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Abstract 
 

Flood and wind damage to property and livelihoods resulting from extreme precipitation 

events and windstorms in Europe accounts for billions of pounds worth of damage 

annually.  In many cases the interannual variability of these extreme events can be 

closely related to the large-scale atmospheric circulation.  For example the summer 2007 

floods in the UK are thought to be at least partly related to an anomalously weak and 

southward displaced North Atlantic jet stream.  This raises the question of whether any 

useful predictability for these phenomena exists on seasonal timescales. 

 

An exploratory empirical analysis into the potential predictability of 90th and 95th 

percentile threshold exceedance counts of daily precipitation and peak wind gusts is 

conducted across a pan-European domain, considering twelve overlapping three-month 

seasons for each predictand.  Models are trained over the period 1958 to 1995, and the 

period 1996 to 2005 constitutes an independent validation period. 

 

It is widely recognized that European seasonal predictability is inherently low owing to 

the dominant role of internal atmospheric variability in the midlatitudes.  However, a 

number of studies have identified potential sources of predictability, including the El 

Nino Southern Oscillation (ENSO) and North Atlantic sea surface temperatures.  

However in general the observed empirical relationships are not yet fully supported by 

theory or modeling.  The research is conducted within these constraints, such that the 

principle objective is to identify novel, potentially useful sources of predictability which 

might in future lead to operationally useful forecasts given the verification of the 

observed relationships by means of theoretical explanation and numerical modeling. 

 

An initially large set of predictors is tested for field-significant responses in the 

predictand spatial domain using Monte Carlo resampling.  Those predictors which are 

associated with a field-significant response are included in a model selection algorithm 
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which selects models based on the mean absolute error of the cross-validated fit.  The 

models are then tested on the validation data. 

 

It is found that appreciable levels of skill exist during the model training period.  This 

skill is attributable to a wide range of predictors.  Substantial degradation in skill is 

observed over the validation period, indicating that either the models are over-fitted, or 

that nonlinear or nonstationary relationships are identified.  However, in some cases skill 

is retained throughout the validation period.  In particular, two regions reaching from the 

North Sea to the Baltic States, and from the Pyrenees to the Balkans respectively show 

potentially useful skill for the wind predictands during the early winter.  This results from 

a combination of predictors, but predominantly featuring indices of stratospheric 

temperature from the preceding summer.  Some indices associated with ENSO are also 

found to be potentially useful, as are some local SST anomalies for the precipitation 

predictands. 
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1 Introduction 
 

This study seeks to develop empirical models using linear statistical techniques, which identify 

potential predictability in extremes of wind and precipitation over Europe at seasonal timescales.  

The objective is not to develop an operational forecasting product, but rather to explore the 

possibility that a thorough empirical analysis can offer insights into whether any aspects of the 

predictands can be skilfully predicted.  The research findings are presented sequentially starting 

with the development of predictand datasets, through the selection and refinement of a potential 

predictor set, the development of the models, and finally model validation and further discussion on 

the potential predictive skill – or lack thereof – which results.  This introduction presents a brief 

discussion of the rationale for seasonal forecasting in general in Section 1.1; the issues pertaining to 

seasonal forecasting in Europe including this study in particular in Section 1.2, and finally sets out 

the structure of the thesis as presented in the remainder of this document in Section 1.3.  Further 

detail on Sections 1.1 and 1.2 are presented in the context of Chapter 2, comprising a review of the 

existing literature on seasonal forecasting. 

 

1.1 Introduction to seasonal forecasting 

 

The variability of climate on seasonal to interannual scales has been a central problem for society 

throughout recorded history, as discussed for example in Troccoli et al. (2008).  Vulnerability to 

changes in temperature, precipitation, and wind have been of greater or lesser importance to the 

means of food production, travel and trade, communications, and a range of other activities, and 

civilisations have prospered and declined as a direct result of climate variability.  In the present 

day, this relationship still holds, although different societies in different parts of the globe 

experience very different priorities when it comes to adaptation to climate variability and change.  

The challenge of seasonal to interannual forecasting – whereby some sort of skilful prediction of 

the climate can be made at lead times sufficient for society to make adaptations – is therefore an 

important one, and has been the focus of a great deal of research particularly in the last two 

decades. 
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The scientific framework within which seasonal forecasting is carried out is based on the principle 

that although the atmosphere itself is not thought to be predictable beyond a maximum of two 

weeks, other more slowly varying components of the climate system may be predictable at longer 

timescales. The effect of these slowly varying processes upon the atmosphere may be sufficient to 

distinguish with some level of confidence a departure in the mean behaviour of the atmosphere – or 

more specifically a particular variable such as precipitation – at seasonal or longer timescales. 

 

The late Nineteenth and early Twentieth Centuries saw the first attempts to understand climate 

variability in a scientific context as we would recognise it today (e.g. Walker and Bliss, 1932).  A 

particular feature of interest in this context is the recognition that climate variability in many cases 

is associated with large-scale processes which take the form of teleconnections – linking remote 

areas through the transfer of atmospheric and oceanic mass and energy. The most important and 

well known of these is the El Niño Southern Oscillation (ENSO) – an interaction between the trade 

winds and the ocean currents in the tropical Pacific – which affects the variability of climate 

throughout the tropics, and beyond, with research in recent years suggesting that its influence may 

extend as far as Europe (for example Fraedrich, 1994; Broennimann, 2007).  Due to the strongly 

coupled interaction between the slowly varying ocean and the overlying atmosphere in the tropical 

Pacific, since the 1980s extensive and successful efforts have been made to predict ENSO 

variability and its associated impacts at seasonal timescales (for example Cane and Zebiak, 1986; 

Folland et al., 2001).  These efforts form a large part of the basis of seasonal forecasting as it is 

known today. 

 

More recently, a number of empirical studies have identified other features of the climate system, 

including snow cover on land (for example Cohen and Entekhabi, 1999), and the stratosphere (for 

example Baldwin et al., 2003) which may be potentially useful predictors of seasonal climate 

variability.  These and many other research efforts in recent decades have been driven by the need 

to improve our understanding of what the climate holds in store over the next seasons and years.  

 

Fundamentally there are two methods by which predictive models may be developed – firstly, 

empirical models which use observations of the climate system to generalise and quantify 

potentially useful predictive relationships, and secondly numerical techniques, where dynamical 
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models of the climate system are integrated forward in time from as close as possible a 

representation of the present to express a possible future climate conditioned on the persistence or 

evolution of the same kind of slowly varying fields that inform the empirical models, but as a 

function of the model physics.  Both methods have their advantages and disadvantages, which can 

be briefly summarised as follows:  for empirical methods the physical processes which cause 

predictability are not explicitly realised in the models – that is, any statistically significant 

relationship may be found between predictor and predictand, but it does not follow that real 

structure (as opposed to noise) in the predictand is explained by the predictor.  However, empirical 

models are by definition conditioned on observed behaviour of the climate system and the full 

extent of this observed behaviour may not be captured by dynamical models.  Therefore, although 

dynamical models in describing potential predictability, describe a system where all the physical 

processes may in theory be explicitly linked to the predictability, they may not capture all the 

features of the climate system relevant to this problem.  These issues are discussed more fully in 

Chapter 2.   

 

 

1.2 European seasonal forecasting and this research 

 

Seasonal forecasting is a branch of climate science undergoing major development. The theory 

underpinning the forecasting process, the technology and data that allow methodological advances 

and the increasing ability of society to facilitate adaptation to climate variability and change are all 

moving in a direction so as to encourage this process.  In most respects the science of seasonal 

forecasting and its applications still have much further to develop, and any study which seeks to 

advance or quantify an aspect of the current state of climate predictability must be placed firmly 

within the broader context of the science.   

 

For Europe specifically, seasonal forecasting is not as advanced as it is for example in certain 

regions of the tropics, where the influence of ENSO is much more clearly defined and understood.  

The midlatitude atmosphere evolves as a function of internal variability (as opposed to variability 

forced by slowly varying boundary conditions) to a much greater extent than does the tropical 
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atmosphere, and therefore predictability at seasonal timescales is thought to be inherently lower 

than in the tropics.  This is the central obstacle to the predictability of the European climate at 

seasonal timescales (for example as reviewed in Rodwell and Doblas-Reyes, 2006).  In this respect, 

the context within which the work for this thesis is carried out is primarily exploratory.  To date no 

comprehensive attempt to identify potential seasonal predictors for indices of precipitation and 

wind extremes in Europe exists, although such a body of work, should it exist would be of great 

value in light of the observed impact of climate extremes in Europe in recent years. Furthermore, it 

is likely that this impact will increase in the future as rainfall events are expected to become more 

extreme (Fowler and Hennessy, 1995; Palmer and Raisanen, 2002), and the threat of coastal 

flooding due to storm surges increases with sea level rise. The main objective is therefore the 

search for and statistical validation of empirical relationships which may afford some predictive 

skill for extremes of precipitation and wind in Europe. 

 

However, the exploratory context notwithstanding, there is substantial evidence for potentially 

skilful predictors of the European climate.  These predictors are reviewed extensively in Chapter 2 

and Chapter 5, and include large-scale sea surface temperature (SST) anomalies, particularly 

relating to ENSO, and also to the North Atlantic, where some empirical and theoretical evidence 

for coupling between the ocean and the atmosphere exists (Rodwell et al., 1999).  Evidence also 

exists to support the notion that both land surface snow cover (Cohen et al, 2001) and the relatively 

slowly evolving stratosphere (Baldwin and Dunkerton, 2001) might offer additional predictability. 

 

 

1.3 Thesis outline 

 

Following this introduction, the study is presented in the form of a literature review, a brief 

methodology outlining the process by which the predictors are selected and related to the 

predictands, two data chapters dealing with predictands and predictors respectively, and three 

results chapters detailing the sequential development and validation of the models.  The final 

chapter summarises and concludes the study.  The chapter structure is as follows: 
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1. Introduction.  A brief outline of the problem is presented, and the thesis structure is 

explained. 

2. Literature review.  The research draws on a number of topics, including the science of 

seasonal forecasting, and climate extremes.  The full range of topics relevant to this research 

is discussed in light of the existing literature, including a more comprehensive introduction 

to seasonal forecasting and extremes. 

3. Methodology.  A brief illustration of the methods by which an initially large predictor set is 

refined and models are developed and tested, is presented.  The emphasis is on the 

requirement that this study is treated as exploratory in nature, and rather than precisely 

quantifying observed skill, seeks rather to offer insights into what features of the climate 

system might offer predictability. 

4. Predictands.  The development of precipitation and wind predictand datasets comprising 

seasonal counts of exceedances over the 90th and 95th percentile thresholds is presented. 

5. Predictors.  Potential predictors are discussed with reference to the literature, and a full set 

of predictors is defined, with the aim of substantially reducing this set as part of the model 

selection process. 

6. Initial predictor selection.  The full set of predictors is refined using field-significance 

testing by resampling within the model training period.  Only those predictors which are 

associated with a field-significant response in the predictand data are retained. 

7. Model selection.  Models are developed using an all-subsets selection algorithm, accounting 

for multicolinearity, and using cross-validation to assess the best model in each case. 

8. Model validation.  Models are tested on an independent validation period and the results are 

reported, paying particular attention to the cases where skill appears to be retained in the 

validation period.  These cases comprise a small minority of the total. 

9. Conclusions and suggestions for further work.  The findings are summarised and 

conclusions are drawn.  Suggestions for further work are made. 
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2 Literature Review 
 

2.1 Introduction 

 

This literature review presents a survey of the literature relevant to the PhD thesis 

‘Seasonal forecasting of extreme wind and precipitation frequencies in Europe’.  A broad 

range of research is covered, but the review focuses particularly on studies addressing the 

following questions: 

 

• What is to be predicted, and why?   

• How has the problem traditionally been approached? 

• Finally, what empirical and theoretical material is available to aid the 

development of a seasonal forecasting model?   

 

The review is therefore structured as follows:  

 

• Section 2.1 comprises the introduction.  

• Section 2.2 is a review of the literature on weather extremes relevant to the thesis, 

that is, the predictands. 

• Section 2.3 is a broad introduction to the seasonal forecasting problem, 

comprising: 

o A brief history of the science and general background. 

o Specific work on European seasonal forecasting. 

o The seasonal forecasting of extremes, on which a relatively small body of 

literature exists. 

• Section 2.4 focuses on the seasonal forecasting of extreme events. 

• Section 2.5 deals with the potential predictors for the seasonal forecasting model. 

Literature is examined on a number of boundary forcing processes: including sea 
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surface temperature (SST), land surface processes – primarily snow cover, and 

atmospheric parameters, including analyses of stratospheric data. 

• Section 2.6 summarises the review. 

 

Kushnir et al, (2004) describe the evolution of the science of climate prediction as a three 

stage process.  Firstly, empirical evidence describes potentially predictable relationships 

within the climate system.  Secondly, attempts are made to understand the physical basis 

for these empirical relationships, and thirdly the replication of these relationships in 

climate models allows a more complete understanding of the dynamics and potential 

predictability.  With respect to European seasonal forecasting, the science is largely 

restricted to stage one in this framework, and observed potentially predictable 

relationships at the seasonal timescale do not provide high levels of skill.  There are a few 

well documented processes where potentially predictable relationships have a tentative 

theoretical basis, but there is no clear consensus in numerical model studies of these 

processes. 

 

Currently, several factors inhibit understanding of the theory underlying potentially 

predictable processes and, thus, impede the development of skilful operational forecasts.  

Primarily, in many cases the apparently nonlinear nature of such relationships not only 

makes them difficult to identify, but also difficult to test using meaningful measures of 

statistical significance. This is because sample sizes derived from the observed record are 

small, and the range of possible outcomes increases greatly when nonlinearities are 

considered.  The current inability of dynamical models to capture the full range of 

interactions between components of the climate system (as discussed for example in 

Broenniman, 2007) means that the sample size cannot be increased to the point where a 

more robust assessment of significance can be made.  
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2.2 Predictands 

 

Operational seasonal forecasts attempt to predict climate anomalies (deviations from the 

mean), for a given season, location and variable.  Traditionally the variable under 

consideration is temperature or precipitation, with the prediction indicating if mean 

conditions in the given season and location will be warmer/colder or wetter/drier than 

average.  More recently, and particularly with the development of dynamical ensemble 

forecasting techniques (for example, see Palmer et al., 2004), dynamical probabilistic 

forecasts have been possible, with a probability assigned to the forecast anomaly based 

on the ensemble spread.   

 

However, when considering the interannual variability and forecasting of extreme events, 

a number of problems arise, requiring choices to be made.  These choices can be split into 

two categories.  First, the nature of the predictand must be considered; that is, how the 

phenomena are best represented for the required purpose.  Second, the source of the raw 

data – which variables to use, and the temporal and spatial resolution of the data – is of 

great importance.  This section will review the extremes literature, and then address these 

two fundamental requirements. 

 

2.2.1 Extreme Weather in Europe 

 

Storms and flood events account for the bulk of severe weather occurrences (that is, 

extreme events having a societal impact) in Europe, although extremes of temperature 

have also had considerable impacts, not least in the summer of 2003.  Severe weather 

events have a considerable human and financial cost in Europe.  From 1970 to 2002, the 

total cost of windstorm damage in Europe was $21 billion, while the cost of floods was 

$7 billion (Murnane (2004), compiled from Zanetti et al. (2003)).  More recently, the UK 

floods of July and August 2007 are estimated by the Association of British Insurers 

(ABI), among others, to have cost in the region of £3bn, while insured damage from 
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windstorm Kyrill, in January 2007 is estimated by Swiss Re to be in the region of €3.5bn 

across Europe. All values are given as they appeared at the time of reporting. 

 

Much recent research has been motivated by the need to understand the likely impacts of 

climate change on the frequency and magnitude of extremes.  Recently, a number of 

studies have documented several measures of extreme events throughout Europe and 

elsewhere.  A special issue of the Journal Climatic Change (volume 42 issue 1, 1999) 

focuses on the need to improve understanding of the observed and potential effects of 

climate change on extreme events.  Much of this work (e.g. Jones et al., 1999; Heino et 

al., 1999) focuses on temperature extremes, particularly since in general they are found to 

provide the least ambiguous trend signal in the observed record.  However, precipitation 

and storms also come under consideration.  Broadly speaking there is less evidence of 

trends in the observed record for precipitation and storms, particularly since the spatial 

coherence of these variables is lower than that of temperature.  Nevertheless, this work 

provides a useful framework for the study of interannual variability of extremes (which 

must also be considered in the context of climate change).  While the seasonal forecasting 

of extremes must be more directly concerned with interannual variability, significant 

trends would contribute to predictability, and in some cases for the European sector may 

be the most important contributor to predictability.  Frich et al. (2002) continue this work 

with a study of observed changes in extremes in the last half century.  Again, while 

temperature extremes show some fairly clear trends, results for precipitation are less well 

defined.  Mudelsee et al. (2003) provide further evidence for a lack of upward trends in 

precipitation with their study on trends in flooding in central Europe.  However, there is 

evidence of a decrease in winter flooding in the two basins studied.  Klein Tank et al. 

(2002) and Klein Tank et al. (2003) also examine trends in daily extremes in Europe as 

part of the European Climate Assessment & Dataset project (ECA).  On closer 

examination of indices capturing particular properties of precipitation, some trends are 

evident, although these are spatially variable.  The application of these results to seasonal 

forecasting models is potentially of interest, when an optimal climate normal (OCN) 

approach is used, and possibly combined with other regression-based methods.  The OCN 

technique, described in van den Dool (2007) uses a segment of the recent past whose 
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length is determined empirically as the predictor, essentially optimising the information 

in a trend or a decadally varying process to make a forecast.  More recently, Luterbacher 

et al. (2004) find that a 500 year reconstruction of monthly and seasonal temperatures 

reveals marked warming in the last few decades. 

 

As well as the basic development of a predictand dataset for the seasonal forecasting 

model, there is a growing volume of additional information on large-scale and long-term 

patterns in extremes that can potentially be used as predictors.   

 

2.2.2 Interannual Variability of Extremes and the Large-Scale 
Circulation 

 

As well as trends in indices of extremes, perhaps the most important measure of 

variability is at interannual timescales.  All of the literature shows significant interannual 

variability in the frequency and magnitude of extremes.  This raises the question of how 

predictable is the European climate at interannual timescales, when much of the literature 

finds that trends and decadal variability offer better scope for predictability?  It seems to 

be the case, for example, that the NAO, which accounts for a large proportion of the 

climate variability in north western Europe, is more predictable on decadal timescales 

than interannual (e.g. Hurrell, 1995; Livezey et a.l, 1999; Sutton and Hodson, 2003). 

One approach to studying the interannual variability of extremes, which can give a useful 

indication of the spatial and temporal coherence of extreme events, is to consider the 

relationship between extremes and the large-scale atmospheric circulation.  Most 

precipitation and wind extremes in Europe are embedded in the prevailing westerly 

circulation.  Particularly with respect to Europe, large-scale modes such as the NAO are 

known to relate to the interannual variability of extreme events (e.g Scaife et al., 2008) 

implying some spatial and temporal coherence in their occurrence. 

 

Fraedrich (1992, 1994) provided some early work on the relationship of ENSO to 

European extremes, showing that ENSO affects the European circulation, and thus the 
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occurrence of extreme events.  Away from Europe, Cavazos (1999) makes a detailed 

study of the relationship between extreme precipitation in Mexico and Texas and its 

relationship to large-scale circulation patterns.  Of particular interest here is the use of 

artificial neural networks (ANN) in a self-organising map (SOM) configuration to model 

this relationship, with some success.   

 

A series of papers (e.g. Schmith, 2001 and Quadrelli et al., 2001) from the Atmospheric 

Circulation Classification and Regional Downscaling (ACCORD) project (Jones et al., 

2001) has added to the understanding of European extremes and the general circulation.  

Schmith (2001) identifies a global warming signature in observed winter precipitation in 

north western Europe, using station-based records of precipitation.  Principal Component 

Analysis (PCA) of mean sea level pressure (MSLP) is used to construct a multiple 

regression model to predict precipitation as a function of the circulation, giving some idea 

of the role of the wider atmospheric circulation, and the spatial cohesiveness of 

precipitation in the study area. Quadrelli et al. (2001) focuses on links between Alpine 

precipitation and the large-scale circulation, finding that the December-March season has 

the strongest links with circulation, and hence the greatest spatial cohesion.  Chaboureau 

and Claud (2003) explore the variability of North Atlantic oceanic precipitating systems, 

relating individual systems to the large scale circulation – in particular the AO/NAO, and 

finding significant links between the large-scale circulation and individual weather 

systems.  Kaczmarek (2003) relates the risk of flooding in Poland directly to the NAO, 

finding a significant relationship between winter and spring runoff and the NAO.  Given 

the highly variable and complex nature of precipitating systems in the midlatitudes, 

studies on downscaling and the relationship of individual weather systems with the large-

scale circulation should be of considerable interest to the seasonal forecaster.  Haylock 

and Goodess (2004) study the links between European extremes of rainfall and the mean 

large-scale circulation.  PCA of station rainfall records identifies coherent patterns in the 

occurrence and interannual variability of extremes, as well as a significant trend in the 

data.  The NAO was identified as an important descriptor of precipitation extremes, as 

were a number of other MSLP patterns.  While the coherence of extreme rainfall was 
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found to be less than that of mean rainfall, there is still information to be gained from 

such an analysis beyond the sole influence of local processes.   

 

Wang and Rogers (2001) study cyclogenesis in the North Atlantic, where many of the 

cyclones formed go on to affect Europe.  Two regions of cyclogenesis are compared, and 

both are found to have different relationships with the atmospheric circulation.  The 

implications of this for seasonal predictability are of importance when considering model 

design. For instance, predictors may have to be highly localised, and as far as the 

predictands are concerned, it is possible that a detailed climatology of cyclones may be 

necessary to successfully predict interannual variability.  Further work on cyclones has 

been carried out by Paciorek et al. (2002), who use a series of indices to assess time 

trends of cyclone activity in the Northern Hemisphere.  Further studies of extratropical 

cyclone climatologies and variability in the North Atlantic/European sector are also of 

interest.  Hanson et al. (2004) develop a technique to represent the cyclone climatology 

of the North Atlantic in two reanalysis datasets, ERA-40 (Uppala et al., 2005) and NCEP 

(Kalnay et al., 1996).  In this instance, ERA-40 is shown to give a better representation of 

the observed climatology than NCEP, probably because of its much superior spatial 

resolution.   

 

2.2.3 Indices of Extremes 

 

This section introduces the literature on extreme precipitation and wind relevenat to this 

thesis, and the data available to support empirical work on this subject.  Further practical 

detail is provided in Chapter 4. 

 

2.2.3.1 Precipitation 

 

Data sources for extreme precipitation and wind speeds will be considered separately.  

The bulk of work on precipitation extremes has been carried out on station data (e.g. 
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Klein Tank et al., 2002, 2003; Moberg and Jones, 2005), with some climate change 

studies using GCM output (e.g. Palmer and Raisanen, 2002).  However, station data are 

not without problems.  For example, Karl (1999) highlights issues of data quality – most 

notably temporal homogeneity in station records, and differences in observing methods. 

While it is possible to account for some of these problems, there are still reliability issues, 

and the network of quality controlled station datasets is sparse.  This is a major limitation 

on the study of the interannual variability and predictability of extreme precipitation, not 

least because the geographical configuration of north west Europe means that large areas 

of ocean have no coverage at all.  Gershunov (1998) and Gershunov and Cayan (2003) 

use station data to assess the predictability of heavy precipitation over the contiguous 

United States.  However they use a more extensive network than that available in Europe, 

partly due to differences in data protection policies in the US, and partly because the 

study area is mostly land.  The limitations of station coverage and availability in north 

west Europe raise a series of questions for this study.  Primarily, the detection of patterns 

of precipitation variability associated with large-scale boundary forcing processes may be 

difficult to assess, particularly in terms of their field significance across the whole study 

domain.  For the reasons presented here, precipitation from reanalysis datasets has been 

considered.  There are two reanalysis products currently available with quite long 

records, from the US National Centers for Environmental Prediction (NCEP), and the 

ERA-40 reanalysis from the European Centre for Medium Range Weather Forecasts 

(ECMWF), (Uppala et al., 2005).  While the reanalysis precipitation is modelled rather 

than assimilated, it does provide a series of advantages over the station-based datasets.  

Spatial and temporal coverage is better – and while stations give a good representation 

the point-source precipitation, they may not capture the full spatial extent and intensity of 

an extreme rainfall event.  Additionally, the ERA-40 reanalysis data divides precipitation 

into convective precipitation, large-scale or stratiform precipitation, and snowfall.  These 

types of precipitation have different causes, particularly the convective as opposed to 

large-scale rainfall or snowfall, and so the separate consideration of the extremes may be 

instructive.  A number of studies consider precipitation extremes in reanalysis datasets.  

Zolina et al. (2004) compare four different reanalysis products (NCEP1, NCEP2, ERA15 

and ERA-40) and a set of observational (station) data with respect to precipitation 
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extremes in Europe.  They fit gamma distributions to derive statistical characteristics of 

the daily precipitation, including percentile thresholds. A principal component analyses 

(PCA) of the shape and scale parameters, and percentiles of the Gamma distributions for 

reanalysis gridboxes, is used to study the interannual variability (and secular changes) of 

extremes on the basis of the coefficients of the principal components and of the Gamma 

distributions.  The authors conclude that, in general, NCEP products show higher 

estimations of extreme precipitation than ECMWF products, and are thought to be closer 

to the observed data.  In particular, the NCEP2 data has some assimilation of Xie and 

Arkin (1997) pentadal precipitation, which is thought to account for much of this 

correction.  However, the NCEP2 record is too short (1979-present) for the purposes of 

this research.  Zolina et al. (2004) also conclude that the reanalyses demonstrate 

acceptable skills in the simulation of the variability of heavy and extreme precipitation in 

the cold season. However, this does not imply confidence in the actual amounts of 

precipitation which, in the case of extremes, are thought to be considerably 

underestimated.  However, for the purpose of studying the interannual variability of 

extremes, this deficiency is not particularly important.  Other studies documenting the 

quality of precipitation data in reanalyses datasets include Kanamitsu et al. (2002); Arpe 

et al. (1999) and Hagemann et al. (2002).  Overall, the implication is that the use of 

reanalysis datasets for precipitation research must be treated with caution, and rigorous 

testing and comparison with observed precipitation is required to ascertain the suitability 

of the data for the analysis in question. 

 

 

2.2.3.2 Wind Speed 

 

The availability of maximum daily wind speed is very limited.  A number of studies use 

peak wind speed data, but the data tend to be localised in space and time, and concerned 

with applications such as wind stress on buildings, rather than large-scale variability in 

extremes (e.g. Dukes and Palutikof, 1995; Zwiers, 1987).  In a study of the large-scale 

variability of high wind speeds, Enloe et al. (2004) find a series of significant 
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relationships between peak wind gust speeds and ENSO using a network of stations 

across the contiguous United States. 

 

With respect to observed maximum wind speeds, ready availability of station data over 

the period of observation required is limited to Germany, the Netherlands and the UK.  

Although other data exist, and are obtainable from national meteorological agencies, the 

cost far exceeds the budget available for this thesis. In all cases, concerns over the quality 

of station data apply.  In the case of wind speeds, which are closely linked to other 

reanalysis variables such as pressure, the reliability of reanalysis data is likely to be better 

than precipitation, with orography probably the main constraint on the accuracy of 

extreme wind speeds.  Moreover, as with precipitation, when considering interannual 

variability the magnitude of extreme events is of secondary concern.  For these reasons, 

reanalysis datasets are a strong candidate for use in deriving the wind predictands. 

 

2.2.4 Summary 

 

In summary, a growing body of literature exists on climate extremes, much of it with a 

focus on secular changes, and some looking at interannual variability.  In almost all cases 

(other than climate change projections), station data are used to derive indices.  The 

applicability of station data to studies of interannual variability with a view to developing 

a seasonal forecasting model is questionable. This is particularly the case when one 

considers that reanalysis datasets – superior in temporal and spatial coverage to station 

data and less likely to suffer from inhomogeneities – may be able to capture the 

interannual variability of extremes reasonably well.  This warrants further investigation, 

which will be undertaken as part of this study. 
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2.3 Seasonal Forecasting 

 

2.3.1 Introduction 

 

Research on seasonal climate forecasting has increased considerably since the mid to late 

1980s.  This increase is highlighted in several recent review papers on seasonal 

forecasting (Carson, 1998; Goddard et al., 2001; Rodwell and Doblas-Reyes, 2006).  

Furthermore, a search of the peer-reviewed literature (using the ISI Web of Science 

database) reveals that the number of seasonal forecasting papers published has increased 

greatly in absolute terms, and also relative to the collective body of climate literature. 

 

There are a number of reasons for this increase in interest in seasonal forecasting.  

Perhaps the most important facilitator is the huge and continuing increase in available 

computing power.  This expands the capability to analyse large quantities of data rapidly 

and allows the development of ever more complex and accurate models of the earth’s 

atmosphere and ocean.  Growth in the atmospheric and ocean sciences over the last few 

decades has also fuelled progress in seasonal forecasting, providing an ever-expanding 

body of scientific knowledge from which to develop prediction systems.  Underlying 

these developments is the increasing awareness of society’s vulnerability to the 

interannual variability of climate, and to climate change. 

 

From an end-user point of view, therefore, seasonal forecasting is seen as increasingly 

important and useful for a variety of applications, including the agricultural and energy 

sectors, and natural disaster forecasting.  Importantly, this is recognised by the seasonal 

forecasting community, where the process of operational forecasting has moved from 

being a purely academic exercise to one with the requirements of the user-community 

very much in mind (Goddard et al., 2001). 

 

This literature review will present a brief historical account of the development of 

seasonal forecasting, focusing on a few key early papers, and charting the subsequent 
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development, particularly over the last 20 years.  Initially, the review will focus 

exclusively on predictability and forecasting of ENSO, where virtually all the early 

seasonal forecasting efforts were focused.  It will then address seasonal forecasting in the 

Atlantic basin, with a focus on work in the North Atlantic/European (NAE) sector, where 

predictability is thought to be largely independent of ENSO. 

 

2.3.2 ENSO and Early Seasonal Forecasting 

 

The relevance of the early work to seasonal forecasting in the NAE sector is indirect.  It 

is instructive to follow the history of these early developments in the tropical Pacific, and 

compare and contrast with current efforts in the NAE sector, which are just beginning 

successfully to incorporate coupled modeling (e.g. Palmer et al., 2004).  Currently, for 

this regions, empirical techniques are still of at least comparable skill to dynamical 

methods. 

 

ENSO is a globally unique phenomenon.  It has far more wide-reaching effects than any 

other single mode of climate variability.  Due to the size of the ocean basin within which 

it occurs, and to the location of that basin with respect to the overlying atmospheric 

circulation, it is uniquely important, and currently, uniquely predictable.  It is therefore 

unsurprising that early seasonal forecasting efforts focused on ENSO, and its effects.  

The development of a mechanistic understanding of ENSO, originating in seminal papers 

by Bjerknes (1966, 1969) and Wyrtki (1975, 1979) on atmospheric and oceanic 

components of the system, respectively, fuelled a major effort in the prediction of El 

Nino events. This was particularly the case in the years following the major El Nino 

event of 1982-83 (e.g. Cane et al., 1986).  The importance of this early work cannot be 

understated and, in the field of seasonal forecasting, constitutes perhaps the most 

important single development in realizing potential predictability.  A subsequent paper by 

Wyrtki (1985) highlights the importance of research into mechanisms of variability in 

driving forecasting efforts; examining, in particular, the quasi-cyclical nature of ENSO.  

The next key development in ENSO forecasting was the introduction of coupled models, 
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combining the theories of Bjerknes and Wyrtki (Cane et al., 1986; Zebiak et al., 1987). 

At the time these models were more successful than contemporaneous and earlier 

statistical models (e.g. Hasselman and Barnett, 1981; Barnett, 1981; Graham et al., 1987) 

in terms of providing longer lead times for predictability, and subsequently most ENSO 

forecasting efforts have used dynamical techniques in the form of coupled models.  

Currently, a number of institutions provide skillful forecasts of ENSO based on 

dynamical and statistical models, including the National Centers for Environmental 

Prediction (NCEP), (US), the International Research Institute for Climate Prediction 

(IRI), (US), and the European Centre for Medium Range Weather Forecasting 

(ECMWF).  These forecasts are applied across the tropics and subtropics (e.g. Folland et 

al., 2001), and to some extent in extratropical North America (e.g. Gershunov et al., 

1998).  The continued operational use of statistical models is a testament to that fact that 

with the appropriate care taken in their development, they can often match the dynamical 

models in skill, and are orders of magnitude more easy to develop and maintain.  

Examples of operational statistical schemes include the National Centers for 

Environmental Prediction (NCEP)/Climate Prediction Center’s (CPC) CCA scheme 

(Barnston and Ropelewski, 1992) and the National Oceanographic and Atmospheric 

Administration Climate Diagnostics Center (NOAA CDC) linear inverse model (Penland 

and Magorian, 1993). 

 

2.3.3 ENSO and European Seasonal Forecasting 

 

Most seasonal forecasting efforts are focussed on ENSO related predictability, for the 

simple reason that ENSO is the largest and most predictable mode of climate variability 

with a well documented set of teleconnections.  Compared to ENSO and the tropics, the 

mid-latitudes, particularly the Euro-Atlantic region, have low predictability.  However, 

interest in predictability and forecasting in this region is increasing, as demonstrated by a 

growing body of literature on the subject in recent years. Research is based partly on 

potential predictability as represented by numerical models (e.g. Martineau et al., 1999; 

Friederichs and Frankignoul, 2003), and partly on observed predictability (e.g. Rodwell 
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and Folland, 2002).  Additionally, there is some interest in ENSO-related predictability in 

the NAE sector.  For example, Mathieu and Sutton (2004) find that the influence of 

individual El Nino and La Nina events is discernable on the North Atlantic/European 

climate. However, the nature of the forcing is different in each case, and sensitive to 

specific details of the tropical Pacific anomalies.  As far as traditional seasonal 

forecasting models are concerned, the implications of this are clear – new techniques 

need to be developed to deal with this level of complexity in the climate system, and 

ideally the physical mechanisms – if any – associated with the apparent teleconnections 

need to be reproduced by climate models for a better assessment of the predictability 

associated with these teleconnections.  Such an undertaking is beyond the scope of this 

study.  Wu and Hsieh (2004) examine nonlinear forcing of the Northern Hemisphere 

(NH) atmosphere by ENSO.  A neural network model based on nonlinear canonical 

correlation analysis (NLCCA) is used to study the effect of ENSO on NH 500-mbar 

geopotential height, with significant results being obtained for regions including Europe.  

In particular, the NAO and PNA patterns exhibit a quadratic response to SSTA. 

 

An interesting development from the early coupled model forecasts of ENSO is the 

recognition that sea surface temperatures (SSTs) are of great value owing to their 

persistence over a period of months or longer, and to their spatial coherence.  This 

application has been transferred to the North Atlantic with mixed success.  There is 

certainly no consensus on the issue of seasonal forecasting skill in Europe based on SST 

anomalies.  Indeed, some recent work has found little evidence of coupling and suggests 

that it is, in fact, the atmosphere which exerts a more important influence on the ocean 

(e.g. Wu and Gordon, 2002).  Conversely, a growing body of research finds evidence for 

coupling between the North Atlantic (and other basins) and the North Atlantic/European 

sector atmosphere (e.g. Peng et al., 2002, 2003). 
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2.3.4 North Atlantic/European Sector Seasonal Forecasting 

 

Barnston (1994) provides a relatively early assessment of NH predictive skill using 

canonical correlation analysis (CCA).  Wide variations in forecast skill are found, with 

most skill being associated with areas directly affected by the tropical Pacific.  Johansson 

et al. (1998) concentrate on potential skill in northern Europe, again using CCA, and 

applying the technique to surface air temperature.  They find that some skill is present in 

the winter season, using geopotential height as a predictor.  Further work by Johansson 

(2007) examines predictability of the NAO and PNA patterns, using a dynamical model 

and finds possible evidence for nonlinearity in the predictability, with strong positive 

events in the NAO being apparently more predictable – albeit at intraseasonal rather than 

seasonal timescales.  In their review of the prospects for seasonal forecasting, Palmer and 

Anderson (1999) recognise the nonlinear and chaotic nature of extratropical variability, 

and the limitations this imposes on seasonal predictability.  Their review focuses on the 

advances necessary in the field of numerical modelling to improve dynamical seasonal 

forecasting.  This focus is of particular relevance to European seasonal forecasting, where 

it is far from clear whether numerical or empirical techniques offer the most promising 

solutions in the medium term.  Currently, it is widely accepted that both approaches are 

equally skilful (that is to say, both have rather low skill), but that dynamical methods 

offer the greater long-term potential, whilst in the medium term both methods should be 

used.  This thesis will deal exclusively with empirical statistical techniques, and will seek 

to include a wide range of potential predictors. Additionally, it is hoped to capture more 

complex interactions that cannot be represented in the current generation of numerical 

models.  For example, little is currently known about the possible linkages between 

ENSO and the stratosphere, and how this may in turn affect the Northern Hemisphere 

extratropical climate.  Preliminary research in this area has been undertaken by 

Broennimann (2007), and Garcia-Herrera et al (2006).  Currently, complex nonlinear 

and/or threshold-dependent predictable relationships between European predictands and 

boundary forcing conditions are beyond the reach of empirical study owing to the 

relatively small sample sizes of available highly-detailed climate data.  For example, 

Broennimann et al (2004) find evidence for a Eurasian winter response to the strong 
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ENSO of 1940-41, which they are able to reproduce in a climate model.  They observe 

that it was the particular features of this ENSO – i.e. unusually strong and sustained – 

which seemed to cause such a notable response in Eurasia.  This supports the notion that 

there may be thresholds at which particular anomalies in the climate system might force 

responses in a nonlinear fashion.  However, this study represents one event, and, as 

mentioned above, in order for a robust empirical appraisal of such nonlinear components 

of seasonal climate variability and potential predictability, a much greater sample size is 

required.  These current shortcomings in our understanding and in the available data 

underpin the need for accurate, high-resolution models which could capture these 

nonlinearities.  One of the main aims of this thesis is to identify some potential nonlinear 

predictable relationships. 

 

Since Barnston (1994) and Palmer and Anderson (1994) no major increases in European 

seasonal forecast skill have been made, although a number of studies report incremental 

improvements in certain areas, using both empirical and dynamical techniques. There is 

also increased understanding of relevant boundary forcing processes, which offer some 

encouragement that further advances will be made.  The remainder of this section will 

review a selection of seasonal forecasting studies relevant to the thesis.  It should be 

noted at this point that there is recognition amongst potential end-users of European 

seasonal forecasts that even marginal improvements in forecast skill have practical value.    

Saunders and Qian (2002) identify levels of skill corresponding to R2 values of ~0.5 to 

0.6 as being ‘marginal but useable’ in the prediction of the winter NAO index.  Such 

levels of skill would likely be very useable for any industry which is able to apply a 

multi-year approach to using seasonal forecasts.  For example, energy companies, and 

insurance and other financial sector companies might stand to gain over the longer term 

from smaller improvements in skill than for example the agricultural or tourism sector, 

where there is less opportunity to hedge against the risk of an incorrect forecast. 

