat waves cold waves 
model frequency duration inclusion 

of T1 days 
frequency duration inclusion 

of T1 days 
ECHAM3 -r + ++ + OK OK OK 
AGCM2 -r OK OK OK na na na 
CGCM1 -r OK OK - na na na 
ECHAM3 + ++ + -- na na 
AGCM2 -- na na -- na na 
CGCM1 -- na na -- na na 
DWI - - OK -- + - 
DWW -- -- -- -- -- -- 
DWE -- - - - - - 
DWC - - OK -- - -- 

 

Also the question whether downscaling from GCMs tends to improve results obtained from 
GCMs directly cannot be answered for the models examined here in general; among others it 
depends on whether unadjusted or adjusted GCM outputs are considered. The adjustment of a 
GCM output to preserve the observed mean and variance appears to yield multi-day extremes 
that are in a better consent with observations than extremes produced by the downscaling 
method applied here; for one-day extremes it depends on the model and variable examined. 
But what is a general feature of the statistical downscaling is that it leads to extremes that are 
too moderate compared to observed values. This is likely strongly connected with the 
assumption of linearity of the downscaling method used, and an application of a more 
sophisticated non-linear model and a more realistic treatment of the missing variance (by 



adding a noise which is temporally correlated) may considerably improve performance of 
downscaling as to the time structure of the temperature series and extreme events. 

Another important finding is that the comparison of the return values of annual maxima and 
minima does not appear to be sensitive to whether the L moment or maximum likelihood 
method is applied to estimate parameters of the GEV distribution, although individual return 
values are influenced by the choice of the method. A similar comparison between two 
statistical procedures used in extreme value analysis has only rarely been performed in 
relevant studies and gives a greater confidence to findings of other studies where return 
periods were examined using only a single method (Zwiers and Kharin 1998, Kharin and 
Zwiers 2000). 

Worth noting is that the performance of the models is generally worse for annual minimum 
than maximum temperatures. Possible explanation takes account of the fact that in central 
Europe, distributions of daily minimum temperatures in winter are negatively skewed (with 
heavy left tail) while those of daily maximum temperatures in summer have skewness close to 
zero (e.g., Huth et al. 2001b). It means that extremely low temperatures are relatively more 
distant from the centre of the distribution of daily temperatures in winter compared to 
extremely high temperatures in summer, and the skill of climate models (particularly of the 
statistical models) to reproduce these low extremes, strongly influenced by radiation balance 
and local climatic settings of the stations, may be expected to be limited. This is in consensus 
with the bad simulation of the shape of the GEV distribution for annual minimum compared 
to maximum temperatures, too. 
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