 

Davies et al., (1997) use the Hadley Centre Atmospheric Model (HADAM1) to assess 

predictability in the NAE sector, finding that it is greatest in winter and spring. 

Furthermore, in years with extreme SST anomalies in the North Atlantic, it is possible to 
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obtain useful predictive skill for the NAO.  Colman (1997) employs empirical techniques 

to investigate the relationship between North Atlantic SST anomalies and summer central 

England temperature (CET), obtaining a correlation skill of about 0.5 at a four month 

lead time.  While this study is not directly relevant to the thesis, its results may have 

some bearing on the precipitation model in particular.  Feddersen (2000) studies 

temperature forecasting in summer and winter throughout Europe, employing worldwide 

SSTs, and using the ECMWF GCM.  A relationship between temperature at 850hPa 

(T850) and ENSO is identified, although the nature of the forcing is not stationary. 

Additionally, when the results are compared with a reanalysed dataset, this link is not 

found.   

 

A series of three papers by Pavan et al. (2000a, b, c) highlight some of the problems of 

nonlinearity faced in European seasonal forecasting. Firstly (Pavan et al., 2000a), in a 

paper on the seasonal prediction of blocking frequency, it is found that the skill of a 

GCM in predicting the large-scale evolution of blocking patterns is a function of the 

pattern considered.  In the second paper (Pavan et al., 2000b), the results of a set of 

multi-model seasonal hindcasts are considered.  It is found that skill is highly variable 

over Europe, and is also dependent on the variable and the season.  Systematic error in 

the model does not improve the hindcast skill.  Finally (Pavan et al., 2000c) considers the 

interannual variability of large-scale flow over Europe.  A number of important patterns 

are identified using an EOF analysis.  The relationships between these modes are 

nonstationary, and in addition, there are areas where the model does not represent the 

observed very well.  The implication of these papers is that a more comprehensive 

empirical understanding of boundary forcing is required, in parallel with improved 

representation by models. These shortcomings notwithstanding, it is found that the use of 

large ensembles for seasonal forecasting does improve skill.,  See, for example, 

Piedelievre (2000); Richardson (2000); Shukla et al. (2000); Doblas-Reyes et al. (2003); 

Feddersen (2003); Palmer et al. (2004). 

 

A number of studies focus on the observed record alone. For example, Lloyd-Hughes and 

Saunders (2002) find that spring precipitation forecast skill is significant based on ENSO 
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and North Atlantic SSTs, with model skill 14-18% better than climatology.  Wedgbrow et 

al. (2002) find that a range of relationships exist between large-scale atmospheric 

circulation patterns such as the NAO and Polar-Eurasian (POL) patterns, SST anomalies 

in the North Atlantic and summer rainfall and river flow anomalies in England.  

However, the forecasting rules can only be applied to specific predictor configurations, 

and further research (and more data) is required to extend these forecasts to cover a 

greater range of years.  A similar study by Wilby (2001) finds a relationship between the 

NAO index and summer monthly mean flows for a number of UK rivers.  Qian and 

Saunders (2003) use northern hemisphere summer snow extent to forecast the following 

winter NAO index, and find that this provides reasonable skill when applied as a measure 

of North Atlantic winter storminess.  Blender et al. (2003) use linear regression to 

develop a seasonal forecasting model predicting monthly mean temperature anomalies for 

North Western Europe.  Again, observed North Atlantic SSTs are used as predictors, in 

conjunction with a selection of European climate variables.  They find marginal 

improvements over climatology in the skill, which, in turn is significantly better than in a 

simulated forecasting experiment.   

 

Also worthy of note is the importance of decadal scale variability in the NAE sector, both 

in the ocean circulation, and especially the NAO.  The enhanced predictability of the 

NAO at decadal rather than interannual timescales makes a strong case for the use of the 

Optimal Climate Normals (OCN) method used in several operational schemes, notably 

that at the US Climate Prediction Centre (CPC) (van den Dool, 2007).  OCN simply takes 

the climatology for the number of years that optimise forecast skill, and applies this to the 

forecast – either directly as the forecast itself, or conceivably as a coefficient for a 

forecast derived by other methods. 

 

As well as the sample of experiments outlined above, a number of meteorological 

agencies in Europe carry out operational seasonal forecasting programs, including the UK 

Met Office (UKMO), the European Centre for Medium Range Weather Forecasting 

(ECMWF), and MeteoFrance.  In addition to this, forecasts are made on a commercial 

basis, the results of which are not freely available. 
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2.3.5 Seasonal forecasting using Artificial Neural Networks (ANN) 

 

Although this study is limited to the application of linear statistical techniques, is it of 

interest to note that nonlinear methods, such as artificial neural networks have been 

applied with apparently useful results.  A relatively small number of studies have applied 

ANN methods to seasonal forecasting.  Specifically for Europe, Bodri and Cernak (2000) 

and Bodri (2001) apply ANN models to the prediction of extreme precipitation, with 

encouraging results as far as seasonal predictability is concerned.  In this case, the neural 

network model used is a back-propagation network. Dawson and Wilby (1999) 

Shamseldin and O’Connor (2001) and Campolo et al. (2003) apply neural network 

methods to river flow forecasting at much shorter timescales, with considerable success.  

Worth noting here is that a variety of ANN model structures exist, and it is important to 

pick a model suitable for the application. For example, Dawson and Wilby (1999) found 

that a multi-layer perceptron model was considerably more effective than a radial basis 

function model. 

 

Papers by Hsieh and various co-authors identify key areas where ANN models may be 

applied to improve understanding of climate variability and to implement climate 

forecasting.  Hsieh and Tang (1998) explore the application of ANNs to prediction in 

meteorology and oceanography, identifying several techniques which simplify the 

analysis and interpretation processes, including the use of principal component analysis 

(PCA) to reduce dataset dimensionality.  A further series of papers (Hsieh, 2000; Hsieh, 

2001a, b; and Hsieh and Wu 2002) develops nonlinear forms of canonical correlation 

analysis (NLCCA), PCA (NLPCA), and singular spectrum analysis (NLSSA) for 

application to climatology. In each case, these methods offer new insights into climate 

variability in the tropical Pacific.  It is possible that these methods could be applied to the 

NAE sector climate. However, the lack of signals as strong as those in the tropical Pacific 

may be an obstacle to increased understanding using these techniques.  Where linear 

techniques are used successfully in the NAE sector – such as PCA or SVD to represent 
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major modes of oceanic or atmospheric variability – it may well be the case that ANN 

methods offer new insights into variability, and possibly could be used to provide 

predictor timeseries for a seasonal forecasting model. 

 

 

 

2.3.6 Summary 

 

The implication from many of the European seasonal forecasting studies is that the 

predictor-predictand relationships are highly complex, and much work remains to be 

done.  As is to be expected, much of the interannual variability of the European climate, 

particularly in winter, can be described by the NAO.  It is therefore of real importance to 

be able to improve the predictability of the NAO at seasonal timescales.  The 

predictability of the European climate appears to be highly dependent on the variables 

and seasons considered.  For instance, temperature generally has higher predictability 

than precipitation.  This has some implications for the thesis, both in terms of the lower 

expectations of precipitation forecast skill, and the nature of the precipitation predictands 

with respect to spatial and temporal aggregation. 

 

There is evidence to support the fact that predictability of the European climate may be 

nonlinear.  However, for the purposes of this study it is thought that an insufficiently long 

observational record is present to allow the reliable use of nonlinear techniques.  

Furthermore, it is felt that there is particular danger in applying nonlinear computer-

learning algorithms to data where the nature of the physical links between the predictors 

and the predictand (if any) are not fully understood. 

 

 

 - 25 - 



2.4 Seasonal forecasting of extreme events 

2.4.1 Introduction 

 

This thesis is primarily concerned with the prediction of variations in the frequency of 

extreme events at the seasonal scale.  For this to be possible, it is self evident that there 

should be some seasonal predictability at least of the mean state of the climate (given that 

the occurrence of extreme events is related in some way to the boundary forcing 

processes that affect the seasonal mean), or more desirably that the frequency of the 

extremes themselves should be predictable.  Additionally, the occurrence of extreme 

events within the seasonal mean climate should exhibit interannual variability.  The first 

requirement – that of predictability of seasonal means - has been addressed elsewhere.  

This section will address extreme events in more detail, both with respect to their 

interannual variability, and their potential seasonal predictability. 

 

Owing to the impact of extreme weather events in Europe, and current concerns about the 

impact of global warming on their frequency and magnitude (e.g. Fowler and Hennessy, 

1995; CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes, 

1999; Palmer and Raisanen, 2002), the study of the observed record of extremes has 

increased in recent years.  Consequently, extreme wind and rainfall/flooding events in 

Europe are relatively well documented. 

 

2.4.2 Seasonal forecasting of extreme events 

 

Compared to the forecasting of seasonal averages, attempts at forecasting extremes are 

relatively rare, and there are fewer publications.  A number of studies focus on the USA 

(e.g. Gershunov and Cayan, 2003).  In a series of papers by Gershunov, Cayan and 

others, the effect of ENSO on extreme rainfall in the USA is studied.  It is found that 

regional predictability in the USA is a function of the strength and stability of the ENSO 

signal in that region; although not all clear ENSO signals result in predictive skill.  Cayan 
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et al. (1999) find that ENSO has a significant effect on the frequency distribution of daily 

precipitation and stream flow for selected seasons and regions in the USA.  They identify 

these shifts with changes in the likelihood of flooding (with the effect of ENSO on 

streamflow being amplified over that on precipitation), and conclude that the prospects 

for seasonal forecasting are hopeful. However, the identification of differences in the 

response to each ENSO event mean that care must be taken, even when using a powerful 

signal like ENSO as a predictor.  More recent work (Gershunov and Cayan, 2003) 

considers ENSO, as well as other predictors, for extreme rainfall in the USA.  While the 

majority of the forecast skill is due to ENSO, there are also potentially useful non-ENSO 

predictors, including north Pacific SST forcing. Additionally, it is found that predictions 

of mean, or less extreme, precipitation are considerably more skillful than those for the 

90th percentile or lower probability events.  A pure statistical model is shown to 

outperform a hybrid dynamical-statistical model (where SST drives atmospheric 

predictors in a GCM).   

 

As well as US precipitation forecasts, some work has been done on the seasonal 

forecasting of east coast storm systems.  Notably, DeGaetano et al. (2002) devise a 

nonparametric statistical model for predicting US east coast winter storm frequency.  A 

pool of potential predictors is reduced using a chi-squared screening procedure, and used 

to develop a series of discriminant functions, relating them to above or below normal 

storm activity.  A high degree of skill is obtained for the forecasts, although the physical 

mechanisms behind this skill are not clear, and further work remains to be done in 

support of the results.  The application of similar methods to the problem of European 

storm forecasts may well be of use, although similar problems are likely to be 

encountered concerning the mechanistic explanations for any useful skill. 

 

Qian and Saunders (2003) develop a model to forecast wintertime storminess over the 

North Atlantic. This model is based on the relationship between the NAO and northern 

hemisphere summer snow extent, putting into practice some of the theory discussed in the 

section of this review on snow cover and seasonal predictability.  Results are 

encouraging, and a plausible physical mechanism for the relationship between snow 
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cover and the NAO is included, although the short length (29 years) of the snow cover 

records used means caution should be exercised in the application of these results.  

Incidentally, the ERA-40 dataset – including the operational analysis – provides close to 

50 years of snow cover data, and might well be of use when applied to this problem. 

 

A report by Holt et al. (2001) for the TSUNAMI project includes a seasonal forecast 

model for wind exceedances using a variety of regression techniques and a set of 

predictors taken from North Atlantic SSTs and large-scale atmospheric circulation 

indices.  Partial least squares regression was found to provide the most accurate forecasts, 

as well as being computationally fast, from a practical point of view.  The aim of this 

thesis is partly to build upon this work, applying new methods, and possibly including 

new predictors. 

 

2.4.3 Summary 

 

Overall, while the number of seasonal forecast models to predict extremes is limited in 

the academic literature, there is the basis for the development of valid models for extreme 

rain and wind events in Europe.  However, a central tenet of any interpretation of forecast 

results and skill should be that without plausible or demonstrated physical mechanisms, 

results should be treated with caution.  In the longer term, and beyond the scope of this 

study, the development of numerical models which recognise a more complete suite of 

forcing mechanisms relevant to this problem will be necessary.  In the meantime, 

empirical methods, while potentially providing forecast skill, should also add to our 

understanding of where to look for the physical mechanisms which explain interannual 

climate variability in Europe. 
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2.5 Potential sources of predictability 

 

2.5.1 Atlantic Ocean 

 

2.5.1.1 Introduction 

 

Current seasonal forecasting efforts are largely predicated on the persistence of ocean 

mixed layer temperature anomalies, the predictability of these anomalies, and their 

coupling with the overlying atmosphere.  It is therefore to be expected that a major goal 

in the development of seasonal forecasting systems for Europe is the understanding of 

oceanic variability in the North Atlantic, and its interaction and possible coupling with 

the atmosphere.  This section will focus on oceanic variability at a range of timescales, 

and consider key relationships between the ocean and atmosphere, and the development 

of understanding of Atlantic (and in particular North Atlantic) climate variability and 

potential predictability.  Variability of the North Atlantic Oscillation (NAO) and other 

modes of atmospheric variability will play a role in this discussion, and the relationship 

of these phenomena to European climate will be considered in more detail in a separate 

section.  Other potential predictors of the NAO and other circulation modes will also be 

considered separately. 

 

The North Atlantic Ocean comprises the boundary conditions upstream of north western 

Europe.  It is clearly a candidate for sources of potential seasonal predictability, although 

the picture that has emerged from some three decades of research is highly complex, and 

far from being resolved.  The key difficulties are in unpicking the nature and strength of 

air-sea coupling in the North Atlantic, and to some extent the relationship between the 

tropical and extratropical Atlantic regions.  Both are complicated by the stochastic nature 

of atmospheric variability in the extratropics, in which any potential signal (linear or 

otherwise) imparted by the more slowly varying ocean is likely to be significantly smaller 

than internal atmospheric variability (e.g. Weng and Neelin, 1998). The latter (tropical-
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extratropical coupling of the Atlantic) is further complicated by the incomplete 

understanding of ocean variability in the tropical Atlantic (e.g. Marshall et al., 2001).  

However, considerable progress is being made in understanding all these problems, and 

in particular, the development of more sophisticated global climate models (GCMs) has 

allowed much interesting work to be carried out in recent years, considerably enhancing 

our understanding of the problem (e.g. Huang et al., 2004; Rodwell and Folland, 2002). 

 

Marshall et al. (2001) identify three key interrelated phenomena that comprise climate 

variability in the tropical and North Atlantic basins:  

 

o Tropical Atlantic variability (TAV), comprising 

o A covarying fluctuation of tropical Atlantic sea surface temperature 

(SST) and 

o Trade winds straddling the Intertropical Convergence Zone (ITCZ) 

o The NAO, which is the primary mode of climate variability in the North Atlantic 

and surrounding regions, consisting of a dipolar exchange of atmospheric mass 

between centres of action located roughly over the Azores and Iceland (e.g. van 

Loon and Rogers, 1978).  

o The Atlantic Meridional Overturning Circulation (MOC), which is a measure of 

the intensity of the global Thermohaline Circulation (THC) in the North Atlantic, 

driven by convection in the sub-Arctic, and affecting the amount of heat 

transported northwards from the Equator.  

 

While these three phenomena are interrelated to some extent, they all have distinctive 

signatures in the Atlantic basin, and can be identified as varying individually in time and 

space.  The NAO and its relationship with the North Atlantic basin will be considered in 

most detail here, as it has the most direct and obvious effect on European climate.  In 

addition, there is some evidence to suggest that tropical Atlantic variability may be an 

important source of potential predictability for the North Atlantic/European sector (e.g. 

Peng et al., 2005). 
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2.5.1.2 North Atlantic ocean-atmosphere variability 

 

As discussed previously, the North Atlantic Oscillation (NAO) is the primary mode of 

atmospheric variability affecting European climate.  Patterns of variability connected to 

the NAO have been recognised for centuries, and in 1932 Walker and Bliss provided 

perhaps the earliest description of the coherent phenomenon at sea level over the Atlantic.  

Much more recently, the question of whether the NAO is in fact a local expression of a 

hemispheric mode – the Arctic Oscillation (AO), or Northern Hemisphere Annular Mode 

(NAM) – has been raised (Thompson and Wallace, 1998).  While important, this question 

is deemed to be of peripheral relevance in this discussion, and will be addressed in more 

detail elsewhere.  With respect to seasonal forecasting of the European climate, the key 

issue is identified as predictability of the NAO at a range of timescales.  It is therefore 

important that this research focuses on air-sea interactions in the North Atlantic - a 

feature it shares in common with most attempts to understand the seasonal predictability 

of European climate, of which a case in point is CLIVAR Atlantic research program 

which has co-ordinated much of the recent work on this subject. 

(http://www.clivar.org/science/atlantic.htm).  The earliest work on air-sea interactions in 

the Atlantic was carried out by Bjerknes (1959, 1964), Frankignoul (1978) on the 

generation of SST anomalies, and Frankignoul and Reynolds (1983) on mid-latitude SST 

anomalies in a dynamical model.  Numerical modelling has become indispensable to the 

development of our understanding of North Atlantic climate variability. Indeed Wallace 

et al. (1990) write of the impossibility of distinguishing the direction of forcing between 

the atmosphere and ocean from observed data alone.  This highlights the importance of a 

physical understanding of the processes, and this in turn has increased along with the 

improvement of climate models. 

 

Prior to the 1990s, most work on the North Atlantic focussed on atmospheric forcing of 

the ocean (Wallace et al., 1990), as was apparent in the structure of SST anomalies and 

lagged relationships with the atmospheric circulation (this is in contrast to the North 

Pacific, where evidence for atmosphere-ocean coupling was uncovered during the 1980s 

(Namias and Cayan (1981) and Namias et al. (1988)). However, during the 1990s a 
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parallel strand of research found evidence for atmosphere-ocean coupling in the North 

Atlantic (e.g. Rodwell and Folland, 2002).  Both of these strands will be discussed, but 

the latter is of particular interest owing to the associated implications for seasonal 

predictability. 

 

2.5.1.3 Uncoupled variability in the Atlantic 

 

It is widely accepted that the main driver of SST anomalies in the North Atlantic on 

interannual timescales is atmospheric forcing.  The leading mode of SST variability in the 

North Atlantic is a tripole structure – the North Atlantic tripole (Friederichs and Hense, 

2003; Cayan, 1992a,b), with centres of the same sign located east of Newfoundland just 

south of the Labrador Basin, and spanning the tropical/subtropical North Atlantic centred 

on about 15°N. The centre of action with the opposing sign lies in between these two, in 

the Gulf Stream region, at about 35°N, 60°W, concentrated more heavily in the west of 

the basin.  Cayan (1992a) finds that the observed SST anomalies that make up this 

leading mode are driven primarily by latent and sensible heat flux anomalies.  These in 

turn are driven by the overlying atmospheric circulation.  As the ocean integrates 

atmospheric forcing over a weekly-monthly period, the seasonal-scale characteristics of 

the atmospheric circulation are captured. In the case of the North Atlantic tripole, the SST 

anomalies can be expressed as being driven primarily by the NAO at seasonal timescales, 

with a positive NAO index (NAOI) resulting in negative anomalies in the subpolar and 

subtropical regions, and a positive anomaly in the Gulf stream region.  This atmospheric 

forcing relationship also holds for the second and third modes of SST variability in the 

North Atlantic – driven by lesser modes of variability in the atmosphere (Cayan, 1992a).  

These relationships are explored in further detail in Cayan (1992b).  Halliwell and Mayer 

(1996) explore the processes by which apparently stochastic wind forcing generates SST 

anomalies by driving the heat flux between the ocean and atmosphere.  This acts as both 

a forcing and damping mechanism, giving rise to temporally coherent SST forcing over 

timescales ranging from a few months to eight years (Halliwell and Mayer, 1996). Zorita 

and Frankignoul (1997) develop the concept of a ‘red’ spectral response to the ‘white’ 
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atmospheric forcing at interannual to decadal timescales.  Their results are based on 

coupled model output, using the ECHAM1/LSG coupled ocean-atmosphere GCM 

(CGCM), and they show that stochastic forcing by the atmosphere can contribute to 

oceanic variability at decadal timescales.   

 

As well as direct localised heat exchange driven by the atmosphere, oceanic advection 

processes are also important in driving SST anomalies.  Delworth and Mehta (1998) 

explore the role of advective processes in observed data and in data from a CGCM. While 

this study is confined to the tropical and subtropical Atlantic, the authors find that on 

interannual timescales anomalous heat fluxes drive SST variability, while advection 

becomes increasingly important at decadal timescales.  This has implications for longer 

range predictability of the ocean-atmosphere system over the North Atlantic, and is 

related to TAV and MOC variability, which will be explored in more detail later.  

Saravanan (1998) explores the relationship between atmospheric low-frequency 

variability and midlatitude SST variability in the National Center for Atmospheric 

Research (NCAR) Climate System Model (CSM).  

 

In the late 1990s coupled modelling was beginning to develop to the stage where models 

could represent the variability and mean state of the climate system quite well, without 

flux adjustments.  The NCAR CSM is one of this cohort of models, and is thus suitable 

for investigation of ocean –atmosphere interaction in the North Atlantic. Saravanan 

(1998) found that SST variability in the North Atlantic is primarily driven by atmospheric 

forcing at the interannual timescale – in accordance with studies based on the observed 

data, for example Wallace et al. (1990) – and that the main modes of SST variability are 

driven by the main modes of variability in the overlying atmosphere.  Saravanan’s study 

makes a strong case for the use of coupled models to develop our understanding of North 

Atlantic climate variability, based on internal nondeterministic variability of the 

midlatitude atmosphere, and its effect on the ocean, which renders an atmospheric model 

forced with SSTs inadequate.  
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In general, atmospheric forcing of the heat flux between atmosphere and ocean is thought 

to be the main driver of North Atlantic SST anomalies and variability at interannual to 

decadal timescales.  A large body of literature exists on this.  For example, using 

observed data, Zorita et al. (1992) use canonical correlation analysis (CCA) to 

demonstrate that the leading modes of sea level pressure (SLP) in the North Atlantic lead 

winter SST.  Deser and Blackmon (1993) describe North Atlantic Climate variability in 

the 20th century and find that the association between an SST dipole (similar to the 

northern two centres of the North Atlantic tripole), and surface winds.  Anomalously 

strong winds occur over anomalously cool SSTs and vice versa.  Furthermore, quasi-

biennial and quasi-decadal peaks in the power spectra of these covarying timeseries are 

observed.  This implies that ocean-atmosphere coupling may be present at timescales 

relevant to the seasonal prediction problem. The results indicate an important role for 

oceanic advection as well as for local wind forcing. Halliwell (1997) expands on this, 

using individual anomalies of surface pressure between 1950 and 1992. The influence of 

these anomalies on SST is noted, but the key point of the Halliwell analysis is that the 

atmospheric variability is nonstationary when studied using this methodology.  The 

associated consequences of this are important, particularly if air-sea coupling is present, 

as far as seasonal predictability is concerned.   

 

Studies based on model output are also numerous. Miller (1992), in one of the earliest 

coupled model studies, found that atmospheric forcing is predominant, although the 

findings are inconclusive due to limitations of the model physics.  Battisti, Bhatt and 

Alexander (1995) study an ocean model coupled to observed atmospheric parameters. In 

the absence of any oceanic forcing, the model reproduces the observed temporal and 

spatial structure of North Atlantic SST anomalies well, with some regional exceptions 

attributed to advective processes (not included in the model).  Delworth (1996) uses the 

Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM to investigate zonal 

bands of SST anomalies in the North Atlantic, with similar findings to Battisti et al 

(1995) and Cayan (1992a,b) (using model and observed data respectively). That is, that 

the SST anomalies are primarily driven by anomalous surface heat fluxes, which are in 

turn driven largely by the atmosphere.  Blade (1997) finds that dominant atmospheric 
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modes lead equivalent oceanic modes by about one month; however, there is evidence 

that coupling between the ocean and atmosphere can result in a discernable signal in the 

500mb geopotential height field. The study identifies a negative thermal feedback on the 

atmosphere associated with heat flux anomalies.  Coupling reduces this feedback, and 

therefore enhances the persistence of atmospheric anomalies. This result is based on a 

comparison between coupled and uncoupled realisations of the model.   

 

A suggestion for future research made by Blade (1997) is to compare long coupled runs 

with long uncoupled runs using fixed SST data provided by the coupled runs.  Visbeck et 

al. (1998) also study the response of an ocean model to atmospheric forcing derived from 

a boundary layer atmospheric model coupled to an OGCM.  Results indicate that the 

subtropical cell of the Atlantic tripole SST mode is directly influenced by atmospheric 

forcing related to the NAO. In the Gulf Stream region, advection and re-emergence, in 

addition to atmospheric forcing, play a role in determining SST anomalies.  In the 

subpolar gyre region, the strongest response of the ocean is on a decadal timescale, 

raising the possibility of a feedback loop where negative SST anomalies and a positive 

NAO phase are coupled. In this scenario, the positive feedback results in a persistent 

negative SST anomaly to the point where advection related to the resulting enhanced 

thermohaline circulation warms the subpolar region, reversing the cycle at decadal 

timescales.  Other studies propose similar mechanisms (e.g. Zorita and Frankignoul, 

1997; Timmerman et al., 1998), with the result that decadal variability and predictability 

are reasonably well understood in the North Atlantic.  Further studies find no or very 

little discernable influence of the midlatitude ocean on the overlying atmosphere (e.g. 

Lau, 1997; Saravanan, 1998).  The particular benefit of these model studies has been in 

furthering an understanding of physical modes of variability in the North Atlantic Ocean, 

and to a lesser extent in the overlying atmosphere.  

2.5.1.4 Coupled ocean-atmosphere interaction 

 

A branch of research running parallel to the study of uncoupled atmospheric forcing of 

the North Atlantic – and focussing on coupled variability – has grown in recent years, 
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although the idea of coupled variability in the North Atlantic has been around for some 

time (e.g. Palmer and Sun (1985), who were perhaps the first to apply numerical 

techniques to this particular problem).  One of the key drivers of this recent development 

has been the increasing sophistication and accuracy of GCMs, allowing relatively long 

integrations of realistic atmospheric variability.  As well as in model data, the observed 

data has also provided evidence for coupling in the North Atlantic sector (e.g. Wallace, 

1990; Rodwell and Folland, 2002).  In particular, the high resolution satellite data that 

has been available in recent years has provided new and important insights into this 

phenomenon (see Xie, 2004). This will be discussed in more detail below. 

This section provides a review of work that has identified evidence for coupled 

variability in the North Atlantic sector, with an appraisal of the associated implications 

for predictability at the seasonal to interannual timescale.  The implications of this work 

are of considerable importance to European seasonal forecasting, as SST predictors 

provide one of the most important areas of research concerning potential seasonal 

predictability of the European climate and in the UK Met Office seasonal forecasts of the 

NAO, one of the few instances where operational forecasts with appreciable levels of 

skill are produced for Europe (Rodwell et al., 1999). 

 

2.5.1.4.1 Model studies 

 

Miller (1992) is one of the earliest studies to use a coupled model realisation of the North 

Atlantic sector.  The research indicated the presence of some coupling, although this did 

not stand up to detailed scrutiny, and was considered inconclusive. Increasingly, 

throughout the 1990s, more detailed coupled models, and further coupled and 

atmospheric model validation against the observed has reduced these uncertainties.  In 

fact, a significant proportion of the research in this area has focussed on the forcing of 

AGCMs with observed and idealised SST anomalies.  Peng et al. (1995) show that an 

atmospheric model can react to prescribed SST anomalies in the mid-latitudes, including 

shifts in the location of the storm track over the North Atlantic. In common with other 

results (e.g. Peng, 2002) it is found that the atmospheric response is nonlinear, being 
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significant only in the case of positive SST anomalies.  Other relatively early studies 

finding evidence for coupling or ocean to atmosphere forcing include Power et al. (1995), 

Ting and Peng (1995) and Kushnir and Held (1996).  Rodwell et al. (1999) used an 

AGCM (Hadley Centre 2nd generation Atmospheric Model, HadAM2) to examine the 

influence of North Atlantic SST anomalies on the NAO index. Using an ensemble of six 

runs, each comprising the latter part (1947-97) of 128 years of model output, and forced 

with observed SST, it is found that the ensemble reproduces multi-annual to decadal 

variability in the NAO.  Correlations with the observed record demonstrate that this result 

is significant at the 98% level for the unfiltered NAO indices, while significance 

increases when the indices are filtered to remove high frequency (interannual) variability.  

Contrary to much of the earlier work showing that North Atlantic SST has little or no 

effect on the overlying atmosphere, results from this study indicate that the SST tripole 

mode – which is believed to be generated by anomalous surface heat flux driven by the 

atmosphere – in fact contributes in turn to driving atmospheric variability (in the form of 

the NAO), at least in this model.  This raises a series of interesting questions about 

feedback processes, the spatial and temporal scales at which they may operate, and what 

sort of resolution in observed and modelled data is required to improve understanding of 

these processes.   

 

The increasing availability of high resolution satellite data of SSTs and ocean winds 

offers potentially useful insights, as discussed by Xie (2004).  Further findings in 

Rodwell et al. (2002) include NAO responses to idealized Atlantic tripole SST patterns 

that are similar to the observed.  The mechanism put forward to explain these results is 

driven by anomalies in evaporation associated with anomalous SSTs.  The local effects of 

anomalous evaporation (precipitation and atmospheric heating) act to reinforce the 

thermal and geopotential structure of the NAO (Rodwell et al., 1999).  Although 

anomalous evaporation should act as a negative feedback on SST anomalies, Rodwell et 

al. (1999), find that anomalous advection driven by Ekman transport provides a 

countering positive feedback, particularly north of about 45°N.  Implications of the 

Rodwell et al. (1999) study are encouraging for potential predictability of the North 

Atlantic/European climate, particularly when taken in conjunction with studies that show 
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useful potential predictability for North Atlantic SSTs up to several years in advance (e.g. 

Sutton and Allen, 1997).  A similar study carried out by Mehta et al. (2000) using the 

NASA Seasonal-to-Interannual Prediction Project (NSIPP) model supports the findings 

of Rodwell et al. (1999).  Robertson et al. (2000) use the University of California, Los 

Angeles (UCLA) AGCM, and obtain similar results, including a five-fold increase in 

NAO variability when observed SSTs are used, as compared to climatological SSTs.  It 

should be noted that model representations of the North Atlantic climate are not uniform 

from one model to the next. This model dependence is discussed in some detail in 

Robertson (2000), and Kushnir et al. (2002).  Peng et al. (2002) use an AGCM forced 

with climatological SSTs, and an idealised SST tripole anomaly added or subtracted from 

climatology, similar to the method used by Rodwell et al. (1999), and find that there is a 

500hPa response to SST variability, although this is weaker than in the observed response 

identified by Czaja and Frankignoul (2001).  It is thought that the atmospheric response is 

maintained by eddy vorticity fluxes. Later results based on observed data support the 

notion that cool ocean SSTs can drive vertical momentum mixing, forcing surface wind 

adjustments to SST gradients (Xie, 2004).  

 

Several recent studies use AGCMs forced with observed, climatological or idealised SST 

anomalies, and focussing on the North Atlantic.  These include Drevillon et al. (2003); 

Frankignoul et al. (2003); Friederichs and Hense (2003); Friederichs and Frankignoul 

(2003); Lin and Derome (2003); Paeth et al. (2003); Peng et al. (2003); Robinson et al. 

(2003); Rodwell and Folland (2003); Sutton and Hodson (2003); Cassou et al. (2004); 

Deser et al. (2004); Kvamsto et al. (2004); and Magnusdottir et al. (2004).  Almost 

invariably in these studies, a discernable influence of the North Atlantic on the overlying 

atmosphere is found. Some of the findings including – among others – Robinson et al. 

(2003) and Deser et al. (2004) suggest evidence for nonlinearity in the atmospheric 

response to oceanic forcing.  Sutton and Hodson (2004) note an atmospheric model 

response to observed SSTs in the North Atlantic that is nonstationary, perhaps a function 

of decadal or multidecadal oceanic processes.  More recently, Mosedale et al. (2005) find 

an ocean-to-atmosphere influence in the northeastern Atlantic using a time series 

modelling framework, while Ferreira and Frankignoul (2005) find a positive feedback 

 - 38 - 



resulting from anomalous diabatic heating of the atmosphere in the process of SST 

anomalies being damped.  This feedback can have an adjustment time of several months.  

Wang and Chang (2004) identify advective processes that significantly enhance 

predictability in certain regions of the North Atlantic, out to lead times of up to five 

months.  With respect to Tropical Atlantic forcing of the North Atlantic, Peng et al. 

(2005) extend work carried out by e.g. Czaja and Frankignoul (2002) on the observed 

North/Tropical Atlantic horseshoe pattern and its relationships with the NAO using a 

large ensemble of AGCMs and AGCMs coupled to a mixed layer ocean.  They find little 

evidence in the model to support the Czaja and Frankignoul hypothesis that the summer 

North Atlantic Horseshoe (NAH) forces the early winter NAO, finding that the Tropical 

influence alone is more important in forcing the winter NAO.  Interestingly, Frankignoul 

and Kestenare (2005) develop this further in a study on the observed record, confirming 

the findings of Czaja and Frankignoul (2002), but de-emphasizing the role of the northern 

part of the NAH (southeast of Newfoundland).  Clearly there is still work to be done in 

this area, and as indicated in Frankignoul and Kestenare (2005), atmospheric models are 

improving in their representation of North Atlantic air-sea coupling. 

 

2.5.1.4.2 Observed studies 

 

A number of observed studies have been carried out in parallel with the model studies, 

which also reveal evidence of coupling between the ocean and atmosphere.  A selection 

of the more recent papers is discussed here.  Czaja and Marshall (2001) use an index of 

SST variability to show that similarities exist in the power spectra for this index and the 

northern part of an SLP dipole reminiscent of the NAO.  A broad spectral peak is 

observed at 10-20 years.  Czaja and Frankignoul (2002) use the NCEP-NCAR reanalysis 

to investigate covariability between oceanic (North Atlantic) and atmospheric variables at 

a range of leads and lags.  While atmospheric forcing of the ocean is found to dominate, 

there is significant covariance when the atmosphere (Z500) lags by several months, 

implying an oceanic effect on the atmosphere.  Rodwell and Folland (2003) give 

evidence that the North Atlantic atmosphere responds to the ocean throughout the annual 
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cycle, in particular, responding to the tripole pattern in winter, and affecting 

anticyclonicity in the UK downstream of summer SST anomalies.  When the observed 

results are compared with those from an atmospheric model (HadAM3) forced with the 

same SSTs, the atmospheric response is not as strong, although of a similar nature. While 

this provides physical support for the features identified in the observed study, it is clear 

that significant improvements are required in GCM representations of the North Atlantic 

climate.  Cassou et al. (2004) identifies asymmetries between the two phases of the NAO, 

with the positive phase showing a displacement towards Europe, as well as 

nonstationarity in the variability of this system.  It is found that SSTs in the tropics and 

extratropics affect the North Atlantic regime, and ENSO is thought to have an effect also.  

Pozo-Vazquez et al. (2005) examine winter SLP anomalies in the Northern Hemisphere, 

finding a potentially predictable relationship between autumn cold ENSO events and 

NAO-like SLP patterns; although the mechanism for this is thought to owe more to 

standing wave trains that propagate from the North Pacific than Atlantic SST anomalies. 

 

2.5.1.5 Summary of Atlantic Ocean studies 

 

The modelled and observed evidence for oceanic forcing of the North Atlantic/European 

atmosphere is well established.  However, whether this coupling can produce useful 

predictability is a question that requires further research.  In the light of model 

inadequacies in representing these complex relationships, a useful step towards better 

understanding may well be the exploration of statistical relationships as a guide to model 

development – although these should take care not to contradict the fundamental physical 

principles of the models.   

 

There are many more aspects of Atlantic climate variability which may have a significant 

effect on the European climate – including tropical processes (e.g. Sutton and Hodson, 

2003), the meridional overturning circulation (e.g. Delworth and Mann, 2000), and the 

re-emergence hypothesis (e.g. Deser and Blackmon, 1993).  All of these will be 
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considered in an exploratory analysis of potential predictors for the seasonal forecasting 

model to be developed in this thesis. 

 

A recent workshop of the CLIVAR Atlantic group (May 2004), exploring climate 

variability and predictability throughout the Atlantic makes a series of recommendations 

for future work on research, the observing system, and the development of prediction 

systems (Sutton, personal communication).  Some of these will be briefly summarised 

here.  The extension of advances in ENSO prediction to the Atlantic basin is seen as a 

priority, bearing in mind the differences in forcing that are apparent from one ENSO 

event to another.  In the extratropical North Atlantic, there is a need to better understand 

the interannual variability of the NAO, primarily through furthering the development of 

coupled models.  The influence of coastal SSTs should also not be discounted, 

particularly for their effects on local climate.  Additionally, the roles of land surface and 

stratospheric processes should be explored in more detail.  A selection of these potential 

predictors will be discussed below. 

 

 

2.5.2 Stratospheric variability and potential predictability of the 
surface climate 

 

2.5.2.1 Introduction 

 

A relatively recent addition to the field of potential predictors of European climate is the 

stratosphere.  While stratospheric interannual variability has been studied and understood 

for some years (e.g. Labitzke, 1982), and the study of the interaction between the 

stratosphere and the troposphere likewise, the recognition that there may be processes 

with useful predictability in the stratosphere that affect the surface climate is quite new.  

Traditionally, the tropospheric forcing of the stratosphere has been more widely studied 
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and understood (e.g. Hu and Tung, 2002).  These insights are due in no small part to 

greater data availability, particularly from satellite and reanalysis sources.  

 

 

2.5.2.2 Early work 

 

Kodera and Yamazaki (1994) examine polar stratospheric forcing of the troposphere, 

noting that forced changes in the stratospheric polar night jet propagate into the 

troposphere.  Kodera (1995) explores this forcing in more detail.  Composite analysis of 

the stratospheric circulation based on a series of observed forcing reveals that the 

stratosphere displays an internal mode of variability that can be triggered by external 

processes (for example solar activity, the quasi-biennial oscillation (QBO), volcanic 

aerosols), and that extends into the troposphere.  Baldwin et al. (2001) explore external 

forcing of the stratospheric polar vortex by the QBO, identifying a notable forcing 

impact, which results in changed surface weather patterns.  This provides a mechanism 

for the QBO to have an effect at the earth’s surface.  The predictability of the QBO is 

largely low with respect to phase changes at monthly resolutions. Baldwin et al. (2001) 

identify a periodicity averaging 28 months, although the standard deviation (of the order 

of 4 months) imposes limitations on the potential utility of this index.  Brankovic et al. 

(1994) identify links between ENSO and the QBO, and potential predictability of the 

QBO at the seasonal timescale.  To date it seems that models do not represent this 

relationship, and it would certainly be desirable to understand more, given the potential 

implications for transmission of the ENSO signal outside the tropical Pacific basin. 
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2.5.2.3 Stratospheric processes and the AO/NAO 

 

Baldwin and Dunkerton (2001) were the first to specifically identify potential 

predictability of the surface climate based on stratospheric variability.  This predictability 

derives from large stratospheric anomalies that persist for a period of several months, and 

force an Arctic Oscillation (AO) response in the troposphere, as well as affecting the 

storm track and spatial distribution of midlatitude storms.  Ambaum and Hoskins (2002) 

identify forcing in the other direction – of the NAO on the stratosphere – with the 

consequences that the stratosphere may act as an integrator of the NAO.  However 

Kuroda (2002) does not support the idea of upward forcing by the northern hemisphere 

annular mode (NAM).   

 

In recent years the study of stratosphere-troposphere coupling has received more 

attention.  Taguchi and Yoden (2002) use a GCM to study coupling, finding that 

stratospheric interannual variability is close to a red noise spectrum, which is of interest 

when compared to the internal variability/external forcing hypothesis of Kodera (1995).  

Thompson and Baldwin (2002) find a link between the stratosphere and troposphere in 

the northern winter, that forces surface weather. They conclude that there may be 

potential predictability at the seasonal timescale based on knowledge of the stratosphere, 

in particular the strength of the polar vortex, and to a lesser extent the QBO.  Zhou et al., 

(2002) find that the downward propagation of stratospheric anomalies does take place, 

but is conditional on a very large initial wave forcing in the stratosphere, and a reversal of 

the polar westerly wind.  In these cases, there are discernable effects on the major 

northern hemisphere surface mode.  Baldwin et al. (2003) continue on the theme of 

stratospheric-related predictability, demonstrating some skill in seasonal-scale forecasts 

of the Arctic oscillation (AO).  An interesting recent development (Broennimann et al., 

2004) present strong evidence for forcing of the high latitude Northern Hemisphere 

stratosphere by a strong ENSO event from 1940-42, and subsequent anomalously cold 

temperatures in Europe. 
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2.5.2.4 Summary of Stratospheric Data 

 

It appears that stratospheric processes may offer potential predictability of the seasonal 

climate, and more work is warranted to explore these relationships further.  In particular, 

in the case of the NAO/AO the combined and independent forcing of the ocean and the 

stratosphere may well improve predictability.  Another consideration is the apparent 

inability of models to capture the full range of interactions between different components 

of the climate system involving the stratosphere.  While this offers grounds for cautious 

optimism as far as predictability is concerned, the physical significance of potentially 

predictable signals must be treated with care, at least until they can be modelled more 

accurately. 

 

 

 

2.5.3 Snow cover as a potential predictor for European climate 

 

2.5.3.1 Introduction 

 

The role of snow cover as a potential seasonal predictor developed roughly 

simultaneously with extratropical seasonal forecasting efforts and also in conjunction 

with research into variability of the Asian monsoon (e.g. Hastenrath and Greischar, 

1993).  In the Northern Hemisphere, snow cover extent has been shown to affect 

atmospheric temperature and circulation (e.g. Cohen and Rind, 1991), and its properties 

as a relatively persistent boundary condition are therefore of potential value in seasonal 

forecasting efforts.  A number of studies have applied snow cover as a predictor in 

seasonal climate forecasts.  These are outlined below.  The potential for improved 

understanding of the effects of snow cover on European climate and seasonal forecasts 

will be discussed. 
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2.5.3.2 Early Work 

 

Early work on snow cover relationships with the atmosphere include Kukla (1979); 

Walsh (1984) on snow cover and atmospheric variability; Namias (1985), examining the 

relationship between snow cover and temperature and precipitation; Walsh (1984) and 

Ross and Walsh (1986), who studied the influence of snow cover on the overlying 

atmosphere at synoptic scales; Barnett et al. (1988, 1989) studying the effect of Eurasian 

snow cover on global climate and global climate variations; Iwasaki (1991) studied the 

effects of snow cover on interannual climate variability, this is closely related to the 

seasonal forecasting problem. Cohen and Rind (1991) studied the effects of idealised 

snow cover anomalies on the atmosphere in a GCM.  This study indicated that there were 

discernable if short-lived effects of snow cover on the atmosphere. These results are 

supported by Walland and Simmonds (1996, 1997), among others.  Randall et al. (1994) 

study the snow-atmosphere feedbacks in the 14 Atmospheric Model Intercomparison 

Project (AMIP), and find that in all cases there is some feedback between snow cover and 

the atmosphere, although the strength and sign of the feedback is model dependent. In 

general it is accepted that snow cover has a discernable effect on the atmosphere, 

although the detailed nature of this relationship is not fully understood.  Further work on 

the observed record is required, and further model development and analysis, at least to 

the point where there is broad agreement between models in an AMIP-type study. 

 

2.5.3.3 Snow cover and climate variability 

Based on the prior work discussed above, the relationships between snow cover and 

climate variability continue to be developed in the literature.  There are a number of 

distinct areas of interest, for example the relationship between Himalayan snow cover 

and the south Asian monsoon.  This review will be restricted to covariability directly 

relevant to the northern midlatitudes, in particular focusing on the relationship between 

Eurasian (and, to a lesser extent North American) snow cover, and the North Atlantic 
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Oscillation/Arctic Oscillation (NAO/AO), or circulation patterns related to weather 

conditions in north western Europe. 

 

Starting with Walland and Simmonds (1996), atmospheric responses to Northern 

Hemisphere (NH) snow cover were identified in idealised model runs.  Of note are the 

responses of SLP and 500hPa height over land areas.  Notably, changes over the North 

Atlantic and Pacific basins are noted, as well as a reduction in the strength of the storm 

track and cyclogenesis.  Walland and Simmonds (1997) extended this work to look at the 

major modes of variability in snow cover, identifying the major components, and 

correlating them with atmospheric modes.  No simple interactions were found between 

snow cover and atmospheric modes, but rather the relationships were complex, indeed the 

potential for nonlinear or threshold dependent relationships is of interest here (see for 

example Campbell, 2005).  Cohen and Entekhabi (1999) explicitly identified a possible 

role for snow cover in enhancing European climate predictability, finding evidence of 

coupling between the atmosphere and the snow cover boundary layer, while Frei and 

Robinson (1999) note the ‘significant month-to-month persistence’ of snow cover in 

certain areas during winter and spring.  Ye (2000) found a link between decadal patterns 

in snow cover variability over Russia and tropical Atlantic SST anomalies, and 

subsequently extended the research to include the Pacific basin.  However, the bulk of the 

research in this field has focused on snow cover and atmospheric variability. Cohen et al. 

(2001), Cohen and Entekhabi (2001) and Saito et al. (2001) explore the relationship 

between Eurasian snow cover and NH climate variability, with the aim of assessing 

climate predictability based on snow cover forcing. Gong et al. (2002) develop this 

further by examining the link between snow cover and the NAO/AO using model output, 

finding that snow cover can modulate the variability of this mode.   

 

Subsequently, a number of studies focused on the snow cover-NAO link, with some 

potentially useful results with respect to climate predictability. Bojariu and Gimeno 

(2003a, b) explore this relationship, again finding that snow cover is important, but at 

decadal/multi-annual timescales rather than interannual.  However, Saito and Cohen 

(2003) identify potentially useful links between snow cover and atmospheric variability 
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at interannual timescales.  Gong et al. (2003a, b) study the model atmospheric response 

to snow cover anomalies over North America and Eurasia, finding that Eurasia has a 

significantly greater influence on the atmosphere, providing ‘a physical explanation for 

how regional land surface snow anomalies can influence winter climate on a hemispheric 

scale’, and the associated implications for predictability are discussed.  Cohen and Saito 

(2003) explore the predictability of US winter climate based on snow cover alone, 

bypassing the need to forecast the NAO, with some positive results.  Schlosser and 

Mocko (2003) use a range of dynamical forecasting models to study the impact of winter 

snow on spring temperature and circulation, concluding that dynamical models need to be 

improved before applying them successfully to seasonal forecasts using snow as a 

predictor. Qian and Saunders (2003a, b) and Saunders et al. (2003) study the relationship 

between snow cover and the NAO, with the explicit aim of improving seasonal 

predictability, with some potentially useful results.  

 

Kumar and Yang (2003) are less encouraging in their findings, noting that although snow 

cover exerts a discernable influence on the troposphere, is has no discernable effect on 

the spatial organisation of the major NH atmospheric modes.  While they are not 

dismissive of the possibility of useful predictability from snow cover anomalies, they 

stress the need for further research on the snow cover-atmosphere variability relationship.  

Similarly, Schlosser and Mocko (2003) use a range of dynamical forecasting models to 

study the impact of winter snow on spring temperature and circulation, concluding that 

dynamical models need to be improved before applying them successfully to seasonal 

forecasts using snow as a predictor.  Gong et al. (2004) explore the role of orography in 

modulating the relationship between snow cover and atmospheric variability, finding that 

it is an important factor. Gong et al. (2004) carry out extensive model studies of snow 

anomaly effects, including snow depth as well as snow cover, and finding that both these 

variables have a bearing on the results.  Saito et al. (2004) explore sub-decadal 

relationships between snow cover and the NAO/AO in the observed record, finding 

evidence for nonstationarity in the structure and strength of the lead-lag relationships – 

something that has an important bearing on the application of this data to seasonal 
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forecasting models.  More recently, Shongwe et al (2007) find a link between snow cover 

and anomalously cold spring seasons in Eastern Europe. 

 

2.5.3.4 Summary of Snow Cover Data 

 

A large amount of work still remains to be done on quantifying the viability of snow 

cover as a useful predictor for the European climate.  In particular, clarifying aspects of 

the snow-atmosphere forcing mechanism(s), and exploring the relationship between snow 

cover and the NH atmospheric circulation with respect to other forcing modes, such as 

soil moisture and SST variability.  These requirements notwithstanding, it may well be 

that, based on current research; snow cover can be used as a predictor.  While it is beyond 

the scope of this thesis to study mechanistic details of the relationship, there is certainly 

scope to focus on the interaction of snow cover with other forcing processes, and their 

subsequent effects on the atmospheric circulation, with the associated implications for 

predictability. 

 

2.6 Summary and conclusions 

 

This literature review discusses a sample of the literature published in recent years that is 

relevant to the seasonal forecasting of extremes in North Western Europe.  This 

necessarily covers a broad spectrum of topics within climate research, from papers 

directly relating seasonal forecasting studies, through those concerned with the 

predictability and variability of various components of the atmosphere-ocean-land 

system, to studies concerned with extreme events.  Each of these research areas 

constitutes a major body in its own right. 

 

From the existing literature, it is possible to draw a number of conclusions on the current 

prospects for seasonal forecasting of extremes, and on the areas in which it may be 

possible to advance knowledge further, and utilize existing knowledge more effectively.  
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Oceanic forcing from the North Atlantic is most likely to provide improvements to 

predictability, given the recent volume of research that has been dedicated to this field, 

and the increasing understanding of the physical mechanisms driving this variability.  

Land based and stratospheric processes offer some hope for enhanced predictability, but 

are somewhat constrained by the lack of well established physical mechanisms to support 

observed predictability. 

 

To date there are no seasonal forecasting studies for Europe which utilize the full range 

of potential predictors explored here.  There is clearly potential to develop empirical 

seasonal forecasting models using a wide range of predictors and techniques. 
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3 Methodology 
 

3.1 Introduction 

 
This chapter presents a description of the key methods employed during the research of 

this thesis.  A range of standard statistical techniques is employed in the process of this 

research and where necessary each data and results chapter includes a detailed description 

of the method relevant to that chapter, and refers where necessary to the content of this 

chapter.  The main objective of this chapter is to set out the statistical tools whereby the 

predictor data are related to the predictand data, the implications of this process in a 

statistical context, and the experimental design which will aim to ensure that the process 

is rigorous and the results meaningful. 

 

The experimental design is shaped by the objective of developing statistical models of 

seasonally predictable relationships between a range of predictor variables, and four sets 

of predictand variables, describing extreme precipitation and wind events across a 

European domain.  Of primary concern here is the lack to-date of a comprehensive 

understanding of any physical basis for potential predictability.  This informs the 

experimental design throughout, to the extent that the primary focus is on the exploration 

and validation of statistical relationships, with an associated discussion of the potential 

causal mechanisms underlying the observed relationships, rather than the precise 

quantification of parameter error and uncertainty, which is of secondary importance to 

this problem. 

 

This testing and validation process takes place in four stages: 

1. Significance testing – typically at the 95% confidence level – for every local 

assessment of statistical relationships using Poisson regression 

2. Field-significance testing using resampling techniques 

3. Model selection using all possible predictor subsets within predefined 

constraints, and using cross-validation to choose the best model 
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4. The first three steps above all apply in the context of a model training period.  

Further validation against an independent sample of data comprises the final 

assessment of model fit. 

 

The chapter is further divided into four sections, each addressing the points outlined 

above. Section 3.2 addresses point 1, above, on generalised linear models (GLM); 

Section 3.3 addresses field-significance testing as a means to define a set of predictors for 

consideration in the models; Section 3.4 describes the procedure by which the predictive 

models are selected and Section 3.5 explains the requirement for independent validation 

and how it is carried out in this case.  Finally Section 3.6 summarises the methodology. 

 

3.2 Generalised Linear Models 

 
The data used in this study is of the form that lends itself to analysis using Poisson 

regression – a member of the family of Generalised Linear Models (GLM) (McCullagh 

and Nelder 1989).  Poisson regression is applicable specifically to count data, with the 

key features of such data being that they are comprised of non-negative values, and are 

Poisson distributed.  In this case the predictands – counts of seasonal exceedances of 

percentile thresholds – meet the first criteria, and in most cases satisfy the second criteria, 

that is, they approximately follow a Poisson distribution which can be described as 

follows: 
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where Pr(Nt = k) is the probability of observing k events over a given time t.  In this case, 

an event is a day on which precipitation or peak wind gusts exceed a stated percentile 

threshold, and t is a three month season.  Therefore k is the count of the number of events 

in a given season.  The mean and variance of the distribution are described by λt which in 

this case is equivalent to the climatology.  Further illustration of the suitability of the 

predictand data to the application of Poisson regression is given in Chapter 4. 
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Before describing Poisson regression, it is instructive to illustrate the case of standard 

linear regression, in which the behaviour of a predictand variable as a function of a 

number of predictor variables leads to an estimate (in this case a forecast or hindcast) of 

the predictand.  The standard linear regression equation is as follows:  
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where the observations of the predictand Y are given by yi for season i, and observations 

of p the predictor Xj  are given by xij.  The regression weights βj are found from the 

observed values of Y and Xj over a training period by minimising the mean squared error 

(MSE) such that the forecast fi is as close as possible a match to the Y.   

 

Poisson regression is simply a variant of this case, where non-negative, Poisson 

distributed count data are used, and for which 3.2 above becomes: 
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where ln(.) is the natural logarithm.  The weights in this case are then found using the 

iteratively weighted least squares method (IWLS) as defined in Lee et al. (2006), such 

that they converge on the least squares solution – where the MSE is minimised.   

 

For each estimate of model fit, the significance of each of the covariates, and the model 

as a whole are then estimated using the Student’s T distribution. 

 

In this study, each elementary assessment of predictor-predictand fit is carried out using 

the method presented above, where statistical significance at 95% confidence satisfies the 

first criteria for further consideration as detailed in the remainder of this chapter.  The 

IWLS procedure and other statistics such as measures of model fit can be found using a 
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standard software package - in this case Matlab.  An additional aspect of the use of 

Poisson regression is that the measures of model fit can be weighted according to the 

dispersion of the predictand data.  That is, if the variance of the data is greater than the 

mean (where the theoretical Poisson distribution describes both the mean and variance 

using a single statistic), the data is overdispersed.  In this case a slightly more 

conservative estimate of the model error, and significance, are made. 

 

The following example illustrates the application of Poisson regression in this study.  The 

predictand Y is the number of days in the season December-February (DJF) with peak 

wind gusts exceeding the 90th percentile level for this season at a gridbox over the 

Netherlands.  The predictors are the 3rd principal component of stratospheric temperature 

at 50hPa, during the July-September (JAS) season (X1), and the standardised SLP 

anomaly at Darwin (one of the components of the SOI) from the preceding August (X2). 

 

In this specific case, the Poisson regression can be written: 

 

6224.12899.02579.0)ln( ++= DarwinStrati XXf      (3.4) 

 

to obtain the forecast (fi) of Y such that given positive values of the 3rd PC of 50hPa 

temperature during JAS, and positive pressure anomalies at Darwin during August 

(which might more generally be associated with El Niño conditions), we might expect 

increased counts of days with high wind speeds in the specified gridbox the following 

winter. 

 

3.3 Field-significance testing using Monte Carlo resampling 

 
The technique presented in 3.2 is adopted as the basic tool to determine local statistical 

significance between predictors and predictands in this study.  However, when 

conducting multiple tests of local statistical fit, at a given threshold of significance, it 

follows that a number of tests will fulfil the requirements of local significance by chance.  
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If we consider each test to be independent of the others, the number of tests passing due 

to chance can be described by the binomial distribution.  This problem of multiplicity in 

the analysis of climate fields is discussed in detail in Livezey and Chen (1983), and Wilks 

(1995), for example.  Further detail is presented here in Section 6.3.1.1. 

 

An additional complication when conducting multiple local significance tests on climate 

fields arises when we consider that there is a degree of spatial correlation between the 

locations being tested, which reduces the degrees of freedom by a considerable amount - 

depending on the spatial correlation scale of the field.  It is therefore necessary to 

determine the minimum spatial extent at which the predictand response will be deemed to 

have field-significance, as a function of the spatial autocorrelation properties of the 

predictand.  To date the most effective way to assess field-significance in statistical 

climate analysis is presented in Livezey and Chen (1983), who used resampling, or 

Monte Carlo techniques to empirically quantify the probability distribution of the spatial 

extent of the predictand response.  That is, by repeatedly measuring the response of the 

whole predictand field to randomly generated timeseries which have the same temporal 

autocorrelation structure as the predictor, it is possible to determine the field-significance 

of the predictand response as a function of the spatial extent of the locally significant 

responses.  Wang and Shen (1999) conduct a series of tests to estimate the spatial degrees 

of freedom (dof) of a climate field by four methods, including fitting the sum of the 

squared differences between each realisation of the field, and the climatology at every 

location to a chi-squared distribution (e.g. Fraedrich et al., 1995); secondly, a measure 

derived from the variance of the distribution of the pattern correlation coefficients 

between realisations of a normalised climate field (e.g. Sachs, 1984); thirdly, the dof is 

estimated as the ratio of the variance of the field’s average to the average of the variance 

field (e.g. Smith et al., 1994); and finally, the method outlined above, due to Livezey and 

Chen (1983).  They find that the latter method is the most accurate of the four.  A more 

detailed formulation of this technique with application to this study is presented in 

Section 6.3.1.1 and 6.3.1.2.  
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Field significance testing is used here as a tool to determine which of the potential 

predictors might usefully be applied to the model selection process.  In a sense it acts as a 

filter conditioned on the spatial extent of the predictand response to the predictor, 

although in the absence of any other basis for predictor selection based on established 

physical relationships it is an important step.  Therefore for each potential predictor, in 

order for it to be further considered as part of the final model selection process it must 

satisfy the condition of field-significance at the 95% confidence level. 

 

3.4 All subsets model selection using cross-validation 

 
Having defined a predictor set with each predictor satisfying the criteria of a field 

significant response in the predictand domain, a subset of the initial predictor set is then 

available to supply the model selection phase.  For each gridbox over the predictand 

domain, those field-significant predictors which are locally significant at that gridbox are 

considered in an all-subsets model selection algorithm with a maximum of two predictors 

per model.  This maximum is set on the basis that the record length is relatively short, 

and it is important to minimise overfitting.  Also, given the inherently low (at best) levels 

of predictive skill of wind and precipitation extremes in the mid-latitudes, it is not 

thought likely that any linear combination of three or more predictors would add useful 

skill, and in fact would be more likely to tend towards overfitting the model – that is, fit 

the model to noise in the data, rather than any underlying structure due to large-scale 

predictable forcing. 

 

Each valid subset of predictors is then tested further using leave-one-out cross-validation 

(e.g. as described in Wilks, 1995), in which the model is fit n times to n – 1 of the 

observations, the remaining observation is predicted, and the residuals for each of the n 

forecast observations are summarised using the mean absolute error (MAE).  The final 

model is that for which cross-validation minimises the MAE.  Further details on this 

method are provided in 7.2 
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3.5 Model validation against independent data 

 
In any exploratory statistical investigation the importance of the independent validation 

of the prediction experiment is paramount.  For example see discussions in Lloyd-Hughes 

and Saunders (2002) and van den Dool (2007) among others.  In this case the model 

selection process – as outlined conceptually above – is carried out over the observation 

period 1958-1995, and the validation period is 1996-2005.  Both of these periods are 

necessarily short owing to the availability of data and the relative length of each is the 

result of a compromise between the importance of conditioning the models on sufficient 

data and the requirement to assess statistical significance in the validation period. 

 

The model selection is achieved by taking the best cross-validated fit of all subsets of 

models having locally significant fit to the predictand gridbox, in the context of a field-

significant response.  The validation process then tests the ability of the model to 

replicate observed skill levels completely independently of the model training process.   

 

3.6 Summary of methodology 

 
In summary, a method is presented to carry out an analysis of potential linear 

predictability of European extremes of precipitation and wind – two climate variables 

which are not known for their predictability, but for which the interannual variability in 

extremes carries important consequences for society.  The method should be treated 

strictly as exploratory, and any potentially useful predictability requires corroboration 

with physical mechanisms, and possibly further quantification in light of this, since 

precise parameter estimation is impossible on such a relatively short record, even 

assuming perfect linearity and stationarity apply – which is also unlikely. 

 

Other methods are employed in the course of the research, including the fitting of gamma 

distributions to the predictand data, and principal components analysis (PCA) to derive 
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some of the predictor indices.  As these are not directly pertinent to the broad 

experimental design discussed here, they are outlined in more detail in Chapters 4 and 5 

respectively. 

 

The results of each of the steps outlined in 3.2 to 3.5 above are presented sequentially in 

chapters 6, 7 and 8 as follows.  Chapter 6 presents the results of the field-significance 

testing on the full predictor set.  Chapter 7 uses the predictors retained in Chapter 6, and 

presents the results of the model selection process using all subsets selection and training-

period cross-validation.  Chapter 8 presents the results of the model testing on the 

validation dataset. 
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4 Predictands 
 

This chapter presents the datasets available to derive predictands for the forecasting 

model.  The requirements for predictands are discussed, and results of dataset validation 

and comparisons are presented, in order to determine the most suitable predictands.  

Section 4.1 comprises an introduction, which will outline the main questions and 

objectives of the chapter.  Section 4.2 presents a range of datasets, describing their 

characteristics, qualities and limitations.  Section 4.3 presents a range of methods to 

derive indices of extremes.  Section 4.4 compares raw data and indices from the range of 

available datasets.  Section 4.5 summarises the chapter and defines the predictand 

datasets to be used in the forecasting model. 

 

 

4.1 Introduction 

 

Predictands in seasonal forecasting are traditionally some measure of the average 

conditions expected, for example, in the case of statistical forecasting, the model will be 

trained on seasonal mean conditions, and used to predict these accordingly (e.g. 

Feddersen, 2003).  In the case of dynamical forecasting, mean conditions are derived 

from the model output, broadly speaking (e.g. Gueremy et al, 2005). 

 

The seasonal forecasting of extreme events presents additional challenges in the selection 

of the predictands.  Firstly, what data should be used, since daily frequencies (at least) are 

required, and data availability is limited in space and time at this resolution?  Secondly, 

what measure should be used to represent interannual variability in extreme events, in 

order that the predictand is useful in that it represents both events of interest to the end 

user, as well as interannual climate variability?  Both these challenges will be addressed 

in this chapter with the objective of defining a meaningful – and practical – measure of 

extreme events to train the forecasting model, and ultimately to be operationally useful. 
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Given the applied nature of the end-product in this case, it is first considered whether 

predictands should be restricted solely to meteorological variables, and whether other 

measures, such as flood records and windstorm damage should be considered.  There are 

arguments for and against the inclusion of impact-based predictands.  From the end user 

point of view, it is useful to be able to define exposure using these measures, but the 

limited availability of useful data imposes a formidable practical constraint on this 

approach.  For example flood records can often be affected by the floods themselves, 

resulting in inhomogeneous data.  Additionally, the event-based detail of available data is 

more encouraging for a case-study approach, where individual events can be linked to the 

large-scale circulation, and meteorological conditions.  This might be extended to provide 

a more general understanding of the meteorological conditions required to cause a 

damaging event, but is considered beyond the scope of this thesis.  Some local efforts to 

link impacts directly with the large-scale circulation include Kaczmarek (2003) for flood 

risk in Poland, although in this case precipitation data are used extensively to assess 

linkages with the large-scale circulation.  Kim and Barros (2001) use a neural network 

method to forecast floods using local and large-scale meteorological conditions at daily 

rather than seasonal timescales. 

Haylock and Goodess (2004) use daily station records of extreme rainfall to assess links 

with the large-scale circulation, while Gershunov (1998) and Gershunov and Cayan 

(2003) use US station records of precipitation and temperature to assess links with 

ENSO, and hence seasonal predictability of extreme events.  Similarly, in this study, it is 

the large-scale conditions themselves that are of interest, since they provide a more direct 

link to potential predictability derived from the boundary forcing variables.  Potential 

predictands are therefore restricted to meteorological variables, in order to gain a more 

general understanding of what might drive interannual variability in extreme events 

across the study region.  Given this decision, the question remains as to what magnitude 

of event should constitute an extreme.  On the one hand, the low frequency, high impact 

extremes are of most interest to end users, but on the other hand, these are difficult to link 

to predictable components of the climate system due to both the small sample size, and 

the range of causes that combine to produce an event of this magnitude.  Approaches to 
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these threshold decisions will be discussed more fully in 4.3, supported by results in 

Section 4.4. 

 

4.2 Potential Predictand Datasets 

 

The main criteria for potential predictand datasets include faithful representation of 

extremes and in particular the interannual variability of extremes, and ideally a 

continuous and homogenous record in space and time.  The study area is defined as the 

domain 40-68N, 11W-27E. 

 

4.2.1 Precipitation data 

 

A number of sources of precipitation data exist for the European domain, providing 

adequate periods of record for model development.  These are outlined in Table 4.1. The 

station records from the European Climate Assessment and Dataset Project (ECA, 

http://eca.knmi.nl/, Klein Tank et al, 2002), comprise 208 stations in total, of which 138 

contribute a useful record within the selected spatial domain (Figure 4.1).  Temporal 

resolution is daily. The data are provided with quality control flags from the ECA.  

Further checks were necessary, and these were carried out by comparing the monthly 

totals of the station records with a monthly gridded product (CRU TS2.1) provided by the 

Climatic Research Unit, School of Environmental Sciences, University of East Anglia 

(CRU), to check for unrealistic daily totals, as well as with neighbouring stations from 

the ECA network.  Further station data are available, for example from the British 

Atmospheric Data Centre (BADC), covering further UK stations, and from the National 

Climatic Data Centre (NCDC), covering the whole study region.  However, the necessary 

quality control procedures, and the extent of missing records, on first inspection are 

prohibitive.  With the additional quality control carried out, the ECA station precipitation 

records constitute a useful, although spatially incomplete record of point source data.  
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The European Centre for Medium Range Weather Forecasts (ECMWF) 40 year 

reanalysis (ERA-40, Uppala et al, 2005) is the other daily dataset considered.  Other 

reanalyses include ERA15 (Gibson et al, 1996) – a precursor to ERA-40, and those from 

the National Centers for Environmental Prediction, in association with the National 

Center for Atmospheric Research (NCAR), and the US Department of Energy (DoE), 

referred to as NNR1 (Kalnay et al, 1996) and NNR2 (Kanamitsu et al, 2002) respectively.  

Both ERA15 and NNR2 cover too short a period to be useful in this context, while ERA-

40 was chosen over NNR1 due to its higher spatial resolution (available at approximately 

1.25°x1.25° resolution, compared to NNR resolution of 2.5°x2.5°). 

 

A reanalysis dataset comprises spatially and temporally complete output from a 

numerical weather prediction model, forced with observed data, which is assimilated at 

regular time intervals.  The volume of data assimilated varies over time, as it is available, 

although the assimilation system remains the same throughout.  However, not all the 

available observed data is assimilated, including precipitation.  Instead precipitation is a 

forecast product, and therefore subject to model errors and biases, which are particularly 

apparent in the case of convective precipitation.  The reanalysis precipitation therefore 

requires validation against observed datasets.  The CRU dataset (CRU TS 2.1, Mitchell 

and Jones, 2005) is a high resolution (0.5°) monthly dataset derived from an extensive 

database of station records, while the US Climate Prediction Center Merged Analysis of 

Precipitation (CMAP) dataset (Xie and Arkin, 1996) is also a gridded monthly product at 

2.5° resolution, derived from satellite and station measurements of precipitation, and 

augmented where necessary with reanalysis (NNR) precipitation.  Both of these datasets 

have been used to assess the suitability of the ERA-40 data for use in the predictand 

dataset. 

 
Dataset Description Temporal 

resolution 
Spatial resolution Period of 

Recording 
ECA Station records Daily 208 stations Various 
ERA-40 Reanalysis Daily Approx.1.25°x1.25° 09/1957-08/2002 
CRU TS 2.1 Gridded station records Monthly 0.5° 1901-2002 
CMAP Merged (satellite, station, 

reanalysis) gridded analysis 
Monthly 2.5° 1979-present 

Table 4.1  Precipitation datasets 
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4.2.2 Wind data 

 

Daily data for wind speeds, particularly daily maximum wind speeds, are relatively 

sparse for the European region, over the timescales necessary.  Selected station records 

of daily maximum wind speed are available from national meteorological services, but in 

many cases at a considerable expense, even when only handling fees are charged.  Thirty 

seven station records were obtained from the Deutsche Wetter Dienst (DWD) website 

(http://www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/index_standardformat.htm), 

(although missing periods reduced this to 31), and 6 were obtained from the Royal 

Netherlands Meteorological Institution (KNMI) website 

(http://www.knmi.nl/klimatologie/daggegevens/download.cgi).  In all cases the records 

of daily maximum wind speeds extend back only as far as 1971.   

 

ERA-40 was selected as the reanalysis source of wind data for the same reasons outlined 

in Section 4.2.1 above.  It includes several wind variables, both reanalysis and forecast 

products.  Since wind speed is not cumulative it is necessary to define extreme winds 

over a short timescale.  The shortest time-step at which reanalysed data is available in 

ERA-40 is 6 hourly mean wind speeds.  While this is likely to capture the context of the 

event within which wind damage actually occurs, a variable which expresses the actual 

peak wind speed is more desirable.  The 10 metre peak wind gust variable is a forecast as 

opposed to reanalysed product, and as such, requires further comparison, in this case 

with the available station data.  However, many of the problems associated with 

precipitation in the reanalysis are less important in the case of wind speed, since it is 

closely related to easily measured and reanalysed variables such as surface pressure.  

Additionally, local effects such as topography are an important factor in determining 

peak wind gust speeds, and station records can be problematic in this sense.  Since wind 

extremes in north-western Europe are almost always embedded within large-scale 

weather systems, it is reasonable to suppose that extremes of interest are as likely to be 

picked up by a gridded product as a point source product such as a station record.  

Nevertheless, the station and reanalysis data are compared, at least in order to provide 

insights into the magnitude of the differences between the two datasets. 
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Figure 4.1  ECA precipitation stations.  Those in red are within the study domain 

 
 
 

4.3 Indices 

 

While the cost of weather extremes in Europe has run, on average, into hundreds of 

millions of US dollars annually since 1970 (Murnane, 2004), these costs are skewed 

towards a small number of very large events.  Nevertheless, minor events still cause 

damage to property and loss of life and, from an applications perspective, are still of 

some interest to end users.  This raises the question of how best to sample the raw data 

for extremes.  Typically, an end user for example in the insurance industry is interested in 

events with a return period in the order of years (if not tens of years) to centuries.  By 

definition this will not provide an adequate sample to represent interannual variability.  It 

is therefore necessary to compromise by substantially reducing the threshold at which 

events are included as extremes. 
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Much of the work done on extremes is concerned with formulating indices of those 

extreme events best representing the processes being studied.  With respect to this thesis, 

one of the difficulties highlighted by Nicholls and Murray (1999) is national/regional 

differences in precipitation monitoring standards and quality control procedures.  The 

same argument applies to wind speed data.  Nicholls and Murray identify the need to 

develop simple, uniform indices of precipitation extremes.  For the European region this 

need has subsequently been met to a great extent by work on two specific projects – the 

European Climate Assessment (ECA) project (Klein Tank et al2002, 2003), and the 

Statistical and Regional Dynamical Downscaling of Extremes for European Regions 

project (STARDEX) (e.g. Haylock and Goodess, 2004).  Both of these focus on 

temperature and precipitation, with precipitation being of particular interest here.  A 

series of indices were developed through the STARDEX project, using the STARDEX 

Diagnostic Extremes Indices Software, available at 

www.cru.uea.ac.uk/cru/projects/stardex.  These indices were suggested by the Expert 

Team on Climate Change Detection Monitoring and Indices (ETCCDMI).  With respect 

to representing the interannual variability of extremes, a subset of these indices is of 

particular interest, including the number of events in a given season exceeding a certain 

threshold measured as a percentile. Gershunov (1998) and Gershunov and Cayan (2003) 

use this measure to assess the predictability of heavy daily precipitation over the 

contiguous United States at seasonal timescales.  Also of interest are measures of daily 

intensity – reflecting the relationship between total precipitation and the number of days 

with precipitation in any given period, and also the percentage of precipitation within a 

defined period that falls on days stratified by percentile thresholds.  These indices are all 

discussed in Nicholls and Murray (1999) and within the documentation for the 

STARDEX software.  Nicholls and Murray also discuss the possibility of calculating 

indices from monthly data, although this is not ideal for the purpose of seasonal 

forecasting of extreme events.  Additionally, it is recommended that a gamma distribution 

be fit to the daily precipitation values to determine percentile thresholds, although the 

STARDEX indices use a simple ranking approach. 
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Much work has been undertaken on the statistics of wind speed distributions.  In 

particular, Palutikof et al. (1999) and Brabson and Palutikof (2000) explore the use of the 

Generalised Extreme Value distribution (GEV) and the Generalised Pareto Distribution 

(GPD) to calculate extreme wind speeds.  In addition, this work provides a useful 

discussion of methods to ensure that the datasets under consideration fulfil the necessary 

criteria of being independent and identically distributed.  In particular, the serial 

correlation present in daily wind speed time series must be accounted for.  A number of 

different approaches are suggested, including a peaks over threshold (POT) approach 

using the GPD.  Given the appropriate choice of threshold, a sufficiently large sample 

size can be obtained to represent interannual variability while still focusing on relatively 

extreme events.  A further consideration is the minimum separation distance between the 

extremes.  Palutikof et al. (1999) recommend a minimum of 48 hours to ensure that the 

events are not related.  More recently, Harris (2005) finds that the POT approach using 

the Weibull distribution as the parent distribution does not conform to the GPD model.  

However, much of the work on wind extremes is carried out with applications sensitive to 

long return periods in mind, for example design loads for buildings.  In the case of this 

thesis, ‘softer’ extremes are of interest, for reasons outlined above, and an approach more 

similar to that taken by Haylock and Goodess (2004), using purely empirical techniques 

can be considered, although some of the selection criteria outlined by Palutikof et al. 

(1999), such as those involving serial correlation must be considered.   

 

Following a similar method to Haylock and Goodess (2004), a threshold exceedance 

method was used in order to represent the interannual variability of extreme events.  

Long-term 90th and 95th percentile thresholds for twelve three-month seasons (JFM, 

FMA, etc) at each location were calculated by fitting a gamma distribution to the daily 

data for the period 1958-2001.  Percentiles were estimated using the gamma distribution 

fit rather than a simple ranking procedure due to Zhang et al. (2005) who find that the 

ranking method can result in inhomogeneities outside the sampling period.  The 

exceedance count for each season was then calculated.  In the case of precipitation data, a 

wet-day threshold of 0.1mm was set for both the station and reanalysis data, and only 

wet-days were considered in the estimation of the thresholds.  For the peak wind speed 
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data, serial correlation in the daily timeseries was accounted for by removing the lesser 

exceedance should two fall on consecutive days, or the middle/alternate exceedance(s) 

should three or more occur consecutively.  The decision to use twelve three-month 

overlapping seasons is made to satisfy two criteria: firstly the use of seasons rather than 

single months increases the sample size of available extremes; secondly, the use of 

twelve overlapping seasons rather than four may help to identify predictable relationships 

that are sensitive to the annual cycle.  A similar method is used by Gershunov (1998), for 

the same purpose of developing a predictand dataset for seasonal forecasting of extremes. 

 

 

4.4 Results 

 
Results are presented from a series of dataset comparisons.  The objective is to assess the 

suitability of the available datasets to derive predictand indices.  For peak wind speeds, 

the choice of dataset is essentially restricted to ERA-40, since the spatial and temporal 

coverage of the station data is insufficient.  Nevertheless, results of comparisons with 

those station data will be presented. 

 

4.4.1 Precipitation results 

 
It is assumed that stations provide an accurate representation of point-source extreme 

events.  Station data are compared with ERA-40 and gridded monthly data in order to 

assess how well ERA-40 matches the station records, and how useful the station records 

may be in representing areal extremes. 

 

While it is not possible to compare observed gridded extreme precipitation with the 

reanalysis, monthly totals can be compared to give some indication of how well ERA-40 

and the station records capture interannual variability with respect to the CRU TS2.1 

data.   Figure 4.2 shows that the station records are more frequently highly correlated 

with the gridded data, although the mean is lower for all months except August (not 
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shown). However a number of the stations are not well correlated, and by implication 

may not be suitable to represent extreme events due to apparent local effects.  A further 

reduction in the density of the station network is not desirable.  Furthermore, there 

appears to be a national bias in the correlations, perhaps reflecting differences in station 

quality control procedures at the national level, or station densities provided for the CRU 

dataset.  Correlations with both datasets are generally lower in July, reflecting the greater 

importance of convective precipitation at small spatial scales. 

 

The lower correlations between the monthly ERA-40 and CRU datasets are illustrated in 

Figure 4.3, showing the annual cycle of anomaly correlations between the two datasets.  

Correlations are best in the winter and spring, and lowest in August.  Again, this is likely 

to be due to the increased importance of convective precipitation in the summer months. 

 

Figure 4.4 shows the correlations between CRU, ERA-40, CMAP and station monthly 

mean precipitation and the North Atlantic Oscillation (NAO, Jones et al, 1997) in 

January, for the period 1979-2001.  Figure 4.5 shows the same for July.  Although the 

July correlations are weak, they show strikingly similar spatial patterns in all datasets, as 

do the stronger January correlations.  In general simultaneous correlations with the NAO 

and all four datasets are very similar throughout the year. 

 

Comparisons between monthly mean precipitation indicate that in general the datasets 

compare well with respect to interannual variability, and that the ERA-40 precipitation 

responds well to large-scale circulation variability in the case of the NAO. 
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Figure 4.2 Differences in ERA-40 and station correlations with CRU TS2.1 monthly precipitation.  
January (top), July (bottom).  The ERA-40 data has been regridded onto the CRU grid for comparison, 
using bilinear interpolation.  In the maps, gridboxes where the ERA-40-CRU correlation is 
significantly higher than the station-CRU correlation (based on 95% confidence intervals for r) are 
shown in red.  Those that are lower are in blue, and those with no significant difference at 95% 
confidence are in green.  The histograms show the distributions of these comparisons.  ERA-40 
correlations with the CRU data are represented by the blue bars, and station-CRU correlations by the 
red bars. 
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Figure 4.3  Annual cycle of anomaly correlations between the CRU TS2.1 and ERA-40 datasets over 
the land areas of the European domain for the period 1958-2001. Red line denotes mean, box denotes 
quartiles, and whiskers denote range of data, not including outliers, which are identified by a red +. 
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Figure 4.4 January 1979-2001 correlations between the NAO and (a) CRU; (b) stations; (c) CMAP and 
(d) ERA-40. 

 

 
Figure 4.5 July 1979-2001 correlations between the NAO and (a) CRU; (b) stations; (c) CMAP and (d) 
ERA-40. 
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The seasonal exceedance indices derived from station records and the nearest ERA-40 

gridbox were compared for all seasons.  The correlations were inversely related to the 

percentile threshold, and followed a similar seasonal cycle to that observed in Figure 4.2 

and Figure 4.3, that is, stronger in winter/spring, and weaker in late summer. Owing to 

considerable differences in the frequency of light precipitation in the station and ERA-40 

datasets, the number of wet-days per season is greater in ERA-40.  In order to assess the 

optimum wet-day threshold for ERA-40, thresholds were selected for each gridbox and 

each season using monthly counts of rain days as provided with the CRU TS 2.1 data.  

These results indicated that in order to comply with the wet-day frequency in the CRU 

data, unrealistically high thresholds would have to be set.  Using these thresholds 

substantially reduced the correlations between the seasonal exceedance counts of the 

station and ERA-40 precipitation.  It was therefore decided to use the same threshold 

(0.1mm) in both datasets. 

 

Figure 4.6 summarises the correlation between station and ERA-40 90th and 95th percentile 

exceedances for December-February (DJF) and June-August (JJA).  There is considerable 

geographic variation in the strength of the correlations, which tend to be stronger in north-

western Europe.  The weakness of the correlations, particularly in the summer months 

indicates that both datasets should be treated with caution, and the possibility of using the 

large-scale precipitation component from ERA-40 as a separate predictor may be helpful. 
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Figure 4.6 Correlation between stations and nearest ERA-40 gridbox for DJF (left) and JJA (right) 
90th (top) and 95th (bottom) percentile exceedance counts. 

 

Figure 4.7 illustrates the time series of 95th percentile exceedances for Bremen (Germany) 

and Eskdalemuir (Scotland) for DJF and JJA.  In the case of Bremen, the agreement is 

strong in the winter, but disappears in the summer months. The converse is true to a lesser 

extent for Eskdalemuir.  For the winter season in Bremen, while the counts do not always 

compare well, the sign of the anomalies from year to year (the first difference) is generally 

correct.  This is not the case for Eskdalemuir, and is may be attributable to local 

topographic effects in relation to the areal mean precipitation, as well as model bias due to 

unrealistic topography. 
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Figure 4.7  Comparison of seasonal 95th percentile exceedance counts for the ERA-40 peak wind gust 
and station data for Bremen, Germany (top) and Eskdalemuir, Scotland (bottom) for DJF (left) and 
JJA (right). 

 

4.4.2 Wind results 

 

Owing to the scarcity of peak wind speed data, a limited range of comparisons were carried 

out between seasonal exceedance counts for the available wind stations and the 

corresponding ERA-40 gridbox.  Figure 4.8 summarises the correlations between the 90th 

and 95th percentile exceedance counts for DJF and JJA.  As with the precipitation indices, 

correlations are markedly lower in the summer months.  However, this is not of great 

practical importance owing to the relatively low impact of wind speeds in the summer.  The 

differences in correlations between the 90th and 95th percentile exceedances are less marked 

than with the precipitation data. 
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Figure 4.8 Correlation between stations and nearest ERA-40 gridbox for DJF (left) and JJA (right) 
90th (top) and 95th (bottom) percentile exceedance counts. 

 

Figure 4.9 extends the comparison to individual station timeseries, again for DJF and JJA 

95th percentile exceedance counts.  The stations shown are De Bilt (Netherlands) and 

Stuttgart (Germany).  Although there is a considerable difference in the correlations 

between winter and summer for both stations, the difference is less marked in the case of 

De Bilt, which is likely due to less of an influence from topographic effects. 
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Figure 4.9 Comparison of seasonal 95th percentile exceedance counts for De Bilt (Netherlands) and 
Stuttgart (Germany) for DJF (left) and JJA (right). 

 
 
 
For the purpose of further analysis, as outlined in Chapter 3, it is a requirement that the 

predictand data are approximately Poisson distributed.  Figure 4.10 and Figure 4.11 

illustrate comparisons of the observed frequency distribution and the theoretical Poisson 

distribution for selected gridboxes across the study domain.  JJA 95th percentile 

precipitation exceedances and DJF 90th percentile wind exceedances are shown, 

respectively.  It can be seen from Figure 4.10 and Figure 4.11, and also more generally for 

all gridboxes, seasons and predictands (not shown) that the frequency distributions 

approximate the Poisson distribution, although in some cases there is a tendency for 

unexpectedly high numbers of seasons with high rates of occurrence of extreme events.  

This is likely attributable to the small sample size, since the aggregation of gridboxes into 

still larger regions tends to remove this effect (not shown). 
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Figure 4.10  A sample of empirical frequency distributions of JJA 95th percentile precipitation 
exceedance counts from the ERA-40 dataset, compared to the theoretical Poisson distribution with 
mean µ equal to the observed mean at each gridbox.  ERA-40 gridboxes are aggregated to groups of 
four and the predictands re-derived from the raw data. 
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Figure 4.11  A sample of empirical frequency distributions of DJF 90th percentile wind exceedance 
counts from the ERA-40 dataset, compared to the theoretical Poisson distribution with mean µ equal to 
the observed mean at each gridbox.  ERA-40 gridboxes are aggregated to groups of four and the 
predictands re-derived from the raw data. 
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Figure 4.12  Illustration of the dispersion parameter for ERA-40 90th percentile precipitation 
exceedance counts by season.  Values greater than 1 indicate overdispersion, where the variance of the 
exceedance counts is greater than the mean. 
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Figure 4.13 Illustration of the dispersion parameter for ERA-40 95th percentile precipitation 
exceedance counts by season.  Values greater than 1 indicate overdispersion, where the variance of the 
exceedance counts is greater than the mean. 
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Figure 4.14 Illustration of the dispersion parameter for ERA-40 90th percentile wind exceedance counts 
by season.  Values greater than 1 indicate overdispersion, where the variance of the exceedance counts 
is greater than the mean. 
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Figure 4.15 Illustration of the dispersion parameter for ERA-40 95th percentile wind exceedance counts 
by season.  Values greater than 1 indicate overdispersion, where the variance of the exceedance counts 
is greater than the mean. 
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The Poisson distribution is described by a single parameter µ, representing both the mean 

and the variance of the distribution.  When applying a Poisson regression model to data 

which approximates a Poisson distribution it is desirable to assess the degree to which the 

empirical data satisfies the condition of equivalent mean and variance.  The standard 

approach is simply to measure the ratio of the observed mean and variance to give a metric 

of the dispersion.  Values greater than one, where the variance is greater than the mean are 

said to indicate overdispersion, and values less than one underdispersion.  Figure 4.12 

illustrates the dispersion statistics for the ERA-40 90th percentile precipitation exceedance 

counts, for each of the 12 three-month seasons.  The general pattern is for overdispersion, 

which is particularly strong in the south of the domain, and during the summer months. 

This indicates that data might for example be better described using a negative binomial 

distribution, which has two parameters, describing the mean and variance.  The 95th 

percentile exceedance counts for precipitation are a closer approximation to the Poisson 

distribution as shown in Figure 4.13.  Here a similar geographical and seasonal pattern is 

observed, but generally the values of the dispersion statistic are closer to one.  The 

implication to be drawn from this is that the 90th percentile data may suffer from the 

occurrence of precipitation events or dry spells which are not entirely independent in time.  

For example due to extended periods of heavy rainfall resulting from the same synoptic 

weather system, or extended periods of drought in southern Europe. 

 

The wind predictands generally have dispersion statistics much closer to one, with the 

exception of regions of northern Europe during winter, as illustrated in Figure 4.14 and  

Figure 4.15, for the 90th and 95th percentile exceedance counts respectively.  Where the 

data appear to be substantially overdispersed, the implication is that there is some effect 

due to the clustering of extra-tropical cyclones, as explored in for example Mailier et al 

(2006).  However, overall it is thought that both the wind and precipitation predictand data 

are sufficiently closely approximated to a Poisson process for Poisson regression to be used 

to model the predictor predictand relationships.  Some overdispersion is unavoidable, and 

as discussed in Chapter 3, estimates the model error and significance of fit are made more 

conservatively given this overdispersion. 
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4.5 Summary 

 

The definition of predictands for a seasonal forecasting model designed to forecast extreme 

events is a challenging task.  The predictands must be useful with respect to the events it 

predicts, and their frequency of occurrence must be sufficient to discern interannual 

variability related to the large-scale circulation of the atmosphere. µ 

 

In the case of precipitation, both the station dataset provided by the ECA and the forecast 

precipitation from ERA-40 seem to capture interannual variability in the monthly means 

quite well.  The realistic relationship between ERA-40 and the NAO is particularly 

encouraging.  There are some marked differences in the representation of extreme 

precipitation.  However the pattern of interannual variability is well represented, 

particularly in the winter months.  Given the available station network, it is impossible to 

make an objective appraisal of which dataset represents interannual variability of extreme 

precipitation more accurately.  Further considerations are the possible inhomogeneities and 

the missing data in the station records.  Kharin et al. (2002) comment on the utility of 

reanalysis precipitation in respect of its temporal and spatial homogeneity, while  Zolina et 

al. (2004) compare European extreme precipitation in all four reanalysis datasets (ERA-40, 

ERA15, NNR1 and NNR2) and conclude that with respect to moderate extremes, the 

reanalyses capture temporal variations effectively.  Given the requirements of this thesis, 

temporal and spatial continuity are highly important, as is a realistic representation of 

interannual variability.  ERA-40 will therefore be used as the predictand component of the 

model.  The 90th and 95th percentile exceedance threshold counts will be considered.  

Owing to the computational expense of the predictor selection algorithms as described in 

Chapter 3 and Chapter 6, the gridboxes are combined in groups of four as the mean value 

of the raw data to reduce the spatial resolution – that is, four neighbouring gridboxes at the 

native resolution are averaged to form a new gridbox, where geographically each of the old 

gridboxes comprises a quadrant of the new gridbox.  The predictands are derived from the 

aggregated gridboxes in exactly the same way as described above for the data comparisons, 

and correlate very highly with the original data. A spatial illustration of the new aggregated 

data is illustrated in Figure 4.12.  As well as reducing the computational expense of the 

predictor and model selection algorithms, the spatial scale of the extremes, particularly the 

wind and winter precipitation extremes are such that the interannual variability is still 
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adequately represented by the aggregated gridboxes, and the great majority of the observed 

extremes are greater than the gridbox scale.  Indeed it is speculated by Lloyd-Hughes and 

Saunders (2003) that for seasonal forecasts of mean precipitation it may be necessary to 

aggregate the predictand data to much larger (pan-European) domains in order to gain any 

forecast skill.  This approach does not necessarily translate to the prediction of extremes, 

given the extent to which extreme events would be smoothed over a very coarse domain. 

 

Finally, in order to maximise the model training and validation period, data from the 

ECMWF Operational Analysis are used to extend the predictand data to 2005.  This data is 

also obtained from the BADC, who provide a version of the Operational Analysis that is 

consistent with the ERA-40 reanalysis.  Although some changes were made to the 

methodology in developing the operational analyses – for example the transition from 3D-

Var to 4D-Var data assimilation, as well as the addition of some new data sources (Uppala 

et al, 2005), it is found that for the period in which the two datasets (ERA-40 and the 

ECMWF Operational Analysis) overlap (2000-2001), the data are virtually identical (not 

shown).  However, the forecast data from ERA-40 (i.e. both the precipitation and the wind 

fields) are derived based on the operational forecasting system in place from June 2001 to 

January 2002, after which a new forecast scheme was used to generate the operational data 

(Uppala, et al, 2005).  There is therefore no opportunity to compare the ERA-40 data with 

operational based on data post-2002 forecast schemes.  It is therefore possible that there are 

significant inhomogeneities in the data.  However, it is thought that given the substantial 

similarities that do still exist between the two datasets, it is justifiable to include the 

operational data in order to maximise the record length. 
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5 Predictors 
 

This Chapter introduces the procedure by which potential predictors are selected as 

candidates in the first stage of the model selection process.  Section 5.1 comprises the 

introduction. The approach to potential predictor selection is outlined, including a 

discussion of the nature of the predictor selection problem in model design in more 

general terms.  Section 5.2 gives details of the predictors, including justification for their 

inclusion, data sources for the predictors, and the development of predictor indices.  

Section 5.3 summarises the predictor information, and the implications for further model 

development. 

 

5.1 Introduction 

 

As discussed previously, there are few useful predictors of wind and precipitation 

extremes in Europe.  Some tentative statistical relationships have been identified, 

focussing on seasonal precipitation totals.  For example Colman and Davey (1999) use 

the first principal component (PC) from a principal component analysis (PCA, also 

referred to as empirical orthogonal functions, or EOF analysis) of January-February 

North Atlantic SST anomalies, over the spatial domain 20-80°N as a predictor for 

summer temperature, rainfall and pressure in Europe.  Some very limited skill exists for 

July-August rainfall over areas of Western Europe.  Feddersen (2003) identifies Tropical 

and North Atlantic SSTs, as well as the NAO as potentially useful predictors of 

Scandinavian precipitation.  Muñoz-Díaz and Rodrigo (2006) use regional sea-level 

pressure (SLP) fields and indices of the El Niño-Southern Oscillation (ENSO) 

phenomenon, respectively, as statistical predictors of precipitation over Spain.  Lloyd-

Hughes and Saunders (2002) use ENSO and local SST fields to develop a seasonal 

forecasting system for central European Spring precipitation.  Wilby et al. (2004) suggest 

that the search for potential predictors (with specific reference to summer 

hydrometeorological conditions of the River Thames, UK) should not be limited to the 

Northern Hemisphere.  Predictors included in the Wilby et al. (2004) study include sea-

level pressure modes such as the NAO, indices of North Atlantic SST, and Northern 
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Hemisphere sea-ice cover indices.  General descriptors of the climate such as the NAO 

can also be used as predictands, from which mean conditions can be inferred (e.g. Qian 

and Saunders, 2003).  For example the UK Met Office (UKMO) bases its operational 

forecasts of the winter NAO (from which climatological variables such as temperature 

and precipitation can be inferred) on the first PC of late summer SST anomalies in the 

North Atlantic.  Other studies have found relationships between Northern Hemisphere or 

Eurasian snow cover anomalies and the NAO, or other measures of large-scale 

circulation variability, using both the observed record (e.g. Qian and Saunders, 2003; 

Saunders et al, 2003; Bojariu and Gimeno 2003a, b; Cohen et al., 2001; Cohen et al., 

2002) and model studies (Kumar and Yang, 2003). 

  

Potential predictors for extremes of precipitation and wind have not been investigated to 

the same extent as those for seasonal mean conditions.  Much of the work relevant to 

precipitation focuses on simultaneous relationships between the large-scale circulation 

and the likelihood of extremes, often for the purpose of developing precipitation 

downscaling schemes.  Haylock and Goodess (2004) use canonical correlation to identify 

links between PCs of extreme winter rainfall in Europe, and mean sea level pressure 

(MSLP) over the north Atlantic, finding significant links, in particular with the NAO, 

where a positive NAO leads to increased frequencies of extreme precipitation over 

Northern Europe and a decrease over Southern Europe, matching the canonical pattern 

for mean rainfall shown by e.g. Hurrell (1995) and Trigo et al. (2002).  Additionally, a 

mode centred over the North Sea, which appears to be linked to local SSTs is found to fit 

well with precipitation extremes over the same spatial domain.  Simultaneous SSTs were 

found to have a weaker fit to the rainfall data.  Hellstrom (2004) uses a system based on 

the Lamb classification (Lamb, 1950) to assess the relationship between circulation type 

and extreme (≥40mm) summer precipitation in Sweden, finding that extreme 

precipitation events tend to be associated with lower westerly flow, and higher southerly 

flow.  Plaut and Simonnet (2001) show that the frequency of wet days in the top decile of 

precipitation amount (equivalent to the 90th percentile exceedance in this study) over 

south east France, is linked to so-called weather regimes defined by a cluster analysis, 

and describing large-scale circulation over the North Atlantic-European sector.  

Moreover, the clusters tend to act as attractors for the precipitation, and as such they are 
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more effective descriptors of the extreme climatology than the mean.  Gallego et al. 

(2005) find a strong and virtually simultaneous association between the winter NAO 

index, and the frequency and intensity of daily precipitation over the Iberian Peninsula. 

 

Wind and storms in particular have been the focus of substantially less research than 

precipitation.  To many extents forecasts of the NAO have implications for the likelihood 

of wind extremes in Europe, relating to the strength of the prevailing westerlies and the 

position of the storm track, particularly in Winter and Spring (e.g. Trigo et al., 2002; 

Bojariu and Gimeno, 2003; Qian and Saunders 2003).   DeGaetano (2002) examines 

potential predictors for seasonal forecasts of East-coast USA windstorms.  A wide range 

of potential predictors are considered, based on work by Hirsch et al. (2001), and other 

relationships described in the literature.  These predictors include Niño 4.3 SST, and SST 

from the tropical Atlantic, and Eastern Seaboard of the USA.  Also, US Land 

temperature, and indices such as the NAO, and Southern Oscillation Index (SOI) are 

included.  The initial predictor set is refined using a screening procedure, to yield a more 

manageable subset of statistically useful predictors.  Significant skill over climatology is 

reported.  Enloe et al. (2004) find a significant ENSO influence on peak wind gust 

magnitudes over the United States, manifest as an asymmetric response to cold-phase 

events (La Niña) more than warm-phase (El Niño).  With respect to the predictability of 

windstorms in Europe, little work has been done.  Palutikof et al. (2002) find little 

evidence for predictability, although Qian and Saunders (2003) identify a statistically 

significant link between Eurasian summer snow cover and the winter NAO, from which 

they derive a model to predict European winter storminess, with some skill.  Yan et al. 

(2002) studied the simultaneous variability of European wind extremes with indices such 

as the NAO using a GLM. 

 

With respect to this thesis, the papers referred to above serve to illustrate some of the 

predictor selection issues faced here.  Namely, they suggest that developing a 

precipitation or windstorm prediction system for seasons throughout the annual cycle, 

and over an area such as northwestern Europe requires a diverse set of potential 

predictors, with little guidance from the literature as to which predictors are most skilful 

or physically plausible.  Additionally, skill is expected to be very low. While some 
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studies have focused on a narrow family of predictors, for example snow cover to predict 

the NAO (Saunders et al., 2003), others use a wider range of potential predictors (for 

example Wilby et al., 2004); De Gaetano 2002).  The approach taken here is to consider a 

wide range of potential predictors, including SSTs, atmospheric indices and land surface 

indices such as snow cover, but also including solar forcing, which according to some 

recent analyses (e.g. Haigh et al., 2005) may offer some predictive skill at seasonal 

timescales. 

 

However, there is danger in considering a large number of potential predictors without a 

clear physical mechanism by which they might each contribute predictability, especially 

when a relatively short record of the order of 40 samples is considered.  The possibility of 

overfitting the model – that is – fitting the predictors to noise in the data, rather than 

signals which may be present becomes almost a certainty, even when the number of 

covariates in the model is low.  It is therefore necessary to have rigorous methods by 

which the initially large set of potential predictors can be reduced and validated.  In this 

case, field significance tests using resampling will be used to select only those predictors 

which have a significant (95%) and spatially coherent impact on the predictand.  This 

allows an initially large set of predictors to be considered and then significantly reduced 

in number.  It should be emphasised that this approach, in the absence of physically 

explicable predictability must be essentially exploratory.  Details of the field-significance 

testing will be given in Chapter 6. 

 

5.2 Potential Predictors 

5.2.1 Large scale SST 

Sea surface temperature is typically the primary source of long-range predictability in 

statistical seasonal forecasting (Goddard et al., 2001).  Early seasonal forecasting efforts 

were driven by the need to understand the impacts associated with the ENSO 

phenomenon in the Tropical Pacific, during the 1980s (e.g. Ropelewski and Halpert 

1987).  Since then most skilful forecasts have relied to some extent on the persistence or 

prediction of tropical SST anomalies (e.g. Colman and Davey (2003); Folland et al., 
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1991; Ward and Folland 1991).  Since ENSO has been linked to European climate 

variability widely in the literature (Fraedrich 1994, Pozo-Vazquez et al., 2005a, b), 

Pacific SST variability is considered here as providing a set of potential predictors.  Work 

by Bader and Latif (2005); Goswami et al., (2006) and Li et al., (2006) suggest that the 

Indian Ocean can also be causally linked to the European climate, in particular through 

the NAO.  Li et al. (2006) identify a positive feedback whereby warming in the Indian 

Ocean induces a positive NAO, which is maintained by positive feedback with the local 

(North Atlantic) SST anomalies.  More recently, the causal nature of the link between 

Indian Ocean warming and a positive NAO has been questioned (Copsey et al., 

NCAS/NERC conference, 2006).  In this case, a GCM forced with observed SST showed 

a decreasing SLP trend over the Indian Ocean, contrary to observations, bringing into 

question the mechanism proposed by Li et al. (2006).  The Atlantic Basin does not have a 

dominant mode with far-reaching teleconnections in the same manner as the Pacific, nor 

is it clearly linked to ENSO variability (Sutton et al., 2000).  However, several clear 

modes of variability have been identified.  In the tropics, where ocean-atmosphere 

coupling is stronger, owing to the warmer SSTs (Sutton et al., 2000; Frankignoul and 

Kestenare 2005), considerable research has attempted to link persistent or predictable 

SST modes with European climate.  Some studies have found links (e.g. Czaja and 

Frankignoul 2002; Peng et al., 2005) between tropical Atlantic variability and the North 

Atlantic/European climate, although the exact nature of the physical modes, and the 

forcing mechanism are as yet unclear.  In the extratropics, modes such as the North 

Atlantic tripole (e.g. Rodwell and Folland 2002, 2003) are primarily integrations of 

atmospheric forcing – in this case by the NAO.  However, there is some evidence of 

coupling which in the case of the North Atlantic Tripole results in a positive feedback 

relationship between the tripole and the NAO (Rodwell and Folland, 2002, 2003; Czaja 

and Frankignoul 2002).  It should be noted here that there are still substantial differences 

between the observed and modelled representation of these relationships.  For example 

Rodwell and Folland (2002) find that the observed relationship is significantly stronger 

than the modelled relationship. Hurrell et al., (2006) provide an excellent review of work 

to date on Atlantic climate variability and predictability.  They emphasise, among other 

things, the importance of the continued development of the observing system.  In 

particular, the measurement of subsurface temperatures is thought to offer potentially 
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enhanced insights into the nature and predictability of Atlantic Ocean variability.  While 

the nature and strength of ocean-atmosphere coupling in the Atlantic as a whole, and the 

North Atlantic in particular are subject to much ongoing research, useful predictive skill 

has been found and used operationally by groups such as the UK Met Office (UKMO).  

The whole Atlantic basin is considered here as a source of potential predictability. 

 

Further studies utilise SSTs more specifically to assess predictability of European 

climate.  For example, Colman and Davey (1999) devise a forecast model for European 

summer precipitation, temperature and pressure based on the leading mode of North 

Atlantic winter SST.  Benestad and Melsom (2002) assess the effect of North Atlantic 

SSTs on Norwegian precipitation, finding possible evidence of an influence driven by the 

warming trend in the North Atlantic.  McGregor and Phillips (2004) explore the 

predictability of rainfall in southwest England, and find that much of the apparent 

predictability is due to North Atlantic SSTs.  Predictive skill is typically low, but a slight 

improvement on climatology. 

 

5.2.1.1 Large Scale SST Data and Predictor Indices 

The Hadley Centre (UKMO) ice and SST dataset HadISST1.1 (Rayner et al. 2003) is 

used.  The dataset covers the period 1870 to the present, although only the period 1958-

2005 is considered here.  Data is provided by the British Atmospheric Data Centre 

(BADC, http://badc.nerc.ac.uk). 

 

Broadly speaking there are three methods by which predictors from multivariate SST data 

can be derived.  Firstly, correlation or regression can be used to identify regions which 

correlate highly with the predictand (e.g. Peng and Mysak, 1993).  Given that the 

predictand is also a field, and that the assessment of significant predictor-predictand 

relationships must include some form of field-significance testing to assess the spatial 

degrees of freedom in the SST data, this approach will either result in a very large 

number of predictors, each of which specifically apply to one predictand timeseries 

(gridbox), or a smaller number of regional indices will have to be selected subjectively.  

Either way, the requirement for field significance testing imposes a considerable 
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computational expense.  Given the availability of alternative techniques, this approach is 

therefore not considered further.   

 

Secondly, instead of identifying key regions which are correlated with the predictand, it 

is possible, using a technique such as PCA, to identify the most important modes of 

variability in the SST data, and to use the expansion coefficients – scores or timeseries – 

of these principal components as the predictor indices.  In this way, SST regions can be 

defined objectively, and it is ensured that only the most important modes are considered, 

reducing the possibility of including too many noisy predictors.  However, the question 

of assessing spatial degrees of freedom applies also to the predictand data, and predictor-

predictand relationships must therefore be assessed with this in mind. Typically, a field 

significance test based on Monte-Carlo resampling (Livezey and Chen, 1983) is used.  

The application of this method is discussed in more detail in Chapter 6. 

 

Thirdly, a multivariate technique such as canonical correlation analysis (CCA) (e.g. 

Barnett and Preisendorfer, 1987), or maximum covariance analysis (MCA) (e.g. Rodwell 

and Folland, 2003), can be used.  These methods identify dominant patterns in both fields 

that are correlated in time.  In the case of CCA, it is necessary first to reduce the 

dimensionality of the two datasets by some method such as PCA.  Haylock and Goodess 

(2004) show that useful links can be identified between extremes of precipitation and 

features of the large-scale circulation, including for example the NAO.  The use of CCA 

in this case is dependent upon an initial PCA decomposition, where a small number of 

precipitation ‘modes’ are retained for the CCA, describing approximately between 40% 

and 50% of the variability, depending on the precipitation index under consideration.  

This method is useful in that it both expresses coherent variability in the predictand, and 

removes likely noise from the predictand data.  However, some considerations, such as 

the non-Gaussian nature of the predictand data may affect the validity of the results, 

although this is thought to be of limited importance (Haylock, personal communication).  

In addition, the initial PCA decomposition of the predictor is similar to the second 

approach outlined above, except that in the second approach, the predictor PCs are 

applied directly to the predictand data, with some additional constraint such as the field-

significance test.  The second approach is adopted here, for the reasons outlined above, 
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and additionally since there is a large exploratory component to the work, it is desirable 

to simplify the interpretation of results as far as possible – that is to say, the combination 

of PC modes in the CCA method is less easy to interpret than considering the PC modes 

separately. 

 

Since the spatial correlation scales in monthly SST data are large, the HadISST 1.1 data 

is regridded onto a regular 5° by 5° grid, using a triangle-based linear interpolation, and 

four different spatial domains are defined: a ‘global’ basin, with latitude limits 60°S to 

70°N, the Atlantic basin, the Pacific basin including the Maritime Continent, and the 

Indian Ocean basin.  Spatial domains of the latter three basins are given in Figure 5.1, 

with the global domain comprising all three of these sub-domains, plus the Mediterranean 

basin.  In all cases, areas with significant periods of seasonal sea-ice coverage are 

excluded from the spatial domain.  The annual cycle is removed from the data, which are 

then reweighted by the square-root of the cosine of the latitude, in order to account for 

the decrease in the size of gridboxes towards the poles (e.g. Lin and Derome, 2003).  

PCA is performed on twelve three-month overlapping seasons (with the data kept at 

monthly resolution) for each of the four spatial domains.  Following suggestions by von 

Storch (Chapter 13, von Storch and Navarra, 1999), the correlation matrix is used.  Based 

on an informal assessment of the fraction of variability accounted for by the leading 

modes, the first five PCs are retained from each analysis.  Typically, the first five PCs 

account for 50-60% of the total variance in the individual basins, and 42-45% over the 

global domain, depending on the season.  The use of twelve three-month seasons is 

motivated partly by the exploratory nature of the work.  Interactions between SST and the 

overlying atmosphere are sensitive to the phase of the annual cycle, and it is thought that 

restriction to the more traditional four-season annual cycle may not optimise the potential 

for identifying predictable relationships.  Recently, Okumura and Xie (2006) find that a 

flexible approach to defining seasons allows new SST patterns and forcings in the 

Tropical Atlantic to be identified.  This prompts the use of twelve seasons, rather than the 

more traditional four.  While PCA carried out on a single month may provide sharper 

temporal resolution, it is reasonable to assume that the phase-locking to the annual cycle 

of ocean-atmosphere interaction is not sufficiently rigid to ensure that a potential forcing 
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by an SST mode takes place within the confines of one month.  Therefore three month 

seasons are preferred. 

 

The data are not detrended before carrying out the PCA, but the PC time series are 

detrended and low-pass filtered using a 20 year window to remove variability at 

timescales incompatible with the period of observation considered here.  It is thought that 

by preserving modes which may be associated with trends, the potential impact of the 

interannual variability of that trend may be assessed. 

 

Given four basins on which PCA is carried out, and five retained PC time series, a total 

of 20 timeseries are derived.  Each timeseries is considered at 10 different lead times, so 

that the JFM predictand season uses predictors from OND (shortest lead time), to the 

preceding JFM (longest lead time).  In total, this gives 200 predictor timeseries for large-

scale SSTs. 

 

Figure 5.2 shows the spatial loadings of PCs one and two of DJF and JJA SSTs over the 

Atlantic domain.  The dominant mode has a long-term warming trend, while the second 

mode is closely associated with the Atlantic tripole pattern (e.g. Seager et al., 2000).  The 

tripole pattern is of particular interest since it represents an integration of the mean 

forcing by the NAO over seasonal timescales, and is thought to feed back into NAO 

variability, implying predictability at seasonal timescales (e.g. Rodwell and Folland, 

2002). 
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Figure 5.1 Spatial domains of SST Principal Component Analysis (PCA) 

 
Figure 5.2  PC 1 and 2 of Atlantic SST.  DJF (top) and JJA (bottom).  PC1 shows a warming trend, 
and PC2 is highly correlated with the North Atlantic tripole pattern (e.g. Seager et al., 2000). 
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5.2.2 Stratosphere 

 

5.2.2.1 Background to Stratospheric Predictors 

 

The use of information from the stratosphere to provide potential predictors for seasonal 

forecasting is a relatively new and untested field.  Robock (2001) suggests that 

improvements in representations of the stratosphere in numerical models are needed to 

improve dynamical seasonal prediction, and Baldwin (2003) identifies potential 

predictability at intraseasonal scales in the Northern Hemisphere extratropics. The use of 

information from the stratosphere is contingent on persistent or predictable anomalies, 

and interactions between the stratosphere and the troposphere.  Recent work has focussed 

on both, although a comprehensive assessment of the nature and strength of stratospheric 

coupling with the troposphere is far from complete. 

 

Baldwin and Dunkerton (2001) examine anomalous events in the Northern Hemisphere 

winter stratospheric circulation, finding observational evidence that these anomalies are 

often followed by anomalous conditions in the troposphere at timescales of up to 60 days.  

Additionally, it is found that the strength of the polar vortex is related statistically to the 

sign of the QBO, implying longer-range predictability.  Mechanisms to explain these 

relationships are not fully developed, although Baldwin et al. (2003) succeed in making 

skilful empirical forecasts of the Northern Annular Mode, defined as the leading mode of 

extratropical Northern Hemisphere geopotential height variability, at up to a month in 

advance.  Charlton et al. (2003) obtain similar results.  Subsequent to this work, there has 

been considerable focus on stratosphere-troposphere coupling in the literature, including 

Itoh and Harada (2004), who show that the leading tropospheric modes in the Northern 

Hemisphere (identified here as the Pacific-North American pattern, or PNA, and the 

NAO) couple with the stratosphere, being significantly correlated over time.  Scott and 

Dritschel (2005) use a simplified model to show that potential vorticity waves tend to 

propagate downwards through the stratosphere.  This has direct implications for the 
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temporal evolution of the polar vortex, and supports the empirical findings of Baldwin 

and Dunkerton (2001) inter alia. 

 

In addition to work on the persistence and tropospheric impact of stratospheric 

anomalies, it has for some time been well known that upward-propagating anomalies 

from the troposphere can impact the stratosphere.  This is of particular interest in the 

context of increasing evidence of coupling across the tropopause, since potentially 

predictable surface phenomena may have an effect on the stratosphere.  Although 

Hamilton (1993) finds that there is no apparent correlation between ENSO and raw 

measurements of the stratospheric circulation, although composite responses to ENSO 

warm events are discernable.  The problem of separating ENSO and QBO signals in the 

stratosphere is discussed.  Kodera et al. (1996) isolate the major stratospheric modes 

using PCA, and find a strong statistical link with ENSO and the second stratospheric PC.  

Recently, Brönnimann et al. (2004) finds observational evidence from the strong El Niño 

of 1940-42 for significant impacts on Northern Hemisphere stratospheric heights, and 

surface temperatures in Europe.  Moreover, these results compare strikingly well with 

model simulations of strong El Niño events.  More generally, Calvo Fernandez et al. 

(2006) find a small but significant impact of ENSO on the tropical stratosphere.  Scaife et 

al. (2005) use a GCM to identify a possible direct role of the stratosphere in forcing not 

only NAO variability in the short term, but the longer term positive trend that has been 

observed since the 1970s.  In summary the role of the stratosphere in providing seasonal 

predictors is potentially large, although much of the theory remains to be clarified. 

 

5.2.2.2 Stratospheric Data and Predictor Indices 

Three stratospheric variables are considered, taken from the ERA-40 reanalysis and 

ECMWF operational analysis: geopotential height, temperature, and potential vorticity.  

Geopotential height is widely used, in particular to express the Northern Annular Mode 

(NAM).  Haigh et al. (2005) examine the effects of stratospheric heating on the 

troposphere, and find discernable impacts in the meridional extent of the Hadley cells, 

and of the midlatitude circulation.  Hartley et al. (1998) find that disturbances to the 

Northern Hemisphere stratospheric polar vortex result in a redistribution of stratospheric 
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potential vorticity, which results in perturbations in the upper troposphere.  A substantial 

volume of further work (e.g. Ambaum and Hoskins, 2002; Black and McDaniel, 2004; 

McDaniel and Black, 2005) has explored this relationship further.  It is thought that the 

use of potential vorticity to assess the impact of changes in the stratospheric circulation 

on the troposphere may be helpful.  It should be noted, however, that stratospheric data 

are of limited reliability in the pre-satellite era (pre-1979).  For example Haigh et al. 

(2005) use only post-1979 NCEP data in their analysis.  Despite these limitations, it is 

thought that the omission of the stratosphere from the set of potential predictors on this 

basis is not justified. 

 

As in the SST predictor set, PCA is used to derive predictor indices from this data.  This 

is a commonly used technique with stratospheric data, for example Baldwin et al. (2003) 

use PCA to define the Arctic Oscillation (AO), and Kodera et al. (1996) study the leading 

modes of Northern Hemisphere stratospheric variability as defined by PCA.  The first 

three principal components of geopotential height, temperature, and potential vorticity are 

considered, at 150hPa, 100hPa, 50hPa and 30hPa – i.e. approximately from the 

tropopause into the lower stratosphere.  Four different heights are considered since it is 

known that anomalies in the stratosphere tend to propagate both upwards and downwards 

over weekly to monthly timescales (e.g. Scott and Dritschel, 2005; Breiteig 2008), and it 

is thought that the consideration of different heights might allow the inclusion of 

potentially useful predictors at longer lead times.  In particular, Limpasuvan et al (2005) 

find a clear downwards-propagating signal in stratospheric wind and temperature during 

sudden stratospheric warming (SSW) episodes.  Although variability in the extratropical 

stratosphere is typically on shorter timescales than that of the major SST modes, the use 

of three month seasons was maintained in order to highlight the more slowly varying 

modes in the stratosphere.  The data were not detrended for the PCA, and in many cases 

the first component comprises a trend, likely related to the observed cooling in the 

stratosphere (e.g. Ramaswamy et al., 2001).  The next most important mode (in some 

cases this is the most important mode) is highly correlated with timeseries of the AO and 

the NAM, while the third mode frequently exhibits high correlations with ENSO, 

comparable to the second mode in Kodera et al. (1996).  An example provided in Figure 

5.3 shows the spatial patterns of the first two leading modes of geopotential height at 
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150hPa for DJF and JJA.  In both cases the leading mode represents a trend, and the 

NAM pattern is apparent as the second mode in the DJF analysis.  The NAM is not 

apparent in the second JJA pattern, which instead is highly correlated (r=-0.63, p=2x10-6, 

with July Niño 3.4) with ENSO.  The choice of only the first three modes of the 

stratospheric variables was made because typically the variance accounted for by the 

third mode is already small (of the order of 5%), and little evidence exists to support the 

physical validity of further modes at seasonal timescales. Given the much lower mass of 

the stratosphere compared to the troposphere, coupling (i.e. forcing of the troposphere by 

the stratosphere) is not likely to be accomplished by any but the most coherent and 

persistent modes.  Additionally, given three variables and four levels at which analysis is 

carried out, the total number of predictors from the stratosphere is 360, given all ten lead 

times, and it is thought best not to increase this still further.  As with the SST predictors, 

all timeseries are detrended and low-pass filtered using a 20 year window to attempt to 

isolate interannual variability.  

 
 

 
Figure 5.3 PC 1 and 2 of DJF and JJA geopotential height at 150hPa. 
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5.2.3 Teleconnection Indices 

 

5.2.3.1 Background to Teleconnection Indices 

 

A further series of potential predictor indices representing large-scale variability of the 

ocean, troposphere and stratosphere are included.  They are all thought to describe 

significant physical processes, and as such are superficially of interest either for their 

persistence or for their coherent forcing of other boundary processes, such as the NAO 

influence on the North Atlantic Ocean (e.g. Cayan 1992a, b).  In many cases, studies have 

linked the processes represented by these timeseries with European climate at lead-times 

suitable for seasonal forecasting (e.g. Fraedrich 1994, Mariotti et al. 2005).  As well as 

the summary in Table 5.1, a more detailed description of each index is given in section 

5.2.3.2 below. 

 

5.2.3.2 Teleconnection Data and Predictor Indices 

 

Table 5.1 lists the teleconnection indices considered for potential predictors.  The Arctic 

Oscillation (AO) is defined by Thompson and Wallace (1998) as the leading empirical 

orthogonal function (or principal component) of sea level pressure (SLP) in the Northern 

Hemisphere extratropics.  It is the surface manifestation of the Northern Annular Mode 

(NAM), which is present throughout the troposphere, and, particularly during the winter 

months, in the lower stratosphere also.  The AO is highly correlated with the North 

Atlantic Oscillation (NAO), and there is an ongoing discussion in the literature as to 

whether the two indices describe the same process (e.g. Wallace 2000), or whether they 

are physically distinct (e.g. Ambaum et al. 2001).  Cohen et al. (2002) identify 

differences in the seasonal evolution of the SLP anomalies that comprise the major mode 

of variability in the NH winter.  Essentially, two separate categories are described, one 

which is similar to the NAO in its regional manifestation, and one which is more similar 

to the AO.  Furthermore, it is suggested that the recognition of these separate pathways 

may offer higher predictability at the seasonal scale than was previously thought possible.  
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More recently, Feldstein and Franzke (2006) find that composites of SLP and upper 

atmosphere streamfunction based on NAO and NAM indices are indistinguishable, and 

cannot be said to be confined to the North Atlantic region, or to be hemispheric modes.  

The NAO may be interpreted as a local manifestation of the NAM, describing the 

exchange of atmospheric mass between centres located over the North Atlantic at about 

35°N and 65°N, and was first observed by Walker (1924).  The NAO index used here is 

derived from the leading rotated mode of 500hPa height in the Northern Hemisphere 

north of 20°N.  The AO index is based on the same data, but is derived using unrotated 

PCA.  Both datasets are provided by the National Oceanographic and Atmospheric 

Administration (NOAA) Climate Prediction Centre (CPC).  Data can be found at 

http://www.cpc.noaa.gov/products/precip/CWlink/pna/nao.shtml.  

 

Barnston and Livezey (1987) used rotated principal component analysis (RPCA) to 

summarize the leading modes of monthly 700hPa heights in the Northern Hemisphere 

north of 20°N.  As well as the NAO, they identified a number of modes which appear to 

be physically significant.  These modes are included as potential predictors.  The indices 

are also provided by the CPC, and full details of their derivation and description can be 

found in Barnston and Livezey (1987) and on the CPC website (www.cpc.noaa.gov).  

Numerous studies have identified relationships between these teleconnection patterns and 

the European climate (e.g. Quadrelli and Wallace 2004; Zvaryaev 2004; Kingston et al. 

2006;) and although the physical validity of some of the modes has been called into 

question, they remain useful descriptors of Northern Hemisphere climate variability.   

 

The indices of the Southern Oscillation Index (SOI), and of SLP at Darwin and Tahiti 

(the two stations from which the SOI is derived, e.g. Ropelewski and Jones, 1987) are 

included, as are the commonly used regional SST indices of El Niño-Southern Oscillation 

(ENSO) activity, Niño 1+2, Niño 3, Niño 3.4 and Niño 4, all of which are located in the 

tropical Pacific, and are designed optimally to describe ENSO evolution at different 

phases. 
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Predictor Description Dataset Data provision 
AO Arctic Oscillation  CPC 
NAO North Atlantic Oscillation  CPC 
EA East Atlantic Pattern  CPC 
EAWR East Atlantic/West Russian 

Pattern 
 CPC 

EPNP East Pacific/North Pacific Pattern  CPC 
PNA Pacific-North American Pattern  CPC 
POL Polar-Eurasian Pattern  CPC 
PT Pacific Transition Pattern  CPC 
SCA Scandinavia Pattern  CPC 
TNH Tropical-Northern Hemisphere 

Pattern 
 CPC 

WP West Pacific Pattern  CPC 
SOI Southern Oscillation Index  CPC 
Darwin SLP Sea Level Pressure at Darwin  CPC 
Tahiti SLP Sea Level pressure at Tahiti  CPC 
Nino 1+2 SST anomalies: 0°N-10°S, 90°W-

80°W 
HadISST 1.1 CPC 

Nino 3 SST anomalies: 5°N-5°S, 150°W-
90°W 

HadISST 1.1 CPC 

Nino 3.4 SST anomalies: 5°N-5°S, 170°W-
120°W 

HadISST 1.1 CPC 

Nino 4 SST anomalies: 5°N-5°S, 160°W-
150°W 

HadISST 1.1 CPC 

NH temperature Northern Hemisphere temperature 
anomaly 

HadCRUT3 CRU 

SH temperature Southern Hemisphere temperature 
anomaly 

HadCRUT3 CRU 

 Difference between Hemispheric 
temperature anomalies 

HadCRUT3 CRU 

QBO50 Quasi-Biennial Oscillation at 
50hPa 

1958-1978: CPC 
Singapore 
1979-2005 CPC 
QBO 

CPC 

QBO30 Quasi-Biennial Oscillation at 
30hPa 

1958-1963 FBU 
1964-1978: CPC 
Singapore 
1979-2005: CPC 
QBO 

FBU; CPC 

Table 5.1  Teleconnection indices, giving the name of the predictor, and describing the nature and 
source of the data from which the predictor is derived. 
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Indices of Northern and Southern Hemisphere mean monthly temperature are from the 

Climatic Research Unit HadCRUT3 dataset (Brohan et al., 2006) which can be obtained 

at (http://www.cru.uea.ac.uk/cru/data/temperature/).  

 

The quasi-biennial oscillation (QBO) describes an oscillation in the direction of the 

equatorial stratospheric zonal winds, with a period of approximately 28 months (Baldwin 

et al., 2001).  It is thought to play a major role in the variability of the extratropical 

stratosphere, being linked to the polar vortex and hence, it is thought, surface weather 

patterns (e.g. Baldwin et al., 2003).  Baldwin et al, (2001) review research on this 

phenomenon, identifying its effect on extratropical interannual variability as a crucial 

area.  Indeed further research has been carried out, for example Hampson and Haynes 

(2006) identify an interaction between the QBO and the extratropical stratosphere in a 

simplified model, where the phase alignment of the QBO with the annual cycle dictates 

the manner in which waves propagate into the extratropics. 

 

Timeseries of the QBO used here are taken from measurements at 50hPa (QBO50) and 

30hPa (QBO30).  The data are of combined indices of radiosonde zonal winds measured 

at Singapore and provided by the Freie Universitat Berlin (http://strat-www.met.fu-

berlin.de/) and the CPC.  Since continuous timeseries were not available from one source 

for the whole period required, data from different sources were combined.  Where the 

data overlap in time, the indices are virtually identical. Table 5.1 provides details of the 

data sources. 

 

Given 22 timeseries of major atmospheric and oceanic modes, a total of 220 potential 

predictors are obtained when all lead times are taken into account.  The predictors are 

detrended and filtered as described in 5.2.1.1 above. 
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5.2.4 Snow cover 

 

5.2.4.1 Snow Cover Background 

 

Northern Hemisphere snow cover has been of interest as a possible predictor of seasonal 

climate variability for some time.  Cohen and Rind (1991) investigated the dynamical 

effects of snow cover forcing on the overlying atmosphere, and more recent work by 

Bojariu and Gimeno (2003); Qian and Saunders (2003) and Saunders et al. (2003) 

identifies Eurasian snow cover in particular as a possible predictor for the NAO at 

timescales of up to several months in advance.  Gong et al. (2002) identify a modelled 

AO/NAO response to snow cover anomalies that is consistent with the observed, and 

Kumar and Yang (2003) identify a marked increase in Northern Hemisphere atmospheric 

variability in a GCM that is forced with variable snow cover and SSTs. They attribute a 

significant role in the enhanced variability of the lower troposphere to snow cover.  In 

addition to this work, Gong et al. (2004) find that snow extent, depth and albedo all act to 

some extent, to modify the characteristics of the overlying atmospheric circulation in a 

GCM.  However the physical basis of this relationship is neither straightforward, nor 

necessarily linear.  Saito et al. (2004) show that there is a phase change in the link 

between Eurasian snow cover and the AO in the 1980s, and identify a link between North 

American snow cover and the NAO.  On the basis of considerable statistical evidence, 

with some support from dynamical experiments, Northern Hemisphere snow cover will 

be considered as a potential predictor.   

 

 

5.2.4.2 Snow Cover Data and Predictor Indices 

 

Two datasets were under consideration for deriving predictor indices of snow cover.  The 

observed gridded monthly dataset provided by the Rutgers University Climate Lab 

(RUCL) (Frei and Robinson 1999; Robinson et al. 1993) is one of the most 

comprehensive products available.  However, it only dates back to October 1966, and 
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therefore removes a significant time-slice from the available analysis period, if all 

potential predictors are to be considered equally.  Additionally, there are missing records 

in the earlier years of the dataset.  The ERA-40/ECMWF Operational analysis also 

provides a snow cover product, covering the period required (1958-2005).  Ultimately, 

for the purposes of developing a prediction system trained on as long a period as possible, 

it would be more desirable to use the ERA-40 dataset.  The two datasets were compared 

to assess suitability, although it should be noted that there are potential problems with 

both. Robinson et al (1993) note that prior to 1972 when the new AVHRR instrument 

was introduced, the snow extent – particularly during the autumn – was systematically 

underestimated, while the ERA-40 data is subject to similar constraints due to the satellite 

record, and also to the limitations of the precipitation forecast model – which includes 

snowfall.  Martin (2004) finds that for the French Alps region, ERA-40 reproduces the 

observed snow cover reasonably well, despite significant shortcomings in the snowfall 

model. 

 

Indices of total continental scale snow cover were obtained from the RUCL, and derived 

from the gridded ERA-40 snow depth data.  The use of total continental or hemispheric 

snow coverage, as opposed to regional indices or a multivariate index such as a PCA 

timeseries is adopted here, following the method of Saunders et al. (2003).  While this 

may not be the most sensitive index to identify potentially predictable lagged 

relationships, it is the most concise summary of snow cover, and alternative methods may 

discount important anomalies which the continental indices would on average be 

expected to include.  Four indices are compared from each dataset, covering Eurasia, 

North America, North America plus Greenland, and the Northern Hemisphere as a whole.  

The RUCL indices are obtained from the RUCL website 

(http://climate.rutgers.edu/snowcover/index.php), and the ERA-40 indices are derived 

from the N80 gridded snow depth data available from the British Atmospheric Data 

Centre (BADC, badc.nerc.ac.uk). 

 

There are substantial differences between the datasets, with the ERA-40 coverage biased 

to larger areas than the RUCL data.  This may be due to the different manner in which 

snow cover is represented in each gridbox.  Whereas the RUCL data gives percentage 
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coverage for each gridbox, the ERA-40 snow depth data is binary, giving total or no 

coverage for each gridbox.  In addition, it is recognised that in the early years of the 

RUCL dataset, snow cover is likely underestimated, as noted above.  Figure 5.4 shows 

comparisons of the datasets on a monthly basis for Eurasia, over the period 1967-2001.   

The correlations vary as a function of the annual cycle, increasing from January 

throughout the spring, and disappearing in the summer.  They then increase from 

September, and decay towards the end of the year.  In summer, snow cover is much less 

extensive, and those areas that are snow covered are more likely to be sparse, with 

respect to percentage gridbox coverage.  This is recognised in the RUCL data, but is 

interpreted as thin but total coverage in the ERA-40 data, possibly leading to the greater 

percentage bias (not shown) in the summer months.  Figure 5.5 shows the same data but 

for North American snow cover.  Correlations are similar throughout the annual cycle, 

although they are better for December in the North American data.  It was decided to use 

the ERA-40 data based on the requirement for predictors to cover the longest possible 

period compatible with the rest of the predictor datasets.  A total of four indices were 

derived, covering the major Northern Hemisphere land masses, and giving a total of 40 

predictors at all lead times.  The data were detrended and filtered as in 5.2.1.1 above. 
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Figure 5.4 Comparison of Eurasian snow-covered area as estimated by the RUCL and ERA-40 
datasets.  Comparisons are given on a monthly basis, and cover the period 1967-2001.  Correlations 
between the timeseries are shown on the plots for each month 
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Figure 5.5 Comparison of North American snow-covered area as estimated by the RUCL and ERA-
40 datasets.  Comparisons are given on a monthly basis, and cover the period 1967-2001.  
Correlations between the timeseries are shown on the plots for each month 

 
 

5.2.5 Local SST 

 

5.2.5.1 Background to Local SST Predictors 

 

Recent work has identified useful predictability from local SSTs – that is, SSTs from 

coastal regions, covering areas orders of magnitude smaller than the large scale PC 

patterns discussed in 5.2.1 above.  Regions as diverse as New Zealand (Zheng and 

Frederiksen, 2006) and the Western Mediterranean (Lepeaubin et al., 2006) have been 

studied in this context.  Hurrell et al, (2006) in a review paper on Atlantic climate 
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variability and predictability identify coastal SSTs as warranting further research into 

their possible role as forcing agents of the local climate, particularly outside the winter 

season.  Zheng and Frederiksen (2006) find evidence for useful predictability of New 

Zealand summer rainfall based on local SSTs at lead times of several months.  Lepeaubin 

et al. (2006) find that anomalously warm SSTs in the Mediterranean are associated with 

extreme rainfall events in the autumn, when the sea is still warm.  The relationships are 

effectively simultaneous, but given the persistence of even local SST anomalies, 

predictability may be gained at lead times of a few months based on persistence alone. 

 

5.2.5.2 Local SST Data and Predictor Indices 

 

The same SST dataset (HadISST 1.1) was used to derive local SST predictors as in 

5.2.1.1 above.  Six coastal regions were selected, based on gridboxes with high spatial 

correlations.  Region 1 (SST1) is derived from SSTs off the north west coast of Scotland.  

Region 2 (SST2) is the North Sea.  Region 3 (SST3) comprises the Baltic Sea, and region 

4 (SST4) is the coastal Atlantic from the west coast of Ireland down to the bay of Biscay.  

Region 5 (SST5) is the Adriatic, and region 6 (SST6) is the western Mediterranean.  

Because local SSTs are unlikely to force large scale ocean or atmosphere dynamics, any 

predictability is more likely to result from persistence alone.  For this reason, only lead 

times of up to 5 months are considered, based on an assessment of the e-folding length of 

the autocorrelation of the SST timeseries.  A total of 30 predictors were therefore 

available, detrended and filtered as in 5.2.1.1. 

 

5.2.6 Solar flux 

 

5.2.6.1 Solar Flux Background and Data 

 

The influence of the solar cycle on climate has been recognised for many years, however 

to date the specific mechanisms by which it may influence tropospheric dynamics are not 
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fully understood.  For example Haigh et al. (2005) show that the solar cycle affects the 

subtropical jets in the stratosphere, whereby an increase in solar output is associated with 

a poleward shift of the jets.  Corresponding to this is a poleward shift of the tropical 

tropospheric Hadley cells, and the tropospheric midlatitude circulation.  Given the long 

timescale of solar output variability, it may be the case that solar output provides a source 

of predictability.  De la Torre et al. (2006) identify a direct link between solar output and 

NAM variability, with possible implications for tropospheric predictability, at least at the 

shorter timescales identified by Baldwin and Dunkerton (2001).  Typically, the 10.7cm 

radio flux is used to represent solar output.  The data are provided by the National 

Geophysical Data Centre (http://www.ngdc.noaa.gov/stp/SOLAR/getdata.html). 

 

 

5.3 Summary 

 

Kushnir et al. (2004) discuss the stages by which our understanding of climate 

predictability develops.  Stage one consists of the observation of statistically significant 

relationships, with stage two providing physical explanations for the observed 

relationships.  Stage three is reached when the observed phenomena are successfully 

modelled, and the understanding of the dynamics of the relationship can be enhanced, not 

least as a result of the much larger sample size available.  This Chapter presents evidence 

in the literature for predictability of aspects of the European climate, in particular wind 

and precipitation.  With respect to European seasonal forecasting, much of our 

understanding is still at the first stage – that is, observational evidence exists, but the 

nature of the physical mechanisms driving this potential predictability are not yet fully 

understood.  It is felt that this justifies the initial consideration of a large number of 

potential predictors, given subsequent filtering of these predictors to a more manageable 

number for the purposes of model development. 

 

In summary: potential predictors are proposed, on the basis that there is empirical or 

theoretical evidence in the literature to support their inclusion, and each potential 

predictor is then tested using a field-significance criteria to determine whether it should 
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be included in the next stage of model development.  In this way, a wide range of 

potential predictors can be assessed statistically.  As proposed above, there are 

approximately 850 predictors in total available for the initial predictor selection phase 

described in Chapter 6.  Table 6.1 gives a complete list of the predictors and describes the 

notation used to refer to them in the rest of this thesis.   

 

It is emphasised that the inclusion of predictors on purely statistical grounds is not a 

sufficient requirement for a reliable forecasting model.  In particular, when a large 

number of potential predictors are assessed, some will of course pass the significance test 

purely by chance, which by definition allows a percentile of the most significant results 

through.  For this reason, the model should be viewed as a largely exploratory attempt to 

improve understanding of potential predictability.  Further statistical testing during the 

model development is detailed in subsequent Chapters. 
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6. Initial Predictor Selection 
 

 

This Chapter describes the initial predictor selection problem, and presents possible 

approaches to solving it, including a discussion of the obstacles to each approach, and the 

implications of these obstacles for the final prediction models.  Section 6.1 comprises the 

introduction.  Section 6.2 introduces the predictor selection problem in model 

development, with particular reference to seasonal forecasting.  Section 6.3 introduces 

possible approaches to the initial predictor selection problem, and provides detail on the 

methodology chosen.  Results of the intermediate predictor selection stage are then 

presented in section 6.4, followed by a discussion of the implications for the next stage of 

model development in section 6.5. 

 

 

6.1. Introduction 

 

Chapter 5 introduced the indices which describe the major features of climate variability 

which are, or may be pertinent to the north-west European region, and may offer some 

predictive skill at seasonal timescales.  The process by which potential predictor indices 

were derived from these features was described.  This set of potential predictors will be 

referred to as the full set.  Owing to the large number of predictors in the full set (several 

times greater than the number of observations under consideration), and the speculative 

grounds on which they have been considered, the development of a prediction model 

using a subset selection algorithm directly from the full set is not possible, as it will 

invariably result in over-fitting.  (Burnham and Anderson, 2002).  It is therefore 

necessary to use some intermediate process to reduce the full set to a more manageable 

set, referred to here as the reduced predictor set.  This reduced set can then be used to 

develop a model, with the final predictors comprising the most skilful subset of the 

reduced set at each location.  The latter method will be described in detail in Chapter 7. 
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6.2. The predictor selection problem in model development 

 

Predictor selection in the development of regression models, as the name implies, is the 

process by which a set of predictors is chosen from a larger set, in the interest of 

describing the maximum amount of ‘structure’ in the predictand (that is, a signal in the 

predictand, which is thought to relate to a real physical relationship with the predictor), 

and in such a way that the resulting model is as parsimonious as possible (that is, as few 

as possible predictors are used to explain as much variance as possible).  Typically, the 

predictor selection process should constitute a way of fine tuning the input predictors, and 

should be based on an initial set which are all thought to be causally linked with the 

predictand.  In other words there should be a recognised structure, or signal in the data, 

before this process commences.  This structure should ideally be based on theoretical 

knowledge of the system under consideration.  There are numerous approaches to 

obtaining a reduced or final predictor set.  These will be addressed in section 6.3.1.  

Firstly, it is necessary to undertake a more fundamental discussion of the rationale behind 

a statistical approach to this problem. 

 

As discussed in Chapter 5, there is currently little theoretical evidence for skilful seasonal 

predictors of European climate, in particular for wind and precipitation.  The 

development of a statistical seasonal forecasting model must therefore be exploratory in 

design, and in application.  The nature of the exploratory process by which such a model 

is defined is highly important, and in the broadest sense can follow one of two 

approaches – dynamical or statistical.  The first option – numerical modelling of the 

global climate – would take the form of long or ensemble simulations, where the 

response of the predictands defined in Chapter 4 to each potential forcing agent can be 

evaluated, and steps towards a mechanistic explanation of any observed relationship can 

be made.  In theory this is the ideal approach, in that the forcing influence of individual 

factors can be isolated and examined in great detail, for a sample size much larger than 

that available in the observed record.  In fact many such studies have been carried out, 

and are reviewed in Chapter 3.  Principally, the effects of the Atlantic Ocean, and the 
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tropical Pacific are investigated, although some work exists relating stratospheric 

processed to the European climate (e.g. Baldwin et al, 2003).  With regard to 

predictability of the European climate, such studies form the backbone of our current 

understanding, and support the prevailing view that predictability at seasonal scales is 

low.  This view is also borne out by observational studies, and operational forecasting 

systems.   However, it is not apparent from the literature that a practically exhaustive 

body of results and theory exists in this area.  Furthermore, where experiments to 

replicate observed relationships have been carried out, it is frequently apparent that there 

are shortcomings in the model representation of observed climatic processes and 

relationships.  We may also therefore assume that relationships which have yet to be 

identified in the observed record – which we might principally suspect to be through lack 

of data – are not guaranteed to be represented correctly in the model.  Given that this is 

the case, further exploratory work using numerical methods must either look for new 

predictors, or use new models, which better represent climate variability at seasonal 

scales.  In other words, model experiments can be used to further reduce our epistemic 

uncertainty of the system.  However, any model-based attempt at reducing this 

uncertainty must go hand in hand with an empirical verification of the models.  In fact in 

the atmospheric sciences this relationship between theoretical and empirical 

understanding may be viewed as an iterative process.  The following methods and results 

are an attempt to contribute to our understanding of climatic relationships from an 

empirical perspective – the second path suggested above.  There are two reasons for the 

choice of this approach in this case.  Firstly, from a practical point of view, the logistical 

constraints such as access to numerical models, and the expertise required to develop a 

stand-alone seasonal forecasting system from scratch is beyond the scope of individual 

PhD theses, and also, a considerable and valuable amount of work has already been done 

in this area, by large, dedicated groups.  Secondly, the shortcomings outlined above 

suggest that neither empirical nor modelling work is redundant when it comes to the 

identification of statistical structure in the observed record, where none has previously 

been identified, or sought. 
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6.3. Initial predictor selection methodology 

 

 

6.3.1. Alternative approaches to the initial model selection stage 

Following on from section 6.2, and given that a statistical scheme is to be used to select 

the reduced set of predictors, a range of possible techniques are available.  These will be 

outlined with a view to justifying the eventual approach taken.  These can be separated 

broadly into four approaches – firstly, a GLM fit across the whole predictand domain, 

after e.g. Chandler (2005); model selection at predictand gridbox resolution, using a best 

subset approach based on all available predictors; the expression of the dominant spatial 

covariance in the predictor and or predictand field using multivariate techniques; and 

fourthly, by using a non-parametric technique such as resampling to both reduce the 

predictor subset with respect to spatial degrees of freedom in the predictand field, and 

increase spatial coherence in the model selection across gridboxes.   

The first approach, in particular developed by Chandler (2005) applies a generalised 

linear model (GLM) to the multivariate predictand, by fitting functions to account for the 

autocorrelation in the predictand, geographic location, seasonality, and ‘external’ forcing 

factors (such as ENSO, for example).  This model can be applied across the whole 

domain to describe the variability in the predictand. 

In the second approach, model selection would include the use of cross-validation to 

select individual or small subsets of predictors on a gridbox-by-gridbox basis.  

Superficially, cross-validation is a tool for quantifying the predictive skill of a model, and 

given circumstances such as these in which a very large initial range of predictors is 

available, the technique is not suitable since overfitting is a likely result.  Although a 

cross-validation experiment could be designed to minimise this, a further drawback of 

this approach without an intermediate step is that it does not implicitly encourage spatial 

coherence between predictand gridboxes with respect to predictor selection, where it 

might be thought more physically reasonable to suppose that such coherence exists.  

Another possible model selection approach could entail an information theoretic 
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approach.  Burnham and Anderson (2002) have developed this at length in the ecological 

sciences, and DelSole (2004) has applied these techniques in the climate sciences.  

 

Thirdly – multivariate techniques, such as principal components analysis (PCA), or 

canonical correlation analysis (CCA) can be used to define the dominant modes of 

variability in a multivariate climate dataset, and derive both predictors and predictands – 

for example, Haylock and Goodess (2004) use simultaneous CCA to relate large scale 

atmospheric predictors to precipitation extremes in Europe.  Operational seasonal 

forecasts using CCA are made by among others, the Climate Prediction Centre of the US 

National Weather Service. 

 

The fourth possible class of approach is that based on the seminal paper of Livezey and 

Chen (1983), where the spatial coherence of a predictor-predictand relationship – given a 

gridded predictand dataset – is tested for statistical ‘field significance’, based on a re-

sampling (‘Monte Carlo’) simulation, and with a view to determining whether the spatial 

extent of locally significant correlation exceeds the spatial autocorrelation of the 

predictor. 

 

Since spatial coherence is implied, the potential to narrow down the set of predictors and 

offer theoretical justification for their inclusion (either on the basis of published research 

or further work within this study) is perhaps greater than that offered by the other 

methods. There is a further advantage of retaining each predictor in its original format, 

rather than expressing a number of predictors with respect to dominant patterns of 

covariance, such as is offered by multivariate techniques. In the case of an exploratory 

study, this is particularly valuable when it comes to proposing theoretical mechanisms for 

statistically significant relationships.  Furthermore, while the approach of Chandler et al. 

(2005) may be suitable where there is a clear and dominant set of candidate predictors (in 

this case simultaneous large-scale circulation characteristics), where this does not exist, it 

is not apparent that predictors can be applied effectively to the whole spatial domain 

using a single linear model.  Given these circumstances, the process of reducing the full 

predictor set to a reduced set – based purely on statistical reasoning – was carried out 
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using field significance testing as developed by Livezey and Chen (1983).  Further details 

on this technique will be presented in sections 6.3.1.1 and 6.3.1.2. 

 

 

6.3.1.1. Predictor selection based on tests for field significance 
 

Field significance tests have been widely used in the climate sciences since the 

development of this technique by Livezey and Chen (1983).  For a full explanation refer 

to Livezey and Chen (1983), or other works, including for example Wilks, (2005).  A 

shorter explanation will be given here. 

 

The objective of a test for field significance is to identify whether a given predictor has a 

statistically significant relationship with a climate (or other) predictand variable in a 

spatial domain. 

 

Fundamentally, the correlation of a single timeseries with a three dimensional (space, 

time) array of data, and the quantification of the significance of any observed 

relationships presents two problems.  Firstly, it might be expected that given sufficient 

locations within the spatial array, and a typical threshold of 95% confidence to designate 

statistical ‘significance’, a certain number of these locations would be expected to 

correlate with the predictor purely by chance.  The expected level of locally significant 

chance correlations can be expressed as a binomial function, where given N independent 

tests (one test for each gridbox or point within the spatial array), we can calculate the 

expected number of significant tests X (in this case, gridboxes which correlate 

significantly with the predictor) due to chance, at a given significance level. 
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Trivially, we might suppose that an array in which a larger number of locally significant 

correlations are identified than the threshold level expected from a binomial distribution 

might be said to display field-significance, in other words the predictor is ‘globally 
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significant’ for the domain.  However if we then consider that this number of locally 

significant relationships is largely a function of the spatial resolution of the predictand 

field, and that it may easily be altered by refining or coarsening the spatial resolution, it 

becomes apparent that some consideration of the spatial degrees of freedom in the 

predictand data is necessary.  That is to say, given that there is an inherent level of spatial 

autocorrelation within any climate data field, unless this is explicitly accounted for in the 

gridding of the data, we cannot accept a simple binomial threshold to determine field 

significance – the ‘real’ threshold, taking into account spatial autocorrelation, will always 

be higher.  There exists no simple analytical technique to determine the spatial degrees of 

freedom in a field, and typically, the approach taken to determine this is based on 

resampling, as introduced by Livezey and Chen (1983).  Using this approach, the 

response of the field to a random variable is tested a large number of times, and an 

empirical approximation of the degrees of freedom in the field can then be reached.  In 

order for the predictor to be considered as having field significance at a given level, the 

threshold (which can be expressed as a proportion of the total area covered by the field) 

set by the resampling experiment must be exceeded.  It is this test which will be used to 

‘filter’ out those predictors in the full set which do not display a globally significant 

relationship with the predictand field at the 95% confidence level.  The remaining 

predictors, for each predictand set, will then comprise the reduced set, and will go on to 

be subject to further testing at the model development stage. 

 

 

6.3.1.2. Monte Carlo Methods applied to predictor selection 
 

There are a number of experimental considerations which are required to be met in order 

to design an effective experiment of this nature.  Firstly, and particularly in the case of an 

exploratory study a set of data should be reserved for a training period, with the 

remainder being used to test independently the robustness of the model.  In this case, a 

relatively short period (1958-2005) is considered, and in the interest of striking a balance 

between effectively training the model and quantifying its significance, it is necessary to 

reserve a period longer than 23 years (half of the available data) for the training set.  The 

period 1958-1995 is used, leaving 10 years of data to test or validate the model.  Bearing 
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in mind that this is an exploratory study, and the nature of the system indicates that any 

predictability will be low, and possibly unstable as a function of time, the main goal of 

the validation period is not as a precise quantitative indication of model fit, but rather as a 

qualitative check on the validity of the model.  It is therefore thought that given the 

limitations of the observational record a 10 year validation period is the most workable 

solution in this case. 

 

Secondly, in order to carry out as true as possible an assessment of the spatial degrees of 

freedom in the predictand, it is necessary to replicate as closely as possible the 

characteristics of the predictor timeseries when generating the sample of random 

‘artificial’ timeseries with which to carry out the resampling test.  The approach taken 

here is to use an autoregressive model to replicate the temporal autocorrelation of the 

predictor timeseries in the artificial series. 

 

 

6.4. Results 

 
Results for the initial predictor selection stage are presented below.  For clarity, Table 

6.1, below, explains the notation used to abbreviate the predictor names. 

 
 

6.4.1. Initial predictor selection for precipitation 
 

This section presents the results of the initial predictor selection stage for the 

precipitation predictands, focusing on the 90th percentile exceedance counts, with some 

reference to the 95th percentile counts (which are broadly similar in their response, 

although generally showing a weaker statistical relationship than the 90th percentile 

exceedances), and for each of 12 three-month overlapping seasons, as described in 

Chapter 5.  Since a relatively large number of predictors are retained at this stage by the 

field significance tests introduced in Section 6.3.1.1, only those which display a 
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particularly strong fit with the predictand data, or those which are particularly interesting 

from a theoretical point of view will be discussed in detail.   

It should be noted at this stage that the initial predictor selection phase based on Monte-

Carlo testing for field significance fulfils requirements of statistical significance, and 

spatial coherence for each predictor separately.  However, when viewed in the context of 

multiple field significance tests the issue of false discovery rates – in other words a type 1 

error, where the null hypothesis is incorrectly rejected – becomes important.  Ventura et 

al. (2004) discuss this issue at length, highlighting possible approaches to minimising or 

recognising the false discovery rate.  In the case of this study, it is clearly important to 

view all results presented in this section in the light of this problem.  In fact, as can be 

seen from Table 6.2, the percentage of predictors identified as having field significance 

for each season and each predictand variable is generally small, and may be viewed as the 

outcome of a series of trials described by a binomial process.  Furthermore, given that 

many of the predictors in the full set are cross-correlated, the entire exercise of selecting 

the reduced set can be seen as analogous to the selection of a single predictor by Monte-

Carlo testing an autocorrelated field.  In this way, the initial predictor selection stage is 

merely a filter, and further testing is required to verify whether these predictors do in fact 

offer any predictive skill, since, as previously mentioned – if enough potential predictors 

are considered, a number will be found to be statistically related, commensurate with the 

stringency of the test.  To a certain extent this further testing should account for the 

problem of the false discovery rate, highlighted by Ventura et al. (2004).  This issue 

notwithstanding, the results presented below do highlight some relationships which are 

either potentially of interest from a theoretical point of view, or corroborate with other 

research. 
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Predictor Notation Key 
Abbreviation Description 
ATL Principal component of Atlantic Ocean SST anomalies 
PCM Principal component of Pacific Ocean SST anomalies (including Maritime Continent) 
IND Principal component of Indian Ocean SST anomalies 
GLO Principal component of global SST anomalies 
H Principal component of stratospheric geopotential heights at given pressure level (hPa) 
T Principal component of stratospheric temperature at given pressure level (hPa) 
PV Principal component of stratospheric potential vorticity at given pressure level (hPa) 
NAO North Atlantic Oscillation Index 
N12 SST anomalies from Nino 1+2 region 
N3  SST anomalies from Nino 3 region 
N34 SST anomalies from Nino 3.4 region 
N4  SST anomalies from Nino 4 region 
SHT Hemispheric temperature anomaly (Southern Hemisphere) 
NHT Hemispheric temperature anomaly (Northern Hemisphere) 
HTD Difference in Hemispheric temperature anomalies 
AOS Arctic Oscillation (AO) 
DAR MSLP at Darwin, Australia 
EAP East Atlantic pattern (EA) 
EAW East Atlantic/West Russian pattern (EA WR) 
EPN East Pacific/North Pacific pattern (EPNP) 
PNA Pacific North American pattern 
POL Polar Eurasian pattern 
PTP Pacific Transition pattern (PT) 
SCA Scandinavian pattern 
SOI Southern Oscillation Index 
TAR MSLP at Tahiti 
TNH Tropical Northern Hemisphere pattern 
WPP West Pacific pattern (WP) 
SDEU Eurasian snow cover anomaly 
SDNA North American snow cover anomaly 
SDNG North American (including Greenland) snow cover anomaly 
SDNH Northern Hemisphere snow cover anomaly 
QBO3 QBO index at 30hPa 
QBO5 QBO index at 50hPa 
SOL Solar flux anomaly 
SST1 Local SST anomalies (Atlantic Ocean, north west of Scotland) 
SST2 Local SST anomalies (North Sea) 
SST3 Local SST anomalies (Baltic Sea) 
SST4 Local SST anomalies (Atlantic Ocean, west of Ireland to Bay of Biscay) 
SST5 Local SST anomalies (Adriatic Sea) 
SST6 Local SST anomalies (western Mediterranean Sea) 
Predictor names are followed by either Pn, indicating the principal component number if applicable, or  
'Lead nn'  where nn indicated the lead time in months from the middle month of the predictand season 

Table 6.1  Each of the predictor groups are assigned a particular abbreviation as shown above.   For 
each predictor either a PC number is given (representing the principal component number) followed 
by the season from which the timeseries is derived; or a lead time (in months prior to the middle 
month of the predictand season) is given. 
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a    b    

Season Predictors 
in full set 

Predictors 
in 

reduced 
set 

Percentage 
retained in 
reduced set 

Season Predictors 
in full set 

Predictors 
in 

reduced 
set 

Percentage 
retained in 
reduced set 

JFM 853 49 5.7% JFM 853 27 3.2% 
FMA 852 66 7.7% FMA 852 82 9.6% 
MAM 853 75 8.8% MAM 853 78 9.1% 
AMJ 853 191 22.4% AMJ 853 164 19.2% 
MJJ 852 149 17.5% MJJ 852 84 9.9% 
JJA 852 100 11.7% JJA 852 71 8.3% 
JAS 852 51 6.0% JAS 852 44 5.2% 
ASO 851 49 5.8% ASO 851 41 4.8% 
SON 851 78 9.2% SON 851 105 12.3% 
OND 853 61 7.2% OND 853 86 10.1% 
NDJ 854 59 6.9% NDJ 854 66 7.7% 
DJF 854 33 3.9% DJF 854 20 2.3% 

 
Table 6.2  Number of predictors retained from the full set after Monte-Carlo testing for field 
significance for the following predictands: (a) 90th percentile precipitation exceedance counts; (b) 95th 
percentile exceedance counts, at the 95% confidence level. The aggregate numbers retained show 
substantial differences between seasons and a strong correlation over the seasonal cycle between the 
predictands. 

 

 

 

6.4.1.1. ENSO 
 

The ENSO family of predictors show broadly similar responses, as might be expected,  

although there are some notable differences between the different indices, in particular 

indicating differences in the lead times at which relationships are observed.  Figure 6.1 

shows the p-values of the field-significance tests for each season of the 90th percentile 

precipitation exceedance counts with the four Niño SST regions.  It is clear that this 

measure of extreme precipitation responds significantly to all the Niño SST indices over 

the seasons FMA-MJJ, and at lead times ranging from two to eleven months within the 

sample.  Interestingly, the Niño 3.4 and Niño 4 regions show responses at the longest lead 

times, where typically Niño 1+2 might be expected to, since the SST anomalies tend to 

propagate westward in the canonical ENSO variability, and therefore the Niño 1+2 region 

tends to lead the others.  This may be related to the way in which anomalous circulation 

driven by each ENSO event is propagated into the mid-latitudes and to Europe.  
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Additionally there is a late autumn/winter response to the Niño 3.4 and Niño 4 indices at 

shorter lead times of two to four months.  Figure 6.2 shows the canonical spatial response 

of spring/summer 90th percentile precipitation counts to ENSO.  In the early spring the 

response extends from the North Sea coasts of Europe to the east of the domain, in 

Poland and the Ukraine, and in west-central Europe, south to Switzerland and Austria.  

Through spring and into summer, the response shifts westward until in MJJ it is located 

over the Bay of Biscay, with some response in Spain, Portugal and France.  As far as 

precipitation is concerned, it could be argued that this bears some resemblance to the 

simultaneous NAO response in this region (e.g. Trigo et al., 2002).  Lead times for the 

observed responses are wide-ranging as can be seen from Figure 6.1, but in each case the 

spatial response is broadly consistent with that in Figure 6.2.  In advance of further 

testing of this relationship (see Chapter 7) it is worth noting that an examination of scatter 

plots of the relationship between ENSO indices and the predictand at each gridbox (not 

shown) indicate that in general the presence of a small number of outliers at a significant 

number of locations in the predictand data tend to be associated with El Niño events, and 

influence the strength of the fit to the extent that it is unlikely that any linear 

predictability might result from ENSO.  That is, if the relationship were to be considered 

without the outliers, there would not be evidence for a statistically significant 

relationship.  Given the frequency of occurrence of these outliers in the spatial domain, it 

is likely that they are a real feature of the data, however, the available sample size does 

not permit a robust estimation of the presence of nonlinear relationships between ENSO 

and the predictand. 

 

 

The spatial pattern of the autumn-winter response to Niño 3.4 and Niño 4 is shown in 

Figure 6.3.  Here the OND response to Niño 3.4 is very similar to the predictand response 

observed in the spring-summer months, consisting of positive anomalies over western 

and southern Europe.  In the NDJ (not shown) and DJF seasons the response becomes a 

negative one centred over Scandinavia, with only a weak, insignificant positive response 

over central and western Europe.  Similarly to the spring-summer response, an 

examination of scatterplot matrices (not shown) of the response at single gridboxes 

indicates that a clear linear signal is not observed. Nonetheless, the persistence of the 
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statistical predictand response to ENSO is of interest, particularly in the light of other 

research which suggests an ENSO-Europe link, for example Fraedrich and Muller (1992), 

Fraedrich et al. (1992), Brönnimann (2007) and Brönnimann et al. (2007).   

 

 

 
Figure 6.1  P-values indicating field-significance of fit between 90th percentile precipitation and Nino 1+2, Nino 3,  
Nino 3.4 and Nino 4.   Lead times from two to eleven months are shown.  Light blue indicates p<=0.05. 
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Figure 6.2  Spatial relationship of field-significant responses of 90th percentile precipitation 
exceedance counts to ENSO SST indices.  Predictand season is given in the title of each panel, along 
with information on the predictor, where N12 is Nino 1+2, N34 is Niño 3.4 and N4 is Niño 4.  The 
response is given as the coefficient of the Poisson model fitted at each gridbox.  Filled gridboxes 
indicate local significance for the model at the 95% confidence level.  Empirically calculated p-values 
from the resampling experiment are also given, where for example a p-value of 0.004 indicates that 
four of the 1000 random simulations had locally significant responses over a greater spatial extent 
than the predictor.  The lead-time for each predictor is also given, for example where lead=4 for 
FMA indicates a predictor index from the previous October. 
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Figure 6.3  As Figure 6.2 but for OND and DJF precipitation exceedance counts, illustrating the 
marked shift in emphasis from a positive response over western and southern Europe to a negative 
response over Scandinavia 

 
 

 
Of particular interest is Brönnimann et al. (2007) who use long records of European 

precipitation and temperature, and reconstructed ENSO indices to provide evidence for a 

possible nonlinear relationship between ENSO and Europe, dependent to some extent on 

slowly varying regimes in the Northern Pacific, and illustrating the likely sensitivity to 

other climate regimes of signal transmission from the tropics to Europe. 

 

Further ENSO indices including the Southern Oscillation Index (SOI) and its constituent 

mean sea level pressure timeseries at Tahiti and Darwin, and also PCs of large-scale SST 

anomalies show a similar relationship, again with notable spatial differences for each 

index. 
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6.4.1.2. Large-Scale Atlantic SST Anomalies 
 

As discussed in Chapter 5, the role of large-scale variability in the north and tropical 

Atlantic in European climate variability has been the topic of much research in recent 

years.  Some success in linking SST variability with the European climate has led to the 

operational use of Atlantic SSTs as well as stratospheric indices in seasonal forecasts of 

the winter NAO by for example the United Kingdom Met Office (e.g. Rodwell et al., 

1999; Parker et al., 2007).  Whether, or to what extent this observed skill is applicable to 

extremes of precipitation is as yet undetermined. 

 

 
Figure 6.4  P-values indicating field-significance of fit between 90th percentile precipitation and the 
first four PC indices of Atlantic SST anomalies.  Lead times from two to eleven months are shown, 
where each lead time corresponds to the middle month of a three month season in the predictor data.  
For example a lead time of two months corresponds to an OND predictor for the JFM predictand.  
Light blue shading (p<=0.05) indicates field-significance at the 95% confidence level in the 
predictand response. 
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From Figure 6.4, it can be seen that when aggregated, Atlantic SST predictors do not 

produce as many field-significant responses as for example the ENSO predictors.  PC3 

does not show any significant responses, while PC1 and PC2 show a few responses in 

spring-summer, and late autumn respectively.  

 

PC4 of Atlantic SST anomalies is a tripole-like pattern in the North Atlantic, with the 

centre located off the US east coast and surrounded with a sometimes continuous 

horseshoe pattern of anomalies of the opposite sign.  This pattern accounts for only six to 

seven percent of the overall variability, and from season to season is not stable with 

respect to its location or the relative strength of the centres of action.  Despite this, it is 

associated with a persistent anomaly in 90th percentile precipitation exceedances over 

Europe, and – to a lesser degree – with 95th percentile exceedances also (not shown).  The 

response of the 90th percentile exceedance counts begins in the winter (DJF) season, and 

continues, at between two and 8 month lead times into the summer.  These are primarily a 

response to autumn and winter SST, where the DJF precipitation response is to ASO and 

SON indices, and typically the late winter through spring precipitation response is to 

OND to JFM SST.  The spatial pattern of responses varies systematically from DJF 

through to JAS.  Initially, the winter response to late summer and autumn SSTs is 

focussed in the south of the domain, over Spain and the Mediterranean, with a small 

region over Scandinavia showing anomalies of the opposite sign.  This pattern is 

illustrated in Figure 6.5.  There is a weak positive correlation between the SON PC4 

index and the December and January NAO indices, which is consistent with the observed 

precipitation anomalies.  Given that the PC4 index is similar in its spatial pattern to the 

first PC, and that we can assume that the first PC is driven primarily by atmospheric 

variability associated with the NAO, it is possible that PC4 is associated with a feedback 

mechanism by which the overlying atmosphere is forced by the Atlantic.  However, this 

relationship is weak, and further testing is required to clarify its potential as a useful 

predictor at seasonal timescales. 
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Figure 6.5  As Figure 6.2 but for DJF and JFM precipitation exceedance counts, showing the 
response in these seasons to the fourth PC of Atlantic SST anomalies in SON and OND respectively.  
Note that the principal components are derived independently for each season, and so the sign of the 
main centre of action common to each season can be either positive or negative.  The SON and OND 
predictors are negatively correlated, and therefore the precipitation anomaly is in fact of the same 
sign in response to the SST pattern in both seasons. 

 
 

6.4.1.3. Large-Scale Pacific SST Anomalies 
 

In general, the principal components of Pacific SST anomalies elicit a similar response in 

the predictand to ENSO indices observed in Section 6.4.1.1.  A summary of the 

predictand responses to the first four PCs is given in Figure 6.6.  As expected, PC1 has 

the most frequent response in the predictand, being significant from FMA to MJJ, and at 

a range of lead times from two to 11 months.  Additionally, there is a response in OND 

and NDJ at shorter lead times of two to three months (JJA to ASO predictor).  The larger 

range of lead times at which precipitation responds to PC1 is to be expected given that 

PC1 should include elements of the variability from all four Niño SST regions.  However, 

the persistence of PC1 as a statistically significant predictor is somewhat surprising 

unless it is primarily due to large SST anomalies which persist for more than 12 months – 

i.e. large ENSO events.  The spatial pattern and sign of the precipitation response is 

similar to that from the ENSO SST regions.   
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Figure 6.6  P-values indicating field-significance of fit between 90th percentile precipitation and the 
first four PC indices of Pacific SST anomalies.  Lead times from two to eleven months are shown, 
where each lead time corresponds to the middle month of a three month season in the predictor data.  
For example a lead time of two months corresponds to an OND predictor for the JFM predictand.  
Light blue shading (p<=0.05) indicates field-significance at the 95% confidence level in the 
predictand response. 

 

PC2 has fewer responses, which comprise a MAM response to the preceding summer and 

autumn SSTs, and an autumn (ASO-OND) response to spring/summer (AMJ-JAS) SSTs.  

The spring response in MAM comprises a positive anomaly centred over the British Isles, 

with the ASO predictor having the strongest response.  The autumn response is primarily 

in southern and Europe, and comprises weak and scattered positive anomalies.  These are 

illustrated in Figure 6.7.  The second principal component of Pacific SST variability 

projects onto an ENSO-like pattern, with weak positive anomalies centred on a narrow 

band along the Equator in the eastern Pacific, and more widespread negative anomalies to 

the north, south and west.  It persistently accounts for 10-12% of the total variability.  

The ASO PC2 correlation with Niño SST indices is low, comprising a weak negative 
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correlation with the spring ENSO indices, followed by a weak positive correlation when 

PC2 leads ENSO by two to seven months.  The implication here may be that this mode is 

related to the extratropical ENSO signal in the northern Pacific, which has been proposed 

as a possible mechanism for the ENSO signal transmission to Europe by Brönnimann et 

al. (2007). 

 

 
Figure 6.7  As Figure 6.2 but for MAM (left panel) and OND (right panel) precipitation exceedance 
counts, showing the response to the second PC of Pacific SST variability.  The MAM precipitation 
responds to this index at lead times of between four and eight months (OND to JJA of the preceding 
year).  The OND response is an example of the autumnal response which includes ASO-OND.   The 
response is spatially variable, being concentrated in southern Europe during ASO, and moving 
north-west into OND. 

 
 

6.4.1.4. Large-Scale Indian Ocean SST Anomalies 
 

Indian Ocean PC1 and PC3 are associated with predictand responses from the spring 

through autumn (FMA to SON), as shown in Figure 6.8.  Both of these indices are highly 

correlated with ENSO variability in the tropical Pacific, and therefore the statistical 

relationship between Indian Ocean variability and the European climate may be 

interpreted either as a modulation of the ENSO signal, as a direct effect of Indian Ocean 
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variability, or as a statistical artefact.  As with all the potential predictors discussed here, 

further statistical testing at least is therefore required, before the observed relationships 

can be confirmed as useful or otherwise.  Figure 6.9 gives two examples of the spatial 

response of precipitation to these indices.  In both cases, the response is similar to that 

observed for ENSO, comprising a coherent positive anomaly across central and western 

Europe. 

 
 

 
Figure 6.8  P-values indicating field-significance of fit between 90th percentile precipitation and the 
first four PC indices of Indian Ocean SST anomalies.  Lead times from two to eleven months are 
shown, where each lead time corresponds to the middle month of a three month season in the 
predictor data.  For example a lead time of two months corresponds to an OND predictor for the 
JFM predictand.  Light blue shading (p<=0.05) indicates field-significance at the 95% confidence 
level in the predictand response. 
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Figure 6.9  As Figure 6.2 but for FMA (left panel) and ASO (right panel) precipitation exceedance 
counts, showing the response to the first and third PCs respectively of Indian Ocean SST variability.  
The FMA precipitation responds to preceding NDJ anomalies in a similar fashion to the FMA 
response to Niño 3.4 SSTs from the preceding October.  The ASO response is also similar to the 
ENSO response in its spatial configuration, although no significant ASO response to ENSO is 
observed directly. 

 
 
 

6.4.1.5. Stratospheric Predictors 
 

Given the large degree of cross correlation between the stratospheric predictors (each 

predictor is included at 150, 100, 50 and 30 hPa level, and the different variables – 

geopotential height, potential vorticity and temperature are also cross-correlated), not all 

of them will be examined in detail. 

 

The inclusion of stratospheric variables as potential predictors is based upon a substantial 

body of work discussed more extensively in Chapter 5, which aims to explore the 

possible effect of the stratosphere on the troposphere at lead times of up to several 

months.  It can be seen from the summary plots in Figure 6.10 that a number of these 

predictors are statistically associated with anomalous precipitation extremes over Europe, 

at a range of lead times from two to eleven months.  In particular, using examples from 

Figure 6.10, the first and second principal components of 150hPa geopotential height and 

 - 132 - 



potential vorticity all have a strong response in European precipitation anomalies 

particularly in the spring and summer seasons, at a surprising range of lead times – where 

in many cases significance is observed at up to 12 months preceding. 

 

 
Figure 6.10  P-values indicating field-significance of fit between 90th percentile precipitation and a 
selection of stratospheric variables, including the first and second principal components of 150hPa 
geopotential height (top left and right panels), and the first and second principal components of 
150hPa potential vorticity (bottom left and right panels).  Lead times from two to eleven months are 
shown, where each lead time corresponds to the middle month of a three month season in the 
predictor data.  For example a lead time of two months corresponds to an OND predictor for the 
JFM predictand.  Light blue shading (p<=0.05) indicates field-significance at the 95% confidence 
level in the predictand response. 
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Figure 6.11.  The spatial response of 90th percentile precipitation exceedance counts to stratospheric 
predictors.  The top two panels show the AMJ response to the first and second PCs of 150hPa 
geopotential height from the preceding SON and JAS seasons respectively.  The lower two panels 
show the OND and FMA response to PC1 and PC2 of 150hPa potential vorticity, from the preceding 
JAS and SON seasons respectively. 
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The spatial responses to a selection of the field-significant relationships highlighted in 

Figure 6.10 are shown in Figure 6.11.  For example, the spatial response in AMJ to the 

first two principal components of 150hPa geopotential height, from the preceding autumn 

and summer is similar in sign although the anomalies occupy a slightly different spatial 

extent, with the PC1 anomaly centred over the North Sea, and extending down the 

German/French border, and the PC2 anomaly being centred over France.  The SON PC1 

and JAS PC2 are uncorrelated.  The OND precipitation response to PC1 of 150hPa 

potential vorticity is illustrated in the lower left panel of Figure 6.11, and the FMA 

response to PC2 in the lower right panel.  While in both cases a field-significant response 

is observed, the mechanistic explanation for this is as yet unclear, and further 

investigation is required. 

 
 

6.4.2. Initial predictor selection for extreme wind events 
 

This section reviews the potential predictors for the wind gust exceedance counts.  As for 

the precipitation predictands, the 90th percentile exceedances will be the main focus, for 

brevity, and only the predictors where a particularly notable response was observed will 

be discussed.  Similarly, potential predictors identified in this section are based on 

statistical testing only – and not only is further testing required to assess their utility in a 

forecasting model, but also a mechanistic explanation of their effect on the predictand is 

required in order to assess their true potential and reliability as predictors.  In general, 

wind extremes in the ERA-40 dataset show greater spatial autocorrelation than the 

precipitation data, and the spatial extent of the response to field-significant predictors is 

therefore relatively greater. 
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a    b    

Season Predictors 
in full set 

Predictors 
in 

reduced 
set 

Percentage 
retained in 
reduced set 

Season Predictors 
in full set 

Predictors 
in 

reduced 
set 

Percentage 
retained in 
reduced set 

JFM 853 26 3% JFM 853 49 5.7% 
FMA 852 27 3.2% FMA 852 26 3.1% 
MAM 853 23 2.7% MAM 853 11 1.3% 
AMJ 853 37 4.3% AMJ 853 29 3.4% 
MJJ 852 51 6% MJJ 852 58 6.8% 
JJA 852 51 6% JJA 852 36 4.2% 
JAS 852 41 4.8% JAS 852 31 3.6% 
ASO 851 57 6.7% ASO 851 34 4.0% 
SON 851 88 10.3% SON 851 82 9.6% 
OND 853 73 8.6% OND 853 98 11.5% 
NDJ 854 64 7.5% NDJ 854 76 8.9% 
DJF 854 52 6.1% DJF 854 70 8.2% 

Table 6.3  Number of predictors retained from the full set after Monte-Carlo testing for field 
significance for the following predictands: (a) 90th percentile wind gust exceedance counts; (b) 95th 
percentile exceedance counts, at the 95% confidence level. The aggregate numbers retained show 
substantial differences between seasons and a strong correlation over the seasonal cycle between the 
predictands. 

 
 

 

6.4.2.1. Large-Scale Atlantic Ocean SST Anomalies 
 

As in the case of the precipitation predictands, the most notable wind predictand response 

in terms of the persistence of the predictor is to the fourth PC of Atlantic SST.  This is 

during the ASO-SON seasons, at a range of two to 9 months. Figure 6.12 summarizes the 

seasonality of 90th percentile wind exceedance responses to PCs one, two four and five of 

Atlantic SST anomalies (PC3 shows no significant responses).  The canonical spatial 

pattern of the autumn response to PC4 is given in the left panel of Figure 6.13.  This 

response differs entirely from the precipitation response, which takes place largely in the 

winter and spring seasons, comprising a large region of negative anomalies centred over 

eastern Europe, and bears little resemblance to the NAO like pattern observed in some 

cases for precipitation.  The first PC is associated with a winter response, at a lead time of 

two months in NDJ and DJF.   
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Figure 6.12  P-values indicating field-significance of fit between 90th percentile wind and the first, 
second fourth and fifth principal components of Atlantic SST variability. Lead times from two to 
eleven months are shown, where each lead time corresponds to the middle month of a three month 
season in the predictor data.  For example a lead time of two months corresponds to an OND 
predictor for the JFM predictand.  Light blue shading (p<=0.05) indicates field-significance at the 
95% confidence level in the predictand response. 

 

This response is more characteristic of the NAO signature, with widespread negative 

anomalies across northern Europe, and the relationship may bear close resemblance to the 

predictive pattern used by the UK Met Office in their statistical seasonal prediction 

scheme for the winter NAO (Rodwell et al., 1999).  The spatial configuration is 

illustrated in the right panel of Figure 6.13. 
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Figure 6.13  Spatial configuration of the 90th percentile wind exceedance count responses in SON (left 
panel) and NDJ (right panel) to the fourth and first PCs of Atlantic SST respectively. 

 
 
6.4.2.2. Large-Scale Pacific Ocean SST Anomalies 

 

Interestingly, the ENSO SST region predictors – to which a notable response was 

observed from the precipitation predictands – do not play such an important role in 

generating responses from the wind predictands.  However, the principal components of 

Pacific SSTs seem to be more important, indicating that there may still be an ENSO 

influence on European wind extremes. Additionally, while the ENSO impact on 

precipitation extremes was observed to be greatest in the spring and summer, the 

response of wind extremes tends to be concentrated in the autumn and winter, with both 

Niño 3.4 and PC1 having significant responses in OND and NDJ.  Additionally, as can be 

seen from Figure 6.14, the second, third, fourth (and fifth, not shown) PCs all elicit a 

number of responses, generally in the autumn and winter, but also, in the case of PC2 and 

PC3, in the spring and summer respectively.  There are a range of different spatial 

responses to the predictors, with the most frequent being similar to the OND response to 

Niño 3.4, with a large region of positive anomalies centred off the west coast of France.  

This is similar in its spatial configuration to the spring/summer precipitation anomalies 

observed as a function of ENSO.  Additionally, particularly in the spring and summer 
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seasons, a dipolar anomaly is observed in response to PC3, consisting of a positive 

anomaly over Scandinavia and north of Scotland, and a negative anomaly over southern 

and central Europe.  Canonical examples of these patterns are shown in Figure 6.15. 

 

 

 
Figure 6.14  P-values indicating field-significance of fit between 90th percentile wind and the first 
four principal components of Pacific SST variability. 
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Figure 6.15  Spatial configuration of the 90th percentile wind exceedance count responses in MJJ (left 
panel) and NDJ (right panel) to the third and first PCs of Pacific SST respectively. 

 
 

6.4.2.3. Large-Scale Indian Ocean SST Anomalies 
 

The 90th percentile wind exceedance count response to Indian Ocean principal 

components is dominated by the first component.  The major impact of PC1 is observed 

in the late summer and autumn (ASO-OND), and can be seen at lead times of three to 

eleven months, and consists of a persistent dipolar anomaly with a positive centre over 

eastern Europe, and a smaller, more fragmented negative component over Spain and 

France.  Other than the seasonality of the response, there does not seem to be a great deal 

of overlap with the ENSO-related response, even though this pattern is at least partially 

associated with ENSO.  However it is interesting to note that the response to the Indian 

Ocean is observed at longer lead times than that to ENSO, and that typically lead times of 

close to a year are associated with the most widespread geographical response.  This is 

despite the fact that the Indian Ocean typically lags activity in the Pacific by several 

months.  The range of the temporal and spatial responses is shown in Figure 6.16. 
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Figure 6.16  Left panel: p-values indicating field-significance of fit between 90th percentile wind and 
the first principal component of Indian Ocean SST variability.  Right panel: Spatial pattern of the 
anomalous SON response to PC1 of Indian Ocean variability from the preceding NDJ season, 
showing the canonical dipole associated with this predictor. 

 
 

6.4.2.4. North Atlantic Oscillation and Arctic Oscillation 
 

A large number of the observed spatial responses of the wind extremes have an NAO or 

AO-like configuration – that is, a north-south dipole, with centres over northern and 

southern Europe, that resemble the large-scale circulation response to the NAO over 

Europe.  It may therefore be the case that the predictors identified as statistically 

significant are projecting onto the NAO or AO, and this is driving the downstream 

anomalies.  Conversely – and this is likely to be the case if the observed relationships are 

merely statistical artefacts – it may be simply that the NAO related pattern is the most 

spatially coherent, and any predictor which happens to be correlated with the NAO will 

be predisposed to be flagged as field-significant as a result.  This notwithstanding, the 

AO and NAO themselves seem to provide some evidence at least of statistical 

significance as predictors at several months lead.  The temporal distribution of significant 

responses through the seasonal cycle is shown in Figure 6.17.  Typically, the responses 

are at shorter lead times, of up to five months, with a few instances in excess of this.  The 

AO produces more frequent field-significant responses, and spread throughout the annual 

cycle, while the NAO responses are (perhaps surprisingly) concentrated in the spring and 
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summer.  Additionally, significance at 11 months lead is observed in AMJ and MJJ.  In 

the winter seasons (NDJ-FMA), the typical spatial pattern consists of a large positive 

anomaly over northern Europe.  This persists into the spring, for both the AO and NAO, 

but weakens substantially.  In the summer months the response is more variable, in some 

cases assuming a similar spatial configuration to the winter responses, and in some cases 

being dominated by a negative anomaly over the south east of the domain.  However both 

of these patterns bear some resemblance to the simultaneous projection of the NAO/AO, 

and even given the range of lead times at which field-significance is observed, it is 

interesting to note the rarity of departure from this pattern, indicating that any memory in 

the system is largely manifest as a positive recurrence of the pattern.  Examples of the 

spatial configuration of the responses are illustrated in Figure 6.18.  Given the 

prominence of summer responses to the NAO in particular this is of particular interest, 

since the NAO is not particularly dominant in these months.  Of course, extremes of wind 

are unlikely to be of great climatological or meteorological significance during these 

seasons either. 

 
 

  
Figure 6.17  P-values indicating field-significance of fit between 90th percentile wind and the Arctic 
(left panel) and North Atlantic (right panel) Oscillations. 

 
 

 - 142 - 



 
Figure 6.18  Spatial configuration of the 90th percentile wind exceedance count responses in DJF (left 
panel) and JJA (right panel) to the Arctic Oscillation, representing the canonical response in the 
winter/spring, and summer respectively. 

 
 

6.4.2.5. Stratospheric Predictors 
 

As in the case of the precipitation predictands, significant responses are observed in a 

range of the stratospheric predictors, although unlike for precipitation, the responses are 

mostly to the temperature and potential vorticity predictors, rather than geopotential 

height.  In many cases there is significant cross-correlation between these predictors.  A 

selection of the more interesting responses is discussed here. 

 

The third principal component of potential vorticity at 30hPa results in a field-significant 

fit to the predictands at a range of seasons, from MAM to NDJ, at a variety of lead times.  

These are detailed in Figure 6.19 (top left panel).  The remaining panels in Figure 6.19 

show a sample of the typical spatial responses to this pattern.  As is frequently the case 

with the wind predictands, an NAO-like pattern is observed, with positive anomalies over 

northern Europe, and negative anomalies to the south, in response to the JFM predictor.  

The winter (NDJ) response to the early autumn (ASO) PC index is slightly different, in 

that the positive anomaly to the north extends further south, and the negative anomaly is 
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spatially more confined to the south west of the domain.  This is consistent with the more 

southerly location of the mid-latitude Atlantic jet during the winter. 

 

 

 

 

 
Figure 6.19  P-values (top left panel) of the 90th percentile wind response to PC3 of 30hPa potential 
vorticity.  The remaining panels show the spatial configuration of the response during selected 
seasons: AMJ (top right panel); JJA (lower left panel) and NDJ (lower right panel). 
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6.4.2.6. Northern Hemisphere Snow Cover 
 

The potential utility of Northern Hemisphere snow cover as a predictor of the NAO has 

been examined in a number of studies including Bojariu and Gimeno (2003) and 

Saunders and Qian (2003).  The physical basis for the possible predictive skill is based on 

the persistence of the snow cover, and its forcing of the overlying atmosphere, which has 

been shown to occur on a large scale (e.g. Cohen and Rind, 1991; Gong et al, 2004).  In 

this case, some response to indices of snow cover over various parts of the Northern 

Hemisphere, and including the whole Northern Hemisphere is observed.  The range of 

responses is summarized in Figure 6.20.  Rather unexpectedly, particularly in light of 

other research on this topic, Eurasian snow cover does not give the widest range of 

responses – rather the North American responses are most frequent.  Eurasian responses 

are apparent in late winter/early spring, to snow cover anomalies from the preceding late 

spring/summer, while responses to the North American snow cover occur in spring 

through to autumn, at a wide range of lead times.  Responses to Northern Hemispheric 

snow cover anomalies are more concentrated in the autumn and winter. 

 

Typically, the response in the spatial domain as shown in Figure 6.21 is positive – that is, 

anomalously extensive snow cover is associated with anomalously frequent wind 

extremes, at a range of lead times.  The locations of these anomalous extremes is quite 

variable, being centred variously over the north, south east, and west of the domain, 

depending on the season and the lead-time of the predictor.  One notable exception to this 

is the OND response to Northern Hemisphere snow cover at 10 months lead, where the 

dominant anomaly is negative, over the southern half of the domain.  The same predictor 

five months later gives rise to a strong positive anomaly, although this is centred further 

to the north. 
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Figure 6.20  P-values indicating field-significance of fit between 90th percentile wind and Northern 
Hemisphere snow cover:  Eurasia (top left panel); North America (top right panel); North America 
including Greenland (lower left panel) and Northern Hemisphere (lower right panel). 
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Figure 6.21 Spatial configuration of the 90th percentile wind exceedance count responses to indices of 
Northern Hemisphere snow cover. 
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6.5. Discussion and implications for model development 

 

This Chapter has outlined the problems faced when carrying out a largely exploratory 

analysis of potential predictors for a seasonal forecasting model for Europe, using 

statistical methods.  Initially, the main problem is one of narrowing down a large set of 

potential predictors to a reduced set that is practical for model design.  This was carried 

out using Monte-Carlo resampling to determine field significant responses in the 

predictand domain.  In the process of doing this, it is instructive to consider the role of 

each potential predictor individually, with respect to its statistical significance, and how it 

might contribute to the model. 

 

Section 6.4 presents the results, focussing on those predictors which display the strongest 

or most striking fit with the predictand data.  For brevity, the 90th percentile counts of 

precipitation and wind exceedances were considered in detail, and generally it is the case 

that the 95th percentile exceedance counts for both wind and precipitation are similar to 

the 90th, although in most cases show a weaker fit. 

 

Overall, for the 90th (95th) percentile precipitation exceedance counts, 9.4% (8.5%) of the 

full initial predictor set passed the field significance testing (with 95% confidence).  For 

the 90th and 95th percentile wind exceedances, the total is lower, at 5.8% and 5.9% 

respectively.  Although these are all above the (naively) expected 5% which would pass 

by chance, we must consider cross-correlation in the predictors, which would act to 

reduce the degrees of freedom.  However whether the net effect of this would be to 

inflate or reduce the chance of a type I error is unclear.   

 

An additional factor that should be considered in the interpretation of field-significant 

predictor-predictand relationships is the spatial coherence of the predictand response.  It 

is frequently observed in the field-significant responses that there are small numbers of 

(‘scattered’) locally significant gridboxes separate from the main (‘coherent’) response 

region.  There is a significant likelihood that these will have arisen by chance, and 

therefore contribute to an overestimation of the field-significance.  While it might be 
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possible to automate the minimisation of this effect by using some sort of nearest-

neighbour algorithm to exclude these isolated responses, it should also be recognised that 

at this stage the field-significance testing is primarily a filter on the full set of predictors, 

with further model selection and testing in place as presented in the following chapters.  

It may therefore be of questionable benefit to exclude predictors for gridboxes where at 

this stage there is at least some evidence for a field-significant response over the domain. 

 

This approach notwithstanding, it is possible to gain some appreciation of how many 

such scattered locally significant gridboxes might appear by chance in the general case, 

using the binomial distribution.  If we assume that each gridbox is entirely independent 

from the others, then at the 95% confidence level the total of 252 gridboxes would be 

expected to result in up to 18 locally significant responses purely by chance.  We know 

this not to be the case, since the spatial scale of the processes is generally larger than the 

gridboxes (hence the need for Monte Carlo simulations of the predictand response).  If 

we assume – given a region of coherent (as opposed to scattered) field-significant 

responses – that the remainder of the gridboxes outside this region are subject to 

displaying a ‘scattered’ locally significant fit with the predictor as a function of the 

binomial distribution then we would expect the number of locally significant outliers to 

follow the pattern illustrated in Figure 6.22.  For example, if a spatially coherent region 

of 150 gridboxes shows a field-significant response, then up to 12 gridboxes outside this 

domain might be expected to show scattered local significance. However, the gridboxes 

outside this region are likely also to have some spatial coherence in their lack of fit with 

the predictor, so taking this into consideration, it might be expected that the observed 

number of scattered locally significant gridboxes – given a field-significant response is 

somewhat lower than the cases given in Figure 6.22.  While this might be sufficient to 

boost the rate of field-significant responses, given the further testing carried out on each 

predictor, it is thought that this effect is likely to be largely negated during the model 

selection phase. 
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Figure 6.22.  The number of locally significant gridbox responses expected by chance (shown on the 
Y-axis) at the 95% confidence level, as a function of the number of gridboxes (shown on the X-axis), 
and assuming independence between gridboxes. 

  

 

What can be ascertained at this stage is that many of the predictors are associated with a 

response in the predictands that is supported by other literature on the subject – although 

none of it specifically on precipitation and wind extremes.  It is encouraging to see some 

correspondence although further testing is required before any of the reduced set of 

predictors obtained by this process can be incorporated into a model where the skill can 

be reliably quantified. 
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7 Model Selection 
 
 
 
Having obtained a reduced predictor set by retaining predictors which display a significant fit 

with the predictands at 95% confidence, using a field-significance test, it is then possible to 

select the optimum model at each gridbox using the reduced predictor set.  The procedure by 

which the reduced set is obtained is described in chapter 6.  This chapter describes the 

process of selecting prediction models at each gridbox, and presents the results over the 

model training period of 1958-1995.  Section 7.1 introduces the chapter, section 7.2 describes 

in detail the method by which the models are derived, section 7.3 presents the results of the 

analysis, and section 7.4 concludes the chapter. 

 

7.1 Introduction 

 

Chapter 6 presented an exploratory study of the linear statistical significance of the 

relationships between a wide range of potential predictor indices describing large scale 

ocean, atmosphere and land surface variability, and the predictands.  This chapter seeks to 

extend this work to an assessment of potential predictive skill derived from an all-subsets 

model selection exercise using the reduced predictor set.  The assumptions of linearity and 

stationarity over the model training period still hold in the methodology.  Since the skill of 

the models is tested over an independent time period separately to the results shown here, any 

discussion of model skill in this chapter should be interpreted strictly in the context of the 

statistical fit shown over the training period.  Furthermore, given the large number of 

predictors available from the reduced predictor set, and the complexity of summarising all 

the observed model selections, only a sample of the apparently more important predictors and 

models will be discussed in detail here – although skill for all models will be presented in 

graphical format.  This approach is taken partly due to the issue of overfitting, which will be 

illustrated in chapter 8, and which will allow a more focussed and meaningful discussion of 

predictability, beyond the constraints of assumptions of linearity and nonstationarity as 

required by the available data. 
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7.2 Method 

 

As with the reduced predictor set selection, the model development uses Poisson regression – 

a member of the family of general linear models (GLMs) to fit the best model from all 

possible predictor subsets based on the model training period of 1958-1995 as in chapter 6.  

Further detail on the methodology and its suitability to this problem is given in chapter 3.  As 

in chapter 6, the emphasis must still be on the exploratory nature of this work, since there is 

little evidence for a linear physical relationship between the predictors and predictands – 

although as demonstrated in chapter 6, there is substantial evidence that statistical 

relationships (albeit weak) exit.  The aim of the work presented in this chapter is therefore to 

attempt to optimise the predictors locally at each gridbox, and separately by predictand and 

season, so that a best fit model is available for each location and season.  However, each of 

these models should be treated as an optimum case of linear predictability given the 

exploratory nature of the work, and the relatively short period over which data are widely 

available for this work.  In light of this, one of the principal goals of this work is to develop 

models that are not over fitted to the available data, such that further testing on independent 

data does not result in significant degradation of any observed relationships – or in the case 

of significant degradation, that the observed relationships can be explored further on the basis 

that they may be either nonlinear or nonstationary.  In addition, the final models will be 

constrained to have a maximum of two predictors.  Given the limitations of the data with 

respect to the period of observation, and the lack of clear physical mechanisms this is thought 

to be prudent. 

Given these considerations, the models are selected as follows.  For each gridbox within the 

domain the locally significant predictors (significance level 0.05) from the reduced set of 

predictors are first filtered for cross-correlation with other predictors.  However, since there 

are further checks for multicolinearity, a very high threshold (significance level 1x10-5) is 

used at this stage.  This step is simply a filter to reduce processing time.  When two or more 

predictors correlate at this level, the one with greater field significance over the whole 
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domain is retained.  For the remaining predictors, all possible subsets with maximum two 

predictors are tested.  All-subset selection is chosen as it offers the most comprehensive 

assessment of the ‘best’ model, given all other constraints.  For example, backward selection 

(e.g. Jagger and Elsner, 2002) starts with all available predictors, and removes the least 

important until a pre-defined set of criteria relating to improvement in fit, and model 

parsimony are met.  Since the constraint of having two predictors is thought to be of primary 

importance here, backward (or forward) selection algorithms are not preferable to the all 

subsets method  Drobot (2003) highlights the suitability of this method on the grounds that 

the user can pre-define the required selection criteria, rather than having a machine algorithm 

take the decision.  For each subset, given that the predictors are not cross-correlated with 

significance less than 0.05, a leave-one-out cross validation is carried out on the model, over 

the training period. That is, for n observations the model is fitted n times using the same 

predictor set, and leaving out one observation each time.  This missing observation is then 

predicted using the fitted model.  A number of considerations are necessary at this stage.  

Firstly, the predictor data are standardised, and a leave-one-out cross validation scheme in 

this case will tend towards reproducing the left out observation by default as a result (von 

Storch and Zwiers, 1999).  Therefore the predictor data are re-standardised at each stage of 

the cross-validation, to eliminate any possibility of reconstructing the missing observation.  

Since only one observation is left out, the effect of re-standardisation on the remaining 

observations is minimal.  For the purposes of this analysis, it is assumed that serial 

correlation of the predictands from year to year is minimal, and will not have a significant 

effect on cross-validation performance, therefore a buffer of observations between the 

training and validation data at this stage is not required. 

For each model, the predicted values from the cross-validation step are used to estimate the 

fit of the model within the training period using the mean absolute error (MAE) of the 

predicted values relative to the observed predictands. The final model selected at each 

gridbox is that with the lowest MAE of all the subsets tested.  MAE is used as the selection 

criteria following Willmott and Matsuura (2005), who identify this statistic as preferable to, 

for example, the root-mean-square error (RMSE), which is sensitive to the variance of the 

distribution of error magnitudes.  The MAE is also more meaningful in this case since it 

relates directly to the magnitude of the errors on timeseries of percentile exceedance counts. 
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7.3 Results 

 

This section starts by summarising the number of predictors retained from the field-

significance testing phase detailed in chapter 6.  Then for each predictand, results are 

summarised and illustrated by season with respect to the model fit.  Although model skill 

within the training period is shown for all models, there are too many to discuss each in 

detail, instead, for each season, the impact of some of the most important predictors are 

described in more detail. 

 
Figure 7.1 shows the number of predictors retained in the reduced subset predictor set by 

gridbox for 90th percentile precipitation exceedance counts.  As well as marked regional 

variation across the domain, there is also variation by season, with winter and summer having 

fewer predictors and spring and autumn having large areas of the domain with more than 30 

predictors from which to derive models.  Gridboxes in white are those where no significant 

predictors are found.  It should be noted that the spatial distribution of predictor density 

suggests that the method of selection might be susceptible to edge effects, that is predictors 

which have local significance towards the centre of the domain are more likely to pass the 

field-significance criteria, since those which have local significance towards the edge of the 

domain are more likely to be under-represented in terms of numbers of significant gridboxes.  

However, the domain is large enough to include more than just Western Europe (the study 

region), and the computational intensity of the predictor selection is too great to include a 

region substantially larger than the one given.  Additionally, the gridboxes with high 

significant predictor counts are not exclusively located in the centre of the domain, 

suggesting that the edge-effect is not crucial in this case. Figure 7.2 shows the reduced 

predictor set for 95th percentile exceedance precipitation.  The spatial and seasonal 

distributions are very similar to the 90th percentile predictands, as expected, although the 

spatial extent of the high predictor counts across most of the domain in spring is smaller.  

Table 6.1 and 6.2 in Chapter 6 provide the total numbers of retained predictors for 

precipitation and wind respectively, and it can be seen that for 95th percentile precipitation  
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Figure 7.1 Number of predictors retained in the reduced predictor set for 90th percentile precipitation 
exceedance counts, by season. 
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Figure 7.2 Number of predictors retained in the reduced predictor set for 95th percentile precipitation 
exceedance counts, by season. 
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Figure 7.3 Number of predictors retained in the reduced predictor set for 90th percentile wind exceedance 
counts, by season. 
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Figure 7.4 Number of predictors retained in the reduced predictor set for 95th percentile wind exceedance 
counts, by season. 

 
exceedance counts there are overall fewer predictors retained in the spring-summer period, 

but in the autumn there are more.  Figure 7.3 illustrates the same results for 90th percentile 

wind exceedance counts.  In this case, there is a smoother annual cycle of significant 

predictor counts, with the late winter and spring typically having more gridboxes with low 

counts, and late summer through to early winter having more predictors.  However, 
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compared to precipitation, there are fewer predictors overall.  In the autumn peak of predictor 

numbers, the spatial distribution of field-significant predictors bears some similarity with the 

precipitation predictors, with a high concentration of predictors in the south west of the 

domain.  The pattern for the 95th percentile wind exceedance counts is similar spatially, and 

over the annual cycle.  This is illustrated in Figure 7.4. 

 

7.3.1 Model selection for 90th percentile precipitation exceedance 
counts 

 
 
Figure 7.5 shows the R2 values by location for each season of the 90th percentile precipitation 

exceedance models, and Figure 7.6 shows the MAE for the same models.  Both diagnostics 

are shown, since R2 gives an indication of the closeness of the fit with respect to the first 

difference of the observed and predicted timeseries at each gridbox, and the MAE gives some 

idea of whether there is any bias or substantial difference in the sharpness (variance) of the 

forecast compared to the observed series.  Over the 12 seasons, a similar pattern emerges 

when compared with the predictor density counts in Figure 7.1 – that is, spring and autumn 

tend to have the largest concentrations of models with relatively high R2 (and 

correspondingly low MAE) values, and the spatial distribution of the more skillful models 

also bears some resemblance.  R2 values describe the amount of variance explained by each 

model, and the values shown here range from zero to over 0.5 (50%).  The latter is an 

unexpectedly high level of skill for European seasonal forecasting, and typically it might be 

assumed that the models are somewhat overfitted. This will be investigated further in chapter 

8.  In general, the distribution of skill displays some spatial smoothness, with homogenous 

regions of higher or lower skill beyond the gridbox scale, although by no means could the 

whole domain be described as displaying a smooth variation in skill.  This is likely due to a 

number of reasons.  Firstly, skill levels over the training period are generally marginal, and 

also the frequently large number of predictors retained up to the all-subsets selection stage 

described in section 7.2 means that there is potential volatility in the model selection, 

particularly given the low skill levels.  Note that these factors apply to the models selected 

for all predictands, to a greater or lesser extent. 
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Figure 7.5 R2 by season for 90th percentile precipitation exceedance counts.  R2 values are for the final 
model selected for each gridbox, based on the lowest cross-validation mean absolute error (MAE).  
Gridboxes in white are those where no statistically significant model exists – either because no field-
significant predictands are locally significant, or weakly significant predictors do not pass the cross-
validation criteria. 

 

 - 160 - 



 
Figure 7.6 Mean Absolute Error (MAE) by season for 90th percentile precipitation exceedance counts.  
Values are for the final model selected for each gridbox, having the lowest cross-validation mean absolute 
error (MAE) of all predictor subsets.  As Figure 7.5, gridboxes in white are those where no statistically 
significant model exists – either because no field-significant predictands are locally significant, or weakly 
significant predictors do not pass the cross-validation criteria. 
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90th Percentile Precipitation 
  JFM   FMA   MAM 

  SST4 Lead 03 54   EPN Lead 04 39   T150 P1 NDJ 35 
  SOL Lead 06 38   SOL Lead 07 38   PV30 P2 ASO 25 
  ATL P4 OND 33   H30 P1 NDJ 34   H100 P1 DJF 21 
  TAR Lead 06 29   PCM P4 FMA 24   T30 P2 JAS 20 
  SST3 Lead 04 20   DAR Lead 06 23   DAR Lead 07 18 
Total    339     350     337 
  AMJ   MJJ   JJA 
  H100 P1 SON 25   ATL P4 DJF 39   PCM P3 DJF 31 
  H50 P1 NDJ 23   H50 P1 JFM 30   SCA Lead 05 29 
  H100 P1 DJF 20   T30 P3 JAS 27   PV150 P1 SON 28 
  IND P3 MJJ 17   PV150 P1 SON 23   PV150 P1 JAS 24 
  EAP Lead 07 15   T30 P3 FMA 21   EAW Lead 02 21 
Total    405     415     418 
  JAS ASO   SON 
  PV150 P1 JAS 45   PV150 P1 ASO 33   H50 P1 DJF 56 
  PCM P5 MAM 30   PNA Lead 03 32   PV150 P2 OND 22 
  PV100 P2 AMJ 28   PV30 P3 OND 24   EAW Lead 07 21 
  SCA Lead 06 25   PV150 P2 OND 24   PV150 P1 JJA 21 
  EAW Lead 07 19   SST4 Lead 02 22   QBO3 Lead 05 20 
Total    324     392     406 
  OND   NDJ   DJF 
  SOI Lead 02 41   EAP Lead 03 39   SST4 Lead 02 64 
  PV30 P3 OND 40   H150 P3 JJA 33   TAR Lead 05 52 
  ATL P2 OND 38   SOI Lead 03 31   SST3 Lead 05 32 
  SHT Lead 10 20   AOS Lead 04 25   TNH Lead 11 24 
  PV150 P1 JAS 18   AOS Lead 02 20   SST5 Lead 03 20 
Total   406     370     376 

Table 7.1  Top five predictors across whole domain for each season for the 90th 
percentile precipitation exceedance counts models.  Totals given are for all 
predictors.   Given a domain comprising 252 gridboxes, this includes a mix of  
gridboxes having models with one or two predictors, and some gridboxes with no 
viable model. 

 

Table 7.1 shows the top five predictors for the whole domain, for each season of the 90th 

percentile precipitation models.  Typically, the most commonly selected predictors are 

present in 20-50 gridboxes within the domain.  However, each season for each predictand 

typically has a large number of predictors, and not all of them can be discussed in detail here.  

Several predictors are of particular interest in this sample.  Some of these are illustrated in 

Figure 7.7 and are described in some more detail below.  Local SST anomalies play a role in 

models in the winter season – this is at odds with some of the literature on this subject.  For 

example, Hurrell et al (2006) postulate that local SST anomalies might be important for 

predictability outside the winter season, relating in particular to the frequency and intensity 

of convective precipitation events.  For SST region 4 (from the west coast of Ireland to the 

Bay of Biscay) November anomalies are widely selected as explaining variability in the DJF 

and JFM seasons.  The models using this predictor relate to gridboxes located over the Bay 

of Biscay itself, and also around the Iberian Peninsula.  There is a corresponding response of 
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the opposite sign to the north of the domain, with the whole comprising a dipolar response 

reminiscent of an NAO-like pattern.  It is certainly possible that the local SST anomalies are 

partly a response to NAO forcing, although the correlation between the local SST and the 

NAO during the preceding months is weak – as might be expected during the late summer.  

However, it is interesting to note that climatologically, SSTs in these regions are at their 

warmest in the autumn, and they may be most inclined to influence the atmosphere as a result 

– possibly through persistence, rather than dynamical processes. SST region 3 (Baltic Sea) 

similarly explains variability in DJF and JFM, this time due to September and October 

anomalies respectively. 

Indices associated with ENSO result in some skill from the Autumn (OND) through to spring 

(MAM), with the atmospheric indices having more importance than the oceanic ones.  In 

OND and NDJ the September SOI is negatively related to precipitation over the English 

Channel region, and has a positive fit with precipitation over Scandinavia.  From DJF 

through to MAM, indices derived from MSLP at Tahiti and Darwin are more frequently 

selected, with lead times up to seven months from the mid-month of the predictand season – 

i.e. August and September MSLP indices. From DJF through MAM, the responses are more 

widely spread through Western Europe, with negative responses to the Tahiti indices, and 

positive responses to the Darwin indices.  Typically the Tahiti responses are more spatially 

coherent, and stronger.  It is interesting to note that Jia et al (2008) find a link between the 

AO and tropical Pacific SSTs, with a three month lead time.  Moreover, they find that the 

western tropical Pacific tends to exert relatively more influence on the North Atlantic, while 

the eastern tropical Pacific affects the north Pacific, and PNA pattern to a greater extent.  The 

greater significance of the responses to Tahiti pressure anomalies may be connected with this 

– although unlike Jia et al (2008), in general atmospheric, rather than oceanic influences from 

the tropical Pacific are found to be more important in this study. 

Some stratospheric indices are also selected frequently.  Notably, indices associated with 

geopotential height have some skill from DJF through to MJJ, typically at two to three 

months lead time.  There does not appear to be a single preferred metric in this case – that is 

to say, of the four pressure levels and three PC modes considered, none is dominant, although 

the first PC tends to be more commonly selected.  Note that the dominant mode numbers are 

somewhat interchangeable from one season to the next, and at different pressure levels.  
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Stratospheric temperature and potential vorticity are also frequently selected, particularly in 

the summer months.  This is of interest since variability in summer extreme precipitation is 

closely associated with variability in the position and strength of the Atlantic jet stream – for 

example, the UK floods of summer 2007 were associated with an anomalous southward 

displacement of the jet-stream.  The causes of this displacement are uncertain, but there is 

speculation that they may be related to the La Nina event developing at the time (for example 

see www.walker-institute.ac.uk/news/summer_2007.pdf ).  Other notable responses include 

the NAO in JFM, which has skill as a predictor at an 11 month lead time across a large 

portion of central and Western Europe, from the English Channel through Poland and the 

Ukraine.  Recent work by Parker et al. (2007) identifies potential predictors for the NAO 

including May North Atlantic SSTs, which are used operationally in UK Met Office seasonal 

forecasts of the NAO, with appreciable levels of skill above climatology.  Some of the other 

Northern Hemisphere teleconnection indices are also selected over large regions of the 

domain, including the Scandinavian (SCA) pattern, which shows a positive fit to the 

predictand over parts of northern Europe in summer seasons, from AMJ to JAS, at lead times 

of several months, but typically involving the March SCA index. 

In general, the spatial distribution of predictors selected in the final models is rather 

scattered.  This is likely due to both the potentially large number of cross-correlated 

predictors, so that models in neighbouring gridboxes might have different, but highly 

correlated predictors, and the relatively weak fit of the predictors to the predictand data.  An 

additional factor may be the spatial distribution of the rainfall extremes themselves. 
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Figure 7.7  Spatial configuration for a sample of the most commonly selected predictors for 90th 
percentile precipitation exceedance counts.  For each map, the title gives the predictand season, followed 
by the predictor, and the gridbox shading illustrates the coefficient for that predictor in the model. 
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Figure 7.8 R2 by season for 95th percentile precipitation exceedance counts.  R2 values are for the final 
model selected for each gridbox, based on the lowest cross-validation mean absolute error (MAE).  
Gridboxes in white are those where no statistically significant model exists – either because no field-
significant predictands are locally significant, or weakly significant predictors do not pass the cross-
validation criteria. 
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Figure 7.9 Mean Absolute Error (MAE) by season for 95th percentile precipitation exceedance counts.  
Values are for the final model selected for each gridbox, having the lowest cross-validation mean absolute 
error (MAE) of all predictor subsets.  As Figure 7.5, gridboxes in white are those where no statistically 
significant model exists – either because no field-significant predictands are locally significant, or weakly 
significant predictors do not pass the cross-validation criteria.  Note that the scale is different to that for 
the 90th percentile MAE values in Figure 7.6, as appropriate for the smaller absolute values of the 95th 
percentile exceedance counts. 
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7.3.2 Model selection for 95th percentile precipitation exceedance 
counts 

 
 
Figure 7.8 shows the R2 values for the models fitted to the 95th percentile predictand by 

season.  There is less of a pronounced seasonal cycle than for the 90th percentile models, with 

the DJF, JFM, and JAS seasons showing the least skill, and having the greatest number of 

gridboxes without any viable model.  Generally, there is a larger number of gridboxes where 

no skill is identified.  This is also evident from the totals provided in Table 7.2.  From Figure 

7.9 it can be seen that similar to the 90th percentile models, the MAE for the models is 

smallest in the late spring and summer seasons, having a more noticeable seasonal cycle than 

the R2 metric.  The peak MAE values tend to occur from autumn through to late winter, 

corresponding with the lower R2 values.  The JFM season contains a large region in the 

centre of the domain where no viable models are found.   

 
95th Percentile Precipitation 

  JFM   FMA   MAM 
  SST4 Lead 03 38   SOL Lead 07 35   H50 P1 DJF 26 
  SOL Lead 06 36   SOI Lead 06 31   IND P5 NDJ 19 
  T50 P3 MJJ 23   PCM P4 FMA 29   SOL Lead 07 17 
  ATL P4 OND 20   H150 P3 SON 25   T30 P2 JAS 16 
  EAP Lead 03 19   EPN Lead 04 18   H100 P3 SON 15 
Total    283     355     314 
  AMJ   MJJ   JJA 
  H100 P1 NDJ 37   T30 P3 JAS 28   IND P5 NDJ 30 
  EAW Lead 06 20   ATL P4 DJF 27   PV150 P1 SON 28 
  HTD Lead 03 17   H30 P1 JFM 25   PCM P3 DJF 21 
  H30 P1 JFM 16   T30 P3 FMA 21   EAW Lead 06 19 
  SCA Lead 02 12   PV150 P1 SON 18   SCA Lead 05 17 
Total    373     342     372 
  JAS ASO   SON 
  PV150 P1 ASO 33   T150 P1 DJF 31   H150 P3 NDJ 33 
  PV100 P2 AMJ 25   PNA Lead 03 27   SHT Lead 10 31 
  PCM P5 MAM 23   PV30 P3 OND 20   T150 P1 DJF 29 
  SCA Lead 06 22   PV150 P2 OND 19   DAR Lead 04 26 
  DAR Lead 09 17   PV150 P3 NDJ 19   DAR Lead 07 20 
Total    308     309     399 
  OND   NDJ   DJF 
  SOI Lead 02 35   H150 P3 JJA 27   SST4 Lead 02 65 
  ATL P2 OND 25   SOI Lead 03 25   TAR Lead 05 43 
  T30 P3 AMJ 24   POL Lead 07 20   TNH Lead 11 29 
  PV30 P3 OND 21   EAP Lead 03 18   SST1 Lead 02 27 
  ATL P2 JFM 18   SDNH Lead 06 17   ATL P4 SON 25 
Total   386     376     326 

Table 7.2 Top five predictors across whole domain for each season for the 95th 
percentile precipitation exceedance counts models.  Totals given are for all 
predictors.   Given a domain comprising 252 gridboxes, this includes a mix of 
gridboxes having models with one or two predictors, and some gridboxes with no 
viable model. 
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This follows from the small number of field-significant predictors selected for this region in 

JFM, and can be seen in Figure 7.2.  Note that the scale for the MAE values in Figure 7.9 is 

half that of Figure 7.6 (for the 90th percentile models), to correspond with the lower 

exceedance counts, and overall the MAE is higher relative to the absolute exceedance counts 

for the 95th percentile precipitation than it is for the 90th percentile.  It is possible that this 

apparently lower predictive skill within the model training period is due to some inherently 

less predictable property of more extreme precipitation.  However, it must also be considered 

that the statistical properties of the timeseries of exceedance counts lend themselves to lower 

skill metrics, and larger relative errors in the forecast.  

Table 7.2 shows the top five predictors by numbers of gridboxes for which they are selected 

for the 95th percentile precipitation exceedance counts.  There are considerable similarities 

with the predictors selected for the 90th percentile precipitation models, as might be expected.  

In particular, the local SST predictors in the DJF and JFM seasons are the same, with a 

similar spatial manifestation and despite the low skill exhibited for these seasons.  Also, the 

SOI predictors are similar, and have a considerable influence in a number of seasons, 

although they become more important earlier in the autumn seasons than they do for the 90th 

percentile predictand.  A sample of the most spatially important predictands is shown in 

Figure 7.10.  Another predictor to feature substantially in both the 90th and 95th percentile 

precipitation predictands in JFM is the fourth PC of Atlantic SST for the preceding OND 

season, which is selected across a large portion of the Mediterranean region.  The Solar flux 

index from the preceding September and October also features in the JFM, FMA and MAM 

seasons for both precipitation predictands, showing a dipolar fit with one pole centred over 

south-eastern Europe and a more scattered response across the north of the domain.  This is 

one of several predictors where the spatial response is broadly aligned to the canonical 

NAO/AO pattern (and the major mode of large-scale precipitation variability) across Europe.  

The spatial pattern of predictive skill is very patchy into the Spring and Summer, and the 

main region of coherent skill from AMJ to JJA is located over France and the Bay of Biscay.  

Although there is little skill here in JAS, this area of greater skill reappears in the ASO and 

SON seasons.  There is no single dominant predictor or family of correlated predictors 

driving this response, however some of the following predictors do contribute.  Indian Ocean 

SST predictors feature in a number of seasons, including the fifth PC during NDJ, which is 

selected in MAM, over a large region to the north of the domain, and JJA, where the 
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response is over France and the UK.  The February index of Scandinavian teleconnection 

pattern features in the JJA and JAS seasons, where it is selected over an arc stretching from 

eastern Europe across to the North Sea and northern Scotland.  Throughout the summer and 

autumn, a number of stratospheric predictors are selected across large parts of the domain, 

including the third PC of stratospheric temperature during MAM and AMJ.  These responses 

are illustrated in Figure 7.10. 

In the Autumn and early winter, indices associated with the SOI, typically at lead times of 

two to four months become more prominent. In ASO and SON, the June Darwin pressure 

indices are selected over the southern and south-western domain, and in OND and NDJ the 

September SOI is associated with a negative response over western France and the southern 

UK, and a positive response over Scandinavia.  That is to say, negative SOI (El Nino) events 

are associated with more frequent precipitation extremes over France, and fewer events over 

Scandinavia.  The NDJ season responds to a number of predictors besides the SOI, and 

including the Northern Hemisphere snow extent in June – which is rather earlier than might 

be expected given the absolute extent of the snow cover at this time of year.  There are also 

notable responses to some of the Northern Hemisphere teleconnection patterns, including the 

May Polar Eurasian pattern, the September East Atlantic pattern, and the Tropical Northern 

Hemisphere (TNH) pattern from the preceding January.  There is also a response to the AO, 

at two and four month lead times, although these do not follow closely the canonical pattern 

for this mode, comprising small and scattered mostly positive responses, over Scandinavia 

and the Baltic states, with a small negative response over the Mediterranean from the four 

month (September) AO index.  The TNH index (this time from the preceding February) 

becomes increasingly prominent as a predictor in DJF.  As well as this, a number of local 

SST predictors seem to be important at lead times of two to five months.  Two other notable 

predictors in this season are the July Tahiti MSLP index, which is associated with a coherent 

negative response in precipitation events over south western Europe, and the Western Pacific 

pattern, also in July, which gives rise to a large region of positive responses, stretching from 

northern France to the Baltic. 
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Figure 7.10  Spatial configuration for a sample of the most commonly selected predictors for 95th 
percentile precipitation exceedance counts.  For each map, the title gives the predictand season, followed 
by the predictor, and the gridbox shading illustrates the coefficient for that predictor in the model. 
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7.3.3 Model selection for 90th percentile wind exceedance counts 
 
 
Compared to the precipitation predictands, the model selection process for the 90th percentile 

wind exceedance counts results in spatially smoother levels of skill.  There is also a more 

pronounced annual cycle in the values of R2.  These details are illustrated in Figure 7.11.  

The R2 values for JFM are generally low in the south west of the domain, and increase 

diagonally to levels in excess of 0.4 in the north east, with some areas where no significant 

model is identified.  Throughout FMA and MAM R2 levels are generally low across the 

domain, typically with values in the 0.1 to 0.2 range.  From AMJ, they tend to increase in 

patches throughout the summer, before increasing more notably in SON through to DJF.  In 

these last four seasons, R2 frequently attains levels in excess of 0.4, and much of the domain 

has levels greater than 0.25.  In particular, the north of the domain in the winter seasons of 

NDJ and DJF exhibits the highest levels of skill, and these seasons have very few gridboxes 

where no viable model is selected.  Through comparison with Figure 7.3, showing the 

predictor density for 90th percentile wind exceedance counts, it can be seen that the areas if 

highest skill in NDJ and DJF correspond with gridboxes having a large number of predictors 

retained in the reduced subset – generally in excess of 15 predictors – although the regions 

with the highest number of retained predictors towards the south of the domain, do not have 

such high skill levels.  Figure 7.12 illustrates the corresponding MAE values for these 

models.  A clear annual cycle is observed, although it is at odds with the annual cycle in R2, 

having generally lower values in the summer, and higher values in the winter.  From a purely 

statistical point of view, this indicates that although the fit with respect to the first difference 

of the observed and predicted timeseries – in other words the interannual variability – may be 

better in the winter, overall the errors are larger.  However, when it is considered that in 

general the interannual variability of these predictand indices in the summer is lower than for 

the winter seasons, it becomes plausible that this may be a valid climatological feature of the 

observed skill.  Indeed, the absolute values of MAE are almost universally lower across the 

whole domain and in every season, when compared to the values for the precipitation 

predictors – seldom exceeding values of 2.5. 

Table 7.3 shows the top five predictors ranked by the number of gridboxes in which they are 

selected, for the 90th percentile wind predictand.  One feature that is apparent compared to 

the 90th percentile precipitation models, is that overall the number of predictors is greater 
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from the late summer (JAS) through to JFM, with the exception of ASO.  This corresponds 

with a smaller number of gridboxes for which no statistically significant model is found in 

these seasons.  The spatial patterns of selected predictors are show in Figure 7.13 and Figure 

7.14.  A larger number of predictors are illustrated than for precipitation, since a greater 

number have a spatially coherent relationship with the predictand, and it is useful to illustrate 

some of the more persistent relationships.   

Indices associated with ENSO are common from OND through to JFM, but are very 

infrequently selected outside these seasons.  Local SST anomalies are much less prevalent 

than for the precipitation predictands.  This follows reasonably since local SSTs are unlikely 

to affect the dynamics of the large-scale circulation – which drives wind extremes – beyond 

having some effect on levels of evaporation, and hence possibly affecting precipitation 

extremes.  However, the exception to this case is the apparently widespread fit between 

Baltic SSTs in August, and wind extremes over the north west of the domain in DJF and to a 

lesser extent in JFM.  This is illustrated in Figure 7.14 for DJF.   

The set of Northern Hemisphere teleconnection indices (after Barnston and Livezey, 1987) 

feature prominently, including the NAO/AO.  This is present (mostly as the AO) in the top 

five predictors in six seasons throughout the year, and in almost all other seasons to some 

extent, at lead times of up to seven months.  Interestingly, the response is almost invariably 

positive in the north of the domain, and negative in the south, and seldom does the response 

comprise both of these dipoles in the same season for the same lead time.  The fact that the 

response is positive implies that the AO displays some persistence at timescales of several 

months and although this process does not have an established physical explanation, the 

observed link here with wind extremes at relatively long lead times is notable.  The East 

Atlantic Pattern (EA – or EAP as given in the predictor nomenclature here) is important from 

OND through to AMJ, with the September EAP being selected from OND through to JFM, 

and then for FMA, MAM and AMJ the October, February and June indices are selected, 

respectively.  The spatial pattern of this response is at its most widespread in the JFM season, 

and is shown in Figure 7.13 for JFM, comprising a positive response, across the north of the 

domain.  The OND to DJF responses are similar, but the predictor is selected for fewer 

gridboxes.  The FMA response to October forcing consists of a large region of strongly 

negative responses to the west of the domain, from the Bay of Biscay to the Atlantic west of 
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Scotland.  This is replicated to a much lesser extent in MAM and AMJ, where the main 

feature is a weak negative response to the west, and a slightly stronger positive response in 

the south east of the domain, over the Mediterranean.  The other notable instance where NH 

teleconnection patterns are important is MAM, where the Western Pacific pattern (WPP) is 

also associated with a large positive response in the north of the domain – illustrated in 

Figure 7.13. 

 

 
90th Percentile Wind 

  JFM   FMA   MAM 
JFM TAR Lead 06 56   IND P4 ASO 57   WPP Lead 02 75 
  EAP Lead 05 40   SOL Lead 05 50   EAP Lead 02 35 
  AOS Lead 04 36   PCM P5 AMJ 27   T150 P1 NDJ 20 
  SST3 Lead 06 35   SDNH Lead 09 22   QBO3 Lead 11 17 
  SOL Lead 06 33   T150 P3 ASO 20   T30 P2 JAS 17 
Total    341     304     306 
  AMJ   MJJ   JJA 
  AOS Lead 02 32   T30 P3 FMA 55   EAW Lead 02 37 
  SST6 Lead 04 31   T100 P3 FMA 34   T30 P3 MAM 31 
  H50 P1 JFM 30   T30 P3 JJA 32   AOS Lead 04 29 
  SDEU Lead 07 26   NAO Lead 02 30   PCM P3 JFM 27 
  SDNG Lead 05 25   PCM P3 DJF 26   POL Lead 09 24 
Total    359     413     383 
  JAS ASO   SON 
  AOS Lead 05 37   H50 P1 DJF 39   SHT Lead 10 40 
  NAO Lead 07 37   T150 P1 NDJ 34   SHT Lead 04 25 
  SDNG Lead 11 35   ATL P4 MJJ 32   H30 P1 DJF 24 
  PV30 P2 ASO 26   ATL P5 AMJ 28   PV150 P1 JJA 23 
  PCM P4 AMJ 25   SHT Lead 10 26   H100 P1 DJF 23 
Total    372     371     417 
  OND   NDJ   DJF 
  PCM P5 JFM 76   PCM P5 JJA 54   SST3 Lead 05 64 
  SDNH Lead 05 45   H150 P3 JAS 46   TAR Lead 05 64 
  T50 P2 JFM 29   T50 P3 JAS 45   AOS Lead 03 50 
  EAP Lead 02 28   EAP Lead 03 37   EAP Lead 04 44 
  TAR Lead 02 27   T150 P2 ASO 31   T50 P3 SON 25 
Total   440     423     462 

Table 7.3  Top five predictors across whole domain for each season for the 90th 
percentile wind exceedance counts models.  Totals given are for all predictors.   
Given a domain comprising 252 gridboxes, this includes a mix of gridboxes having 
models with one or two predictors, and some gridboxes with no viable model. 

 

Northern Hemisphere snow cover is much more important for this predictand than for the 

precipitation predictands.  This is possibly related to the observed link between snow cover 

and the NAO/AO at lead times of several months, as documented in e.g. Cohen et al. (2001), 

which in turn may be more closely associated with wind extremes as observed here.  Varying 

levels of fit between the snow cover predictors and 90th percentile wind is present throughout 
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the year, at a range of lead times from two to 11 months.  During AMJ, the Eurasian snow 

cover index from the preceding October is selected as a predictor across portions of the 

southwest of the domain, having a positive fit to the predictand, as shown in Figure 7.13. In 

addition to this in AMJ the index describing North American and Greenland snow cover 

during December displays a positive fit with the predictand over central and eastern  Europe, 

extending as far north as Scandinavia (not shown).  The spatial pattern shown in response to 

this predictor does not clearly conform to the canonical NAO response, being centred 

somewhat too far to the north of the domain to be entirely a response to wind anomalies in 

southern Europe associated with a negative NAO (Trigo et al., 2002).  Other seasons with a 

notable response to snow cover indices include JAS, where positive North American and 

Greenland snow cover anomalies from the preceding September are associated with positive 

anomalies in the predictand from the Atlantic south of Ireland across to northern France and 

Belgium.  A positive response to May North American and Northern Hemisphere snow cover 

is observed respectively in SON and OND, comprising a positive response across the domain 

centred on about 55N.  The OND response is shown in Figure 7.14.  Much of the literature 

on snow cover as a predictor for the NAO, or European climate focuses on the response to 

summer snow cover anomalies (e.g. Saunders et al., 2003), so the apparent importance of an 

autumn response to late spring snow cover is of interest – at least statistically speaking. 

Pacific Ocean SST PC indices also feature strongly in the final model selection process, 

generally at relatively long lead times.  These indices are present in models throughout the 

year, but predominantly in OND and NDJ, and to a lesser extent from DJF through to JAS.  

The first PC – relating to ENSO activity – does not feature in any of the models despite 

showing a significant response in OND and NDJ at the field-significance testing stage.  In 

general, the European response to the Pacific Ocean here appears to be constrained to 

variability in the northern extratropical Pacific.  The OND response to the fifth PC from the 

preceding JFM season is shown in Figure 7.14. It comprises a large region of positive 

responses off the Atlantic coast of Norway, and a smaller region of negative responses off the 

northwest coast of Portugal.  The positive response to this predictor is similar although 

weaker in NDJ, and the negative response is no longer present.  The fifth PC pattern in the 

Pacific in JFM has its dominant centre of correlation weightings over the North Pacific, to 

the west of Japan, with a negative horseshoe-shaped region surrounding it, and further 

coherent regions of covariance in the tropics, which do not appear to correspond with the 
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spatial manifestation of ENSO variability.  This pattern accounts for 5% of the overall 

variance in JFM.  This pattern exhibits a weak (r = -0.32) negative correlation with the DJF 

PNA pattern, which implies that it is driven by the PNA, similar to the Atlantic tripole 

response to the NAO/AO.  

Stratospheric indices also account for a considerable proportion of the predictors selected for 

the final models – in particular the stratospheric temperature indices, which are particularly 

prevalent in the summer and autumn, from MJJ to SON. 

Other predictors of interest include the Southern Hemisphere temperature index, for which 

the November anomaly shows a positive fit with the predictand during SON over central 

Europe, and the May anomaly has a positive fit with the predictand over the North Sea and 

Scandinavia, as shown in Figure 7.14.  Indian Ocean PC indices are also associated with a 

significant response, concentrated in FMA and MAM.  In FMA, there is a negative response 

to the fourth PC from the preceding ASO season across the southern part of the domain.  In 

MAM there is a response to the second PC in both AMJ and DJF. The AMJ response is 

negative, and spread across central and western Europe, while the DJF response is positive, 

and concentrated in the south of the domain, over the Balkan states and the Adriatic. 

 
 
 
 
 

 - 176 - 



 
 
Figure 7.11  R2 by season for 90th percentile wind exceedance counts.  R2 values are for the final model 
selected for each gridbox, based on the lowest cross-validation mean absolute error (MAE).  Gridboxes in 
white are those where no statistically significant model exists – either because no field-significant 
predictands are locally significant, or weakly significant predictors do not pass the cross-validation 
criteria. 
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Figure 7.12  Mean Absolute Error (MAE) by season for 90th percentile wind exceedance counts.  Values 
are for the final model selected for each gridbox, having the lowest cross-validation mean absolute error 
(MAE) of all predictor subsets.  As Figure 7.5, gridboxes in white are those where no statistically 
significant model exists – either because no field-significant predictands are locally significant, or weakly 
significant predictors do not pass the cross-validation criteria.  Note that the scale is different to that for 
the precipitaion MAE. 
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Figure 7.13 Spatial configuration for a sample of the most commonly selected predictors for 90th 
percentile wind exceedance counts, from JFM to JJA.  For each map, the title gives the predictand 
season, followed by the predictor, and the gridbox shading illustrates the coefficient for that predictor in 
the model. 
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Figure 7.14  Spatial configuration for a sample of the most commonly selected predictors for 90th 
percentile wind exceedance counts, from JAS to DJF.  For each map, the title gives the predictand season, 
followed by the predictor, and the gridbox shading illustrates the coefficient for that predictor in the 
model. 
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Figure 7.15  R2 by season for 95th percentile wind exceedance counts.  R2 values are for the final model 
selected for each gridbox, based on the lowest cross-validation mean absolute error (MAE).  Gridboxes in 
white are those where no statistically significant model exists – either because no field-significant 
predictands are locally significant, or weakly significant predictors do not pass the cross-validation 
criteria. 
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Figure 7.16 Mean Absolute Error (MAE) by season for 95th percentile wind exceedance counts.  Values 
are for the final model selected for each gridbox, having the lowest cross-validation mean absolute error 
(MAE) of all predictor subsets.  As Figure 7.5, gridboxes in white are those where no statistically 
significant model exists – either because no field-significant predictands are locally significant, or weakly 
significant predictors do not pass the cross-validation criteria.  Note that the scale is different to that for 
the 90th percentile MAE values in Figure 7.12, as appropriate for the smaller absolute values of the 95th 
percentile exceedance counts. 
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7.3.4 Model selection for 95th percentile wind exceedance counts 
 
 
Model selection for the 95th percentile wind exceedance predictand has much in common 

with the 90th percentile wind predictand, as might be expected.  Interestingly, as illustrated in 

Figure 7.3 and Figure 7.4, the 95th percentile predictand generally has a higher count of 

retained predictors per gridbox than the 90th percentile predictand, although a similar spatial 

pattern and seasonal cycle is observed.  The model fit for the final models selected at each 

gridbox also follow a similar spatial and seasonal pattern to the 90th percentile predictand, R2 

values generally being highest from SON to DJF as illustrated in Figure 7.15.  The associated 

MAE has the same seasonal cycle as the 90th percentile predictand, with minima in the 

summer seasons, counter to the R2 metric.  This pattern is illustrated in Figure 7.16. 

 

Table 7.4  shows the top 5 predictands by gridbox count for this predictand, by season.  

Many of the most commonly selected predictors are identical to those selected for the 90th 

percentile wind predictand, and some are similar in that they refer to the same index, but lead 

or lag by one or two seasons.  Statistically we can therefore say that the high correlation 

between the 90th and 95th percentile seasonal exceedance counts for wind has resulted in very 

similar model selection, with similar levels of skill, at least in the training phase of the model 

development.  It is not unreasonable to suppose that the large-scale variability which affects 

the likelihood of extreme wind events is also very similar for these two predictand indices. 

 
 

Where predictors are common to the 90th and 95th percentile wind predictands, the spatial 

configuration of predictor selection is also similar, as expected.  Figure 7.17 and Figure 7.18 

illustrate a sample of the commonly selected predictors for 95th percentile wind exceedance 

counts.  ENSO indices are primarily atmospheric, and as is the case with the 90th percentile 

wind predictand, are concentrated in the autumn and winter seasons, this time being present 

from OND until FMA – slightly later in the winter than the 90th percentile predictand.  The 

response to these indices is largely concentrated in the southern portion of the domain, with a 

small number of gridboxes in the north of the domain responding in the opposite sign.  Other 

teleconnection indices, including the East Atlantic (EA) and West Pacific (WP) patterns are 

selected frequently.  The EA pattern figures prominently as a predictor from NDJ through to 
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MAM, at lead times of two to five months.  The JFM response to the September EA pattern 

is shown in Figure 7.17, and comprises a large proportion of the north and north west of the 

 
 

95th Percentile Wind 
  JFM   FMA   MAM 

  T50 P3 SON 51   SOL Lead 04 46   WPP Lead 02 65 
  EAP Lead 05 47   EAP Lead 03 30   T150 P1 NDJ 38 
  TAR Lead 06 35   PCM P5 AMJ 27   GLO P5 NDJ 28 
  AOS Lead 04 25   SOI Lead 07 26   IND P4 JAS 28 
  T150 P3 OND 25   EAW Lead 07 26   EAP Lead 02 22 
Total    410     297     252 
  AMJ   MJJ   JJA 
  NAO Lead 11 33   T30 P3 FMA 45   AOS Lead 04 34 
  SDNH Lead 07 31   AOS Lead 02 28   EAW Lead 02 32 
  IND P3 OND 28   T30 P3 JJA 27   PCM P3 DJF 29 
  SDNA Lead 06 20   T150 P1 SON 25   H150 P1 JFM 28 
  POL Lead 10 20   PNA Lead 05 21   PV30 P3 FMA 24 
Total    256     403     303 
  JAS ASO   SON 
  AOS Lead 05 47   PV30 P3 OND 41   PV150 P1 JJA 32 
  SDNG Lead 11 33   IND P1 SON 38   H30 P1 NDJ 31 
  WPP Lead 10 31   IND P1 MJJ 32   SHT Lead 04 28 
  NAO Lead 07 28   H50 P1 NDJ 26   H100 P1 DJF 24 
  PCM P4 MAM 22   T150 P1 DJF 21   PCM P2 MJJ 19 
Total    357     309     405 
  OND   NDJ   DJF 
  PCM P5 JFM 59   H150 P3 JAS 53   TAR Lead 05 46 
  TAR Lead 02 41   PV30 P3 ASO 40   PV50 P3 JFM 46 
  ATL P2 OND 39   ATL P1 OND 36   T50 P3 SON 26 
  PCM P4 AMJ 26   EAP Lead 03 25   T100 P1 AMJ 26 
  ATL P5 OND 23   PV50 P3 FMA 25   EAP Lead 04 24 
Total   428     450     462 

Table 7.4  Top five predictors across whole domain for each season for the 95th 
percentile wind exceedance counts models.  Totals given are for all predictors.   
Given a domain comprising 252 gridboxes, this includes a mix of gridboxes having 
models with one or two predictors, and some gridboxes with no viable model. 

 
domain, in which a positive response is observed.  The West Pacific pattern is selected in the 

FMA, MAM and JAS seasons, and most prominently in MAM, as shown in Figure 7.17, at a 

lead time of two months.  Again, the response is concentrated in the north of the domain, and 

is positive, with a much smaller area of negative responses in the south west of the domain.  

The NAO and AO are also selected and similar to the 90th percentile wind predictand, the 

AOS is the more frequently selected of the two.  On this point, it is interesting to note the 

findings of Hu and Huang (2006), who relate indices of the NAO to antecedent North 

Atlantic SST anomalies, and find that the statistical significance of the relationships vary 

markedly, to the extent that the standard NAO index, derived from MSLP in the Azores and 

Iceland (as used in this study) does not respond to leading SST anomalies, and a regional 
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index of the NAO derived from regional 500hPa height anomalies does respond, although 

they note that this response is conditioned largely on a small number of years which are not 

anomalous in the station index.  Although this study related primarily to the summer months, 

it is nevertheless important to note the sensitivity of such outcomes to small variations in 

both the predictand and predictor indices, and in particular, the role of outliers may mask or 

enhance levels of potential predictability.  Hu and Huang (2006) also note the potential 

importance of tropical and North Pacific SST anomalies in affecting NAO predictability – 

which may well relate to the observed statistical fit between the Pacific teleconnection 

indices illustrated here and for the 90th percentile wind predictand. 

 

Snow cover indices also feature prominently, with the strongest responses in the late spring 

and summer, and also to a lesser extent in the late autumn and early winter.  Figure 7.17 

shows the AMJ response to the preceding October Northern Hemisphere snow cover extent, 

where a large region of southern Europe – coincident with the area of Southern Europe which 

responds negatively to the NAO – exhibits a positive response.  To a much smaller extent, 

there is a negative response in the north of the domain, centred over northern Scotland.  The 

OND response to Northern Hemisphere snow cover extent from the preceding June, 

illustrated in Figure 7.18 is positive, and centred in the north of the domain, over the southern 

Baltic Sea region. 

 

Large-scale SST variability also seems to drive some response in the 95th percentile wind 

predictand.  Notably, the fifth PC of AMJ Pacific SST anomalies elicits a large negative 

response across the centre of the domain in the following AMJ season as shown in Figure 

7.17.  This compares with a similar FMA response to the same predictor in the 90th percentile 

wind predictand.  The fifth PC of global NDJ SST anomalies is selected as a predictor across 

the southern Baltic Sea, into Scandinavia and across to the west of Ireland for MAM, and is 

associated with a strong positive response. This pattern is centred in the north western 

Pacific, and is similar to some of the Pacific PCs discussed in 7.3.3, above. 
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Figure 7.17 Spatial configuration for a sample of the most commonly selected predictors for 95th 
percentile wind exceedance counts, from JFM to JJA.  For each map, the title gives the predictand 
season, followed by the predictor, and the gridbox shading illustrates the coefficient for that predictor in 
the model. 
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Figure 7.18 Spatial configuration for a sample of the most commonly selected predictors for 95th 
percentile wind exceedance counts, from JAS to DJF.  For each map, the title gives the predictand season, 
followed by the predictor, and the gridbox shading illustrates the coefficient for that predictor in the 
model. 
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7.4 Summary 
 
 
Based on a set of predictors identified as having field-significance over the predictor domain, 

a prediction model was then developed for each gridbox, season and predictand variable, 

using cross-validation over the model training period of 1959-1995. The final model at each 

gridbox is the one which minimises the MAE of the cross-validated predictions. 

Skill levels are presented for each model in graphical format, comprising the R2 values and 

MAE values separately, to indicate the extent of the fit, and the mean magnitude of the 

forecast error.  R2 values range from zero to 0.5 (0% to 50% of variance explained).  The 

upper end of the range implies useful predictive skill, beyond what is commonly thought to 

be the case for the European climate – at least for precipitation and wind predictands.  For 

example, Saunders and Qian (2002) identify levels of skill in the region of R2~0.5 - 0.6 as 

being useable for predictions of the NAO.  This apparent skill implies the need for further 

testing on a further independent validation period.  Generally, skill levels are higher for the 

90th percentile predictands than for the 95th percentile predictands, and the models for the 

wind predictands tend to be associated with more spatially coherent patterns of predictors, as 

illustrated.  This likely relates to the larger spatial scale of wind extremes as opposed to 

precipitation extremes.  One possible alteration to the approach taken here would be to 

restrict the number of predictors retained based on isolating one common’ predictor from a 

set of similar predictors, and thus increasing the spatial coherence of the models with respect 

to individual predictors – although this might marginally lower the skill for individual 

gridboxes, it might aid in the interpretation of results, and in the development of a fully 

operational prediction scheme.  There is a notable seasonal cycle in skill levels for both 

precipitation and wind predictands, with precipitation skill peaking in the late spring and 

summer, and remaining high to a lesser extent in the autumn and early winter.  Skill for the 

wind predictands is highest in autumn and winter. 

Notable predictors – i.e. those which are frequently selected – include those associated with 

atmospheric indices of ENSO, northern hemisphere teleconnection patterns – in particular the 

AO (and to a lesser extent the NAO) – and also the EA pattern.  Northern Hemisphere snow 

cover also features, particularly for the wind predictands, and this may well relate to the 
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apparent influence of snow cover on the AO and NAO.  In general, large-scale SST 

predictors are not a dominant influence, counter to the prevailing view that these offer the 

greatest predictive skill at seasonal timescales.  However some SST patterns do feature – 

perhaps most notably those associated with variability in the north Pacific, and to a lesser 

extent in the north Atlantic.  North Pacific indices tend to be associated with atmospheric 

teleconnection patterns centred in the north Pacific, such as the PNA and EPNP patterns.  

Local SST anomalies are identified as useful predictors for extreme precipitation events over 

the training period, and in some cases for extreme wind events also.  For precipitation, at 

least, this is consistent with the view that warm SSTs allow the overlying atmosphere to 

retain more moisture – and the responses observed here largely correspond to that, although 

some anomalies in the predictands associated with local SST anomalies seem to be related to 

larger-scale dynamic effects. 

While the results presented here are of interest within the model training data, and allows 

insight into a wide range of atmospheric, oceanic and land-based phenomena which may be 

useful seasonal predictors of extremes in Europe, without further testing, and a full 

assessment of the physical links between the predictors and predictands it is not advisable or 

possible to implement a fully operational prediction scheme based on these results.  Primary 

considerations in the treatment of these results must include the possibility that the models 

(having been trained on a relatively short time period) are not calibrated correctly to account 

for periods outside the one considered, or indeed that they are over-fitted within the training 

period.  Furthermore, it must not be assumed that the relationships identified here are 

stationary in time or space, or that they are linear, even when identified using linear 

techniques.  The next chapter assesses the model fit outside the training period, and discusses 

the further validation of these models. 
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8 Model Testing 
 
 
The previous chapter addressed results of the model selection exercise, based on an all subset 

selection method, using cross-validation on predictors with a field-significant response in the 

predictand data.  This chapter presents the results of further model testing on an independent 

sample of data, in order to validate the levels of skill apparent in these models.  Section 8.1 

introduces the chapter and sets out the aims; section 8.2 describes the method, following on 

closely from Chapter 7; section 8.3 presents the results of the model testing and section 8.4 

concludes the chapter. 

 

8.1 Introduction 

 

The fit of the models developed and presented in Chapter 7 was assessed by considering R2 

values and the mean absolute error (MAE) between the predictand and the predicted 

timeseries at each gridbox.  Although many of the models did not result in what might be 

considered useful skill, a large number of them did – having R2 values of up to c.0.5, 

corresponding to 50% of interannual variance in the predictand being described by the 

selected model.  Although not every model at every gridbox could reasonably be discussed in 

depth, the apparently more important and more widely selected predictors driving this 

response were discussed in some detail.  However, as emphasised previously, this is an 

exploratory study, on predictands which are thought likely to have low levels of 

predictability at seasonal timescales, which furthermore may not be linear or stationary over 

the observational period considered here.  In particular, the potential for nonlinear or 

nonstationary relationships means that despite statistically significant cross-validation skill 

identified in the model fitting component, it does not follow that the same levels of skill will 

persist outside the model training period.  For this reason, it is essential to carry out further 

testing, on an independent sample of data in order to further quantify the levels of skill 

apparent in these models (e.g. Lloyd-Hughes and Saunders 2002).  Another concern relating 

to the model fitting process is that given the large number of predictors – despite the 

condition of field significance imposed on each predictor, and the constraint of two 

predictors at most – there is potential for the models to be overfitted to the predictand data. 
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This chapter presents the results of further testing of the models developed in Chapter 7, over 

a ten year period from 1996 to 2005, referred to here as the validation period.  Results are 

presented for each predictand variable, first as an overview of the broad changes in skill, 

including a brief discussion of each season, a summary of the predictors which retain some 

useful skill, and a graphical illustration of changes in skill by season.  Secondly, a selection 

of key regions and seasons where predictive skill is retained throughout the validation period 

are discussed in more detail, including an illustration of the model parameters, and a 

discussion of the potential mechanisms driving the apparent predictability. 

 

8.2 Method 

 

Having developed models trained on the predictand data from 1959 to 1995, the models are 

then tested on an independent period from 1996 to 2005.  For each gridbox, the training 

model coefficients are applied using Poisson regression, and the predicted values are 

compared with the observed in the same manner as the training period – that is, using the R2 

and the MAE values. 

 

In determining whether potentially useful skill has persisted into the validation period, it is 

necessary to apply some threshold of skill to the validation period fit, given that the training 

period fit shows useful skill.  On the latter condition, for the purposes of this study given the 

context of inherently low (at best) seasonal predictability in the midlatitudes, a threshold of 

R2=0.2 is set for the determination of predictive skill in the training period – that is, the 

predictive model explains 20% of interannual variation in the predictand.  It is thought that 

this level of fit – if it were supported by theory – would provide at least a marginal 

improvement over climatology. 

 

Superficially, it should follow that R2=0.2 would then be a suitable threshold for the 

validation period skill. However, since a significant degradation of skill is expected in many 

cases, a slightly relaxed threshold of R2=0.15 is used for the validation data.  It is important 

to note that this should not be interpreted as a criterion for validating a model with a deemed 
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level of skill for operational purposes, but rather as a slightly relaxed filter to allow a more 

coherent picture of where and how skill might persist in the validation period. 

 

In summary, models are considered to be of potential interest if R2 ≥ 0.2 during the training 

period and R2 ≥ 0.15 during the validation period, assuming of course that there is a positive 

fit between the validation data. 

 

8.3 Results 

 

Results illustrating the change in R2 and MAE values from the training period to the 

independent validation period are presented for each season, and each predictand variable.  

Changes in skill are discussed in summary for each predictand. In the great majority of cases, 

the model skill degrades significantly in the validation period, indicating that the 

relationships identified over the period 1959-1995 are either over-fitted, or the observed 

relationships are nonstationary in time, or possibly nonlinear.  This breakdown in skill is 

described for each season and predictand, and cases where skill is maintained into the 

validation period are examined in more detail. 

 

8.3.1 90th Percentile Precipitation Model Validation: Overview 

 

Figure 8.1 to Figure 8.12 illustrate the change in R2 and MAE for each season from JFM to 

DJF, and for each model.  The top left panel in each figure shows the R2 values over the 

training period (1959-1995), and the top right panel shows the corresponding values for the 

validation period of 1996-2005.  The solid gridboxes are those where potentially useful ski

persists through the validation period as defined in 

ll 

e 

n 

n.  

8.2, above, and the outline gridboxes ar

those where skill is insufficient.  The lower panels in each figure show the same informatio

for the MAE values.  The same colour scale is used as for Chapter 7, for ease of compariso

 

There follows a brief summary of each season, relating to the change in skill in the validation 

period. 
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• JFM:  Figure 8.1 shows the change in skill for JFM.  Almost without exception, R2 

values reduce, and MAE values increase across the domain, indicating that the fit 

obtained in the model training process does not apply in the validation period in most 

cases.  There are a small number of cases where R2 values indicate useful skill in both 

the training and validation periods, although the MAE values are higher.  These tend 

to be concentrated over the Mediterranean region.  It should be noted for these and for 

following results that given the relatively short length of the validation period, there is 

a substantial chance of spuriously skillful results from the validation period.  This is 

illustrated by the instances of high values of R2 in the validation period, where the 

training period skill was lower. 

 

• FMA:  Figure 8.2 illustrates the degradation in skill for FMA.  A small number of 

gridboxes in southern France and northern Spain, and one over northern Poland retain 

some skill. 

 

• MAM:  Figure 8.3 illustrates the degradation in skill for MAM.  Three gridboxes 

situated over Denmark, Lithuania and the Ukraine respectively retain some skill. 

 

• AMJ:  Figure 8.4 illustrates the degradation in skill for AMJ.  A number of gridboxes 

over the Bay of Biscay and southern France retain some skill, as well as six gridboxes 

surrounding the British Isles.  These models will be discussed in more detail in 8.3.5. 

 

• MJJ:  Figure 8.5 illustrates the degradation in skill for MJJ.  Some scattered gridboxes 

(situated over Sweden, Poland, Greece, England and the Atlantic) retain some skill. 

 

• JJA:  Figure 8.6 illustrates the degradation in skill for JJA.  Some scattered gridboxes 

– mainly over northern Europe retain skill, although R2 values are generally below 

0.25 in the validation period.  One gridbox over southern Italy has R2>0.45, with a 

low MAE value. 

 

 

• JAS:  Figure 8.7 illustrates the degradation in skill for JAS. Four gridboxes located 

across southern Europe retain some skill.  Most predictors for these models are 
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associated with indices of stratospheric temperature and potential vorticity from the 

preceding winter. 

 

• ASO:  Figure 8.8 illustrates the degradation in skill for ASO.  Only two gridboxes – 

located over Norway and to the north of Scotland – retain skill. 

 

• SON:  Figure 8.9 illustrates the degradation in skill for SON.  A number of gridboxes 

retain skill.  Four of these are located over southern Europe, one to the south west of 

England, and the remainder in the north of the domain over Scandinavia and the 

Atlantic. 

 

• OND:  Figure 8.10 illustrates the degradation in skill for OND.  A number of 

predictors – primarily to the west of the domain – retain some skill.  In particular, 

these are located over the Bay of Biscay and Spain, and over the Atlantic to the north 

of Scotland. 

 

• NDJ:  Figure 8.11 illustrates the degradation in skill for NDJ.  Several models over 

Romania and Bulgaria retain skill, as do two over the English Channel region, where 

validation period R2 levels are in excess of 0.45.  Predictors for these latter models 

include the SOI from the preceding September, and the third PC of 30hPa potential 

vorticity from the preceding DJF season. 

 

• DJF:  Figure 8.12 illustrates the degradation in skill for DJF.  The main region where 

some skill is retained is located off the west coast of Scandinavia, where the dominant 

predictors include local SST anomalies, and the fifth PC of Indian Ocean SSTs from 

the preceding MJJ season. 

 

Table 8.1 shows the predictors retained, by season, for the 90th percentile precipitation 

models.  For each season, they are ranked by the frequency of occurrence and parameter (β).  

Throughout the year, the stratospheric predictors are the most important – geopotential height 

in particular, although in the summer seasons stratospheric temperature and potential 

vorticity feature more frequently.  Local SST indices also feature in the winter and spring 

seasons, and indices of tropical Pacific MSLP also result in potentially useful skill in the 
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winter and spring seasons, for a small number of gridboxes.  Generally, no predictors are 

dominant to the extent that large regions of coherent skill may be attributed with any 

confidence. 

 

Overall, for 90th percentile precipitation exceedance counts, very little skill is retained from 

the training period to the validation period, indicating that the potential predictive skill 

identified in Chapter 6 and Chapter 7 is at best nonstationary.  Some models do retain their 

skill in the validation period, however, given the small numbers that do, there is a significant 

likelihood that this is artificial skill – in other words the skill is retained in the validation 

period due to chance.  Without confirmation of a physical basis for the relationship, the 

results must still be treated with caution.  Of most interest from the results presented here, is 

the persistence of skill into the validation period in AMJ, situated over the Bay of Biscay, 

and regions surrounding the UK.  These results will be discussed in more detail in 8.3.5 
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Figure 8.1.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JFM 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.2 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for FMA 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.3 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MAM 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.4 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for AMJ 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.5 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MJJ 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.6 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JJA 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.7 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JAS 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.8 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for ASO 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.9 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for SON 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.10 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for OND 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.11 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for NDJ 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.12 Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for DJF 90th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Season Predictor Frequency       β Season Predictor Frequency        β 
JFM H30 P1 OND 3        0.343 ASO IND P2 DJF 1         0.215 
 SST4 Lead03 2        0.034 PV150P1ASO 1         0.203 
 NAO Lead 03 1        0.231 PV150P3AMJ 1     -   0.204 
 T30 P2 SON 1        0.204 SON PCM P5 JFM 7         0.103 
 SST3 Lead04 1        0.199 H50 P1 DJF 5         0.071 
 H30 P1 JFM 1        0.193 PV150P2NDJ 2     -   0.224 
  DAR Lead 05 1    -   0.189 H150P3 NDJ 2     -   0.253 
FMA H150P3 SON 2        0.223 H50 P1 NDJ 1         0.274 
 H30 P1 NDJ 2    -  0.229 EAW Lead 09 1         0.252 
 DAR Lead 10 1        0.239 PV100P1MJJ 1         0.221 
 PV30 P2ASO 1        0.222 T30 P1 OND 1         0.167 
 PNA Lead 07 1    -   0.170 DAR Lead 04 1         0.165 
  AOS Lead 07 1    -   0.245 NAO Lead 05 1     -   0.126 
MAM PCM P2 OND 1        0.243 SST1 Lead03 1     -   0.147 
 H50 P1 NDJ 1        0.216 PCM P2 JJA 1     -   0.153 
 DAR Lead 07 1        0.192 PNA Lead 07 1     -   0.176 
 T100P2 MJJ 1    -   0.194 EAW Lead 07 1     -   0.178 
 TAR Lead 06 1    -   0.225 H150P3 AMJ 1     -   0.214 
  ATL P4 DJF 1    -   0.280 GLO P3 JJA 1     -   0.222 
AMJ DAR Lead 09 2        0.187 GLO P3 JFM 1     -   0.230 
 H100P3 SON 2    -   0.017 H100P1 DJF 1     -   0.266 
 EAP Lead 07 2    -   0.124 OND PCM P5 JFM 3         0.146 
 SST3 Lead05 2    -   0.247 EAP Lead 11 3         0.061 
 PV100P3JAS 1        0.236 PV150P1JAS 2     -   0.022 
 GLO P2 AMJ 1        0.225 H150P3 JJA 2     -   0.198 
 PV30 P3AMJ 1        0.217 SOI Lead 02 2     -   0.218 
 T150P1 NDJ 1        0.214 H150P1 MAM 1         0.220 
 H150P1 JJA 1        0.200 SHT Lead 10 1         0.166 
 IND P2 NDJ 1        0.175 T50 P2 JFM 1         0.165 
 GLO P5 NDJ 1        0.164 PCM P2 OND 1         0.147 
 T150P3 JJA 1    -   0.154 H30 P3 MJJ 1         0.129 
 T30 P3 JJA 1    -   0.216 AOS Lead 02 1         0.113 
 TAR Lead 03 1    -   0.226 EAP Lead 09 1     -   0.175 
 QBO3 Lead09 1    -   0.231 GLO P5 JFM 1     -   0.209 
 ATL P1 MJJ 1    -   0.245 EAP Lead 02 1     -   0.213 
 H100P1 SON 1    -   0.278 SST6 Lead02 1     -   0.232 
  ATL P4 JFM 1    -   0.399 T30 P2 OND 1     -   0.252 
MJJ T150P2 ASO 1        0.347 NDJ IND P4 JJA 4     -   0.117 
 NAO Lead 11 1        0.302 PV30 P3DJF 2         0.140 
 H50 P3 SON 1        0.267 PV30 P2MAM 2         0.042 
 PV150P3FMA 1        0.231 QBO5 Lead02 1         0.216 
 PV30 P1JFM 1        0.168 GLO P4 DJF 1         0.198 
 IND P5 DJF 1    -   0.117 T30 P3 FMA 1         0.192 
 T150P1 JJA 1    -   0.145 AOS Lead 04 1         0.142 
 T30 P1 JJA 1    -   0.168 SOI Lead 03 1     -   0.166 
 ATL P4 DJF 1    -   0.175 PV50 P1JAS 1     -   0.197 
 EAP Lead 08 1    -   0.216 PV100P1MAM 1     -   0.209 
  T30 P3 JAS 1    -   0.225 DJF T50 P3 JAS 3         0.176 
JJA PV100P3JAS 2        0.241 EAP Lead 04 3     -   0.055 
 SCA Lead 05 2        0.207 IND P5 MJJ 3     -   0.200 
 H50 P3 OND 2    -   0.241 SST3 Lead05 2         0.217 
 PV150P1SON 2    -   0.253 SST4 Lead02 2         0.045 
 EAW Lead 06 1        0.470 SST3 Lead03 1         0.262 
 GLO P4 MAM 1        0.290 SST2 Lead06 1         0.162 
 H50 P1 JFM 1        0.200 IND P4 JJA 1         0.106 
 PCM P5 MAM 1        0.183 PV100P3SON 1     -   0.196 
 T100P2 DJF 1        0.175 TAR Lead 04 1     -   0.224 
 H150P1 JFM 1        0.169  
 PCM P5 SON 1        0.155  
 EPN Lead 11 1    -   0.137  
  POL Lead 04 1    -  0.248  
JAS T150P1 NDJ 3        0.088  
 PV150P1JAS 1        0.248  
 H100P1 FMA 1        0.187  
 PV150P2OND 1    -   0.213  
 PV30 P2JAS 1    -   0.291  
  IND P1 OND 1    -   0.300   

Table 8.1.  Predictor frequency for 90th percentile precipitation exceedance models, where skill is retained 
in the validation period.  For each season, all predictors which feature in skillful models are included, 
together with their frequency of occurrence, and the mean value of the model coefficient (β). 
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8.3.2 95th Percentile Precipitation Model Validation: Overview 

 

Figure 8.13 to Figure 8.24 illustrate the change in R2 and MAE for each season from JFM to 

DJF, and for each model.  The top left panel in each figure shows the R2 values over the 

training period (1959-1995), and the top right panel shows the corresponding values for the 

validation period of 1996-2005.  The lower panels in each figure show the same information 

for the MAE values.  The same colour scale is used as for Chapter 7, for ease of comparison.  

There follows a brief summary of each season, relating to the change in skill in the validation 

period. 

 

• JFM:  Figure 8.13 illustrates the degradation in skill for JFM.  Three gridboxes to the 

west of France, and one in the north west of the domain retain some skill, although R2 

levels do not exceed 0.35, and MAE values are generally in excess of two. 

 

• FMA:  Figure 8.14 illustrates the degradation in skill for FMA.  Two gridboxes retain 

skill – one located over southern France, with R2>0.45 and one over the western 

Ukraine, with R2=0.2. 

 

• MAM:  Figure 8.15 illustrates the degradation in skill for MAM.  Three gridboxes 

retain skill – two over Denmark, with R2>0.3, and one over southern France (the 

same gridbox as that in FMA) with a lower R2 of 0.2. 

 

• AMJ:  Figure 8.16 illustrates the degradation in skill for AMJ.  Similar to the 90th 

percentile precipitation models, this appears to be the most skillful season, and a 

relatively large number of models retain skill into the validation period.  The majority 

of these are located over of near the Irish Sea and Wales, with others situated over  

France, Spain, Germany, Scandinavia and Estonia.  For the cluster of significant 

models centred on the Irish Sea, there do not appear to be any dominant predictors.  

These results will be discussed further in 8.3.6. 
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• MJJ:  Figure 8.17 illustrates the degradation in skill for MJJ.  Fewer skillful models 

are retained in MJJ, with three located to the west of Norway, southern Sweden and 

Slovakia respectively.  R2 values do not exceed 0.3. 

 

• JJA:  Figure 8.18 illustrates the degradation in skill for JJA.  Eight models retain skill 

in the validation period here, located mostly in the North and Baltic Seas, and also 

southern England and France, and the Atlantic south of Ireland.  In some instances R2 

values are in excess of 0.45. 

 

• JAS:  Figure 8.19 illustrates the degradation in skill for JAS.  Four gridboxes retain 

some skill.  These are located over Ireland, France, Poland and Romania – little 

spatial coherence is shown. 

 

• ASO:  Figure 8.20 illustrates the degradation in skill for ASO.  Three models retain 

skill, located over the Atlantic west of Norway, and southern Germany. 

 

• SON:  Figure 8.21 illustrates the degradation in skill for SON.  Some skill is retained 

for models located to the north west of Spain, over northern England and to the north 

of Scotland, and over France and the Czech Republic.  R2 values vary from 0.2 to 

>0.45. 

 

• OND:  Figure 8.22 illustrates the degradation in skill for OND.  Five models retain 

skill, located over the Atlantic west of Norway, the North Sea, central France and the 

Balearic Islands respectively. 

 

• NDJ:  Figure 8.23 illustrates the degradation in skill for NDJ.  Eight models retain 

some skill.  These are located around the edges of the domain, and include the 

western Ukraine, where R2 values are greater than 0.25, and the west coast of 

Norway, where R2=0.6.  The predictors for this latter model are May Northern 

Hemisphere snow cover anomalies, and the August Scandinavia teleconnection 

pattern (SCA). 
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• DJF:  Figure 8.24 illustrates the degradation in skill for DJF.  Only two models are 

retained, located over southern Norway (R2=0.34) and the Czech Republic (R2=0.21) 

respectively. 

Table 8.2  shows the predictors retained, by season, for the 95th percentile precipitation 

models.  For each season, they are ranked by the frequency of occurrence and parameter (β).  

There are fewer predictors here than for the 90th percentile precipitation models, although 

there are some similarities, in that stratospheric height indices feature prominently.  SOI 

related indices do not feature as frequently, although four gridboxes show potentially useful 

skill from spring and summer Darwin MSLP during SON.  R2 values for models featuring 

these predictors range from 0.20 to 0.42.  Additionally, some skill is due to Niño 3.4 and 

Niño 4 indices, unlike the 90th percentile precipitation models. 

 

In summary, fewer of the 95th percentile precipitation models retain potentially useful skill 

into the validation period than the 90th percentile precipitation models, and there are no large 

coherent areas of skill that persist into the validation period.  A small number of the models 

do retain skill, and of particular interest is the region over the UK in AMJ, where a coherent 

region of skill persists through the validation period.  This will be examined in more detail in 

8.3.6. 
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Figure 8.13.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JFM 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.14.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for FMA 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.15.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MAM 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.16.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for AMJ 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.17.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MJJ 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.18.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JJA 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.19.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JAS 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.20.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for ASO 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 - 209 - 



 
Figure 8.21.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for SON 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.22.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for OND 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Figure 8.23.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for NDJ 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.24.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for DJF 95th percentile precipitation exceedance models.  Solid gridboxes in the 
validation plots indicate models where useful skill persists beyond the training period. 
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Season Predictor Frequency       β Season Predictor Frequency        β 
JFM PNA Lead 06 2 -   0.223 JAS PV150P1ASO 2     0.239 
 SST3 Lead06 1    0.256 SDNG Lead11 1     0.326 
 PV150P3ASO 1 -   0.175 T150P1 DJF 1     0.311 
 EAP Lead 05 1 -   0.185 H100P1 MAM 1     0.297 
 T100P2 MAM 1 -   0.199 ATL P1 JAS 1     0.272 
 SST4 Lead02 1 -   0.228 H50 P1 MAM 1 -   0.207 
  T150P3 MJJ 1 -   0.246 PV30 P2JAS 1 -   0.287 
FMA T150P3 ASO 1    0.300 ASO PV150P3AMJ 2 -   0.232 
 DAR Lead 08 1    0.222 PV30 P3OND 1     0.398 
 EPN Lead 04 1 -   0.252 IND P3 MAM 1     0.137 
  IND P2 MJJ 1 -   0.268 T100P3 FMA 1 -   0.210 
MAM DAR Lead 07 2    0.245 SON H150P3 NDJ 3 -   0.303 
 IND P2 JJA 2 -   0.255 T30 P3 MAM 2     0.222 
 H50 P1 DJF 1   0.292 DAR Lead 04 2     0.207 
  GLO P2 SON 1 -   0.265 DAR Lead 07 2     0.203 
AMJ H100P1 NDJ 3 -   0.255 H100P3 NDJ 1     0.246 
 PNA Lead 09 2 -   0.002 H50 P2 JFM 1     0.227 
 H50 P2 JFM 2 -   0.259 H30 P1 DJF 1     0.215 
 N4  Lead 10 1    0.326 T50 P1 JFM 1     0.199 
 SDNH Lead10 1    0.322 IND P3 MAM 1     0.188 
 EAW Lead 06 1    0.286 T100P2 JJA 1     0.187 
 T100P2 SON 1    0.275 T30 P3 AMJ 1 -   0.263 
 H100P2 ASO 1    0.269 T150P1 DJF 1 -   0.278 
 H30 P1 JFM 1    0.219 T100P3 AMJ 1 -   0.336 
 PV150P2MJJ 1    0.219 OND PCM P2 JAS 1     0.330 
 EAW Lead 11 1    0.217 N34 Lead 02 1     0.267 
 SDEU Lead06 1    0.213 SDNG Lead06 1     0.246 
 SHT Lead 06 1 -   0.152 SDNH Lead05 1     0.218 
 TAR Lead 04 1 -   0.168 H100P1 JFM 1     0.217 
 ATL P1 JJA 1 -   0.178 GLO P2 JAS 1     0.194 
 H50 P1 OND 1 -   0.183 AOS Lead 02 1     0.176 
 EAP Lead 07 1 -   0.250 PCM P5 JFM 1     0.143 
 SST2 Lead03 1 -   0.352 H30 P3 JJA 1 -   0.239 
  PV50 P3AMJ 1 -   0.455 T150P1 JAS 1 -   0.332 
MJJ GLO P4 DJF 1    0.391 NDJ GLO P4 JFM 2     0.282 
 H50 P1 JFM 1    0.243 PV100P2JFM 2     0.232 
 EAW Lead 05 1    0.187 SDNH Lead06 1     0.423 
 TAR Lead 07 1 -   0.188 PV50 P3FMA 1     0.339 
  T50 P3 JAS 1 -   0.342 T30 P1 DJF 1     0.296 
JJA H30 P1 DJF 2 -   0.223 QBO5 Lead02 1     0.204 
 PV150P1SON 2 -   0.494 SOI Lead 03 1     0.193 
 IND P5 NDJ 1    0.304 PV30 P3NDJ 1 -   0.217 
 AOS Lead 05 1    0.290 PV50 P1ASO 1 -   0.226 
 SHT Lead 09 1    0.231 TNH Lead 10 1 -   0.235 
 PV100P3JAS 1    0.186 NHT Lead 10 1 -   0.240 
 SDEU Lead03 1    0.169 EAP Lead 03 1 -   0.279 
 IND P4 JJA 1 -   0.128 SCA Lead 03 1 -   0.306 
 AOS Lead 04 1 -   0.205 DJF AOS Lead 03 1     0.466 
 T100P2 NDJ 1 -   0.223 SDNH Lead07 1     0.350 
 PV30 P1DJF 1 -   0.272 PV50 P3MAM 1     0.222 
 SDNG Lead02 1 -   0.302 SST4 Lead02 1 -   0.487 
 T100P1 JFM 1 -   0.328  
  ATL P4 NDJ 1 -   0.363   

Table 8.2.  Predictor frequency for 95th percentile precipitation exceedance models, where skill is retained 
in the validation period.  For each season, all predictors which feature in skillful models are included, 
together with their frequency of occurrence, and the mean value of the model coefficient (β). 
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8.3.3 90th Percentile Wind Model Validation: Overview 

 

Validation of the 90th percentile wind exceedance models is presented in the same format as 

for the precipitation models.  First a summary of the breakdown in skill is presented by 

season, and particular features of interest are noted. 

 

• JFM:  Figure 8.25 illustrates the degradation in skill for JFM.  A small cluster of 

models located over northern Germany and Poland retain skill into the validation 

period, with R2>0.35.  The common predictor here is the third PC of 50hPa 

temperature from the preceding SON season. Other predictors for these models 

include PCs of Pacific Ocean SST also from the preceding autumn and summer. 

 

• FMA:  Figure 8.26 illustrates the degradation in skill for FMA.  Four gridboxes in the 

extreme south of the domain retain some skill, with R2 values in excess of 0.25. 

 

• MAM:  Figure 8.27 illustrates the degradation in skill for MAM.  Similar to FMA, 

five models in the south of the domain retain some skill, with R2 values ranging from 

0.33 to 0.46. 

 

• AMJ:  Figure 8.28 illustrates the degradation in skill for AMJ.  Five models retain 

some skill in AMJ.  Three are located over Scandinavia, one over  southern Germany, 

and one to the south of Ireland.  The Scandinavian models show most skill (R2>0.3), 

and are associated with the AO, or stratospheric patterns from the preceding winter. 

 

• MJJ:  Figure 8.29 illustrates the degradation in skill for MJJ.  A number of models 

retain relatively high levels of skill (R2>0.45).  These are split into two meridionally 

constrained regions – one stretching from the Atlantic across southern Scandinavia, 

and the other from the Bay of Biscay across to Romania. 

 

• JJA:  Figure 8.30 illustrates the degradation in skill for JJA.  Five models retain 

potentially useful skill. These are located across Scandinavia and Germany, with one 

in Romania. 
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• JAS:  Figure 8.31 illustrates the degradation in skill for JAS.  A coherent region of 

skillful models is located over eastern Poland and the Ukraine, with R2 values ranging 

from 0.25 to 0.55.  North American snow cover anomalies at lead times up to the 

previous autumn, and stratospheric height anomalies from the preceding winter 

feature as the most common predictors here.  

 

• ASO:  Figure 8.32 illustrates the degradation in skill for ASO.  A number of 

gridboxes centred over Austria and Poland retain some skill in the validation period.  

R2 values range from 0.19 to 0.62.  Predictors for these models include Southern 

Hemisphere temperature from the preceding October, and stratospheric potential 

vorticity anomalies form the preceding winter seasons. 

 

• SON:  Figure 8.33 illustrates the degradation in skill for SON.  The region of 

coherent skill identified in ASO over eastern Europe persists into SON, although it 

shifts slightly to the north and west.  The preceding October Southern Hemisphere 

temperature anomaly is still the dominant predictor for these models, resulting in R2 

values from 0.36 to 0.55. 

 

• OND:  Figure 8.34 illustrates the degradation in skill for OND.  A relatively large 

number of models (19) retain skill into the validation period during OND.  The bulk 

of these are situated over northern Scotland, the North Sea and to the west of Norway, 

with other regions in the Bay of Biscay and over southern Germany and Austria.  The 

latter region shows the highest skill levels (R2≈0.7), and the predictors for this region 

are the fifth PC of Atlantic SSTs from the preceding OND season, and the September 

SCA pattern.  The region to the west of Norway is skilfully predicted by the March 

SCA pattern and the fifth PC of Pacific Ocean SSTs from the preceding January, 

among others. 

 

• NDJ:  Figure 8.35 illustrates the degradation in skill for NDJ.  A coherent region of 

skillful models is centred over the Benelux countries.  R2 values are in excess of 0.35.  

The dominant predictors for this region are the second PC of JAS 50hPa temperature, 

and the second PC of MJJ global SST anomalies. 
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• DJF:  Figure 8.36 illustrates the degradation in skill for DJF.  This is the season where 

most skill is retained into the validation period.  An extensive region stretching from 

the North Sea across Denmark to the Baltic States exhibits high levels of skill (R2 

ranges from 0.25 to 0.65).  Another coherent level of skill is located to the south, 

stretching from southern France across to Romania.  Typically, for all these models 

the MAE values are substantially higher then during the training period.  These 

results will be discussed in more detail in 8.3.7. 

 

Table 8.3  shows the predictors retained, by season, for the 90th percentile wind models.  For 

each season, they are ranked by the frequency of occurrence and parameter (β).  There are 

considerably more predictors and models for this predictand than for the precipitation 

predictands, and two seasons (OND and DJF) stand out as having a large number of models 

which retain skill in the validation period.  The most frequently selected group of predictors 

is that describing stratospheric temperature variability.  These are particularly prevalent in 

the autumn and winter seasons.  In DJF the third PC of 50hPa temperature during the 

preceding SON season contributes to potentially useful skill in nine gridbox models, and the 

JAS index of this predictor features in three further models.  Generally indices of snow 

cover, the AO and NAO and Indian Ocean PCs contribute more to potentially useful skill 

than they do for the precipitation models, and indices associated with the SOI and local SST 

contribute less. 

 

Skill levels for the 90th percentile wind exceedance models reduce significantly in the 

validation period, in a similar fashion to the precipitation models.  However, there are some 

seasons and regions where skill appears to persist, and spatially, more coherence is apparent.  

In particular, the autumn and winter seasons show potentially useful levels of skill for large 

regions throughout the validation period.  Further detail on the most notable areas where skill 

is retained is discussed further in 8.3.7 
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Figure 8.25.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JFM 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.26.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for FMA 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.27.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MAM 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.28.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for AMJ 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.29.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MJJ 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.30.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JJA 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.31.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JAS 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.32.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for ASO 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.33.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for SON 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.34.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for OND 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.35.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for NDJ 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.36.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for DJF 90th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Season Predictor Frequency β Season Predictor Frequency β 
JFM T50 P3 SON 4 0.253 ASO SHT Lead 10 4 0.167
 T100P2 MAM 1 0.212 PV150P2DJF 3 0.193 
 SST3 Lead04 1 0.204 PCM P4 AMJ 2 -     0.154 
 EAP Lead 05 1 0.183 IND P2 ASO 2 -     0.165 
 POL Lead 04 1 0.174 T150P1 NDJ 1 0.178 
 TAR Lead 06 1 -     0.150 H150P3 DJF 1 0.157 
 IND P5 MJJ 1 -     0.175 PV100P2JFM 1 0.154 
 PCM P4 OND 1 -     0.187 PNA Lead 06 1 0.144 
 PCM P4 JAS 1 -     0.216 PTP Lead 11 1 0.120 
 EAP Lead 03 1 -     0.229 H50 P1 DJF 1 -     0.106 
FMA SOI Lead 07 2 - 0.131 ATL P4 MJJ 1 - 0.109
 IND P4 ASO 2 -     0.154 T30 P2 DJF 1 -     0.114 
 T150P1 NDJ 1 0.171 ATL P5 AMJ 1 -     0.162 
 T30 P3 NDJ 1 -     0.130 PV150P3AMJ 1 -     0.175 

AOS Lead 07 1 - 0.191 SON SHT Lead 10 4 0.162
 H30 P1 NDJ 1 -     0.203 T100P3 JFM 2 0.183 
MAM SDNH Lead10 2 - 0.165 SST1 Lead02 2 - 0.166
 IND P2 DJF 1 0.189 T30 P2 DJF 2 -     0.184 
 PCM P2 SON 1 0.184 H100P1 DJF 1 0.175 
 T150P1 NDJ 1 0.152 PV30 P3OND 1 0.166 
 EPN Lead 02 1 0.112 T100P2 DJF 1 0.157 
 EAP Lead 02 1 0.109 T50 P1 AMJ 1 0.151 
 IND P2 AMJ 1 -     0.172 SHT Lead 04 1 0.132 
 IND P3 SON 1 -     0.236 NAO Lead 05 1 -     0.154 
AMJ SST6 Lead04 2 - 0.135 OND SCA Lead 08 7 0.194
 QBO5 Lead09 1 0.175 PCM P5 JFM 7 0.063 
 IND P5 OND 1 0.169 GLO P2 MJJ 3 -     0.190 
 AOS Lead 02 1 0.160 EAP Lead 09 2 0.223 
 T30 P3 NDJ 1 0.147 SCA Lead 02 2 -     0.186 
 SDEU Lead07 1 0.102 T50 P2 JFM 2 -     0.191 
 SDNG Lead05 1 0.086 ATL P5 OND 2 -     0.224 
 H50 P1 JFM 1 -     0.180 SDNH Lead05 1 0.249 
 NAO Lead 11 1 -     0.183 SST5 Lead02 1 0.186 
MJJ N4 Lead 11 1 0.216 ATL P2 NDJ 1 0.186
 GLO P4 DJF 1 0.213 SHT Lead 10 1 0.172 
 T150P3 SON 1 0.206 IND P5 MAM 1 0.166 
 PNA Lead 05 1 0.158 IND P5 AMJ 1 0.157 
 NAO Lead 11 1 0.157 SHT Lead 11 1 0.155 
 PV100P2FMA 1 0.140 EAP Lead 02 1 0.155 
 T150P2 ASO 1 0.137 SHT Lead 05 1 0.137 
 SDNA Lead10 1 0.113 H30 P1 DJF 1 -     0.097 
 T30 P3 FMA 1 -     0.120 PV100P1AMJ 1 -     0.105 
 T30 P3 ASO 1 -     0.131 PV50 P3FMA 1 -     0.165 
 H150P3 MJJ 1 -     0.151 SDNH Lead10 1 -     0.180 

H30 P3 NDJ 1 - 0.159 NDJ T50 P3 JAS 6 0.207
 PV30 P3SON 1 -     0.167 GLO P2 MJJ 3 -     0.192 
 PCM P3 DJF 1 -     0.190 AOS Lead 02 1 0.237 
 PV150P1OND 1 -     0.194 EAP Lead 03 1 0.188 
 PV50 P2SON 1 -     0.252 PCM P2 MAM 1 0.184 
JJA T50 P3 ASO 2 - 0.126 SST3 Lead04 1 0.152
 PV150P2NDJ 2 -     0.175 AOS Lead 04 1 0.145 
 POL Lead 09 1 0.161 ATL P1 ASO 1 -     0.138 
 T30 P3 MAM 1 0.131 TAR Lead 04 1 -     0.150 
 AOS Lead 05 1 0.100 T30 P2 JFM 1 -     0.189 
 WPP Lead 05 1 -     0.140 PV50 P3JFM 1 -     0.213 

GLO P4 NDJ 1 - 0.149 DJF T50 P3 SON 9 0.249
 AOS Lead 04 1 -     0.244 T100P2 MAM 7 0.274 
JAS H150P3 NDJ 4 0.211 H150P3 JAS 6 0.237
 PV150P2NDJ 3 -     0.168 SST5 Lead03 4 0.190 
 SDNG Lead11 2 0.155 T50 P3 JAS 3 0.243 
 SDNG Lead06 1 0.154 AOS Lead 03 3 0.209 
 WPP Lead 10 1 0.127 TAR Lead 05 3 -     0.054 
 AOS Lead 05 1 -     0.146 SST3 Lead05 2 0.215 
 PCM P5 JFM 1 -     0.229 POL Lead 03 2 0.194 

EAP Lead 04 2 0.185
   SST1 Lead02 2 -     0.008 
   TNH Lead 11 2 -     0.200 
   DAR Lead 04 1 0.290 
   AOS Lead 05 1 0.235 
   IND P4 JJA 1 0.226 
   H100P2 SON 1 0.190 
   SST2 Lead06 1 0.179 
   EPN Lead 06 1 0.170 
   IND P5 JAS 1 -     0.140 
   PV30 P2SON 1 -     0.243 
   POL Lead 08 1 -     0.251 
   T150P2 ASO 1 -     0.276 

Table 8.3.  Predictor frequency for 90th percentile wind exceedance models, where skill is retained in the 
validation period.  For each season, all predictors which feature in skillful models are included, together 
with their frequency of occurrence, and the mean value of the model coefficient (β). 

 
 
 

 - 222 - 



8.3.4 95th Percentile Wind Model Validation: Overview 

 

Results for the 95th percentile wind exceedance models are presented in the same format as 

the other predictands shown above.  First a summary of the breakdown in skill is presented 

by season, and particular features of interest are noted. 

 

• JFM:  Figure 8.37 illustrates the degradation in skill for JFM.  The same region of 

validation period skill identified in DJF for the 90th percentile wind models is present 

in JFM for the 95th percentile wind models.  There is a slight shift to the east, 

particularly for the southern component, and the R2 values are of a similar magnitude, 

as are most of the MAE values relative to the predictand climatology.  These results 

will be discussed in more detail in 8.3.8. 

 

• FMA:  Figure 8.38 illustrates the degradation in skill for FMA.  The pattern of skillful 

models in JFM is not present in FMA, and only three gridboxes show potentially 

useful skill.  These are located over Norway, southern France and Spain. 

 

• MAM:  Figure 8.39 illustrates the degradation in skill for MAM.  Five models retain 

some skill in the validation period.  These are scattered across the domain, with no 

spatial coherence, and generally low R2 values. 

 

• AMJ:  Figure 8.40 illustrates the degradation in skill for AMJ.  Four gridboxes retain 

skill, located over eastern Germany and the Balkan states.  R2 values range from 0.21 

to 0.53.  

 

• MJJ:  Figure 8.41 illustrates the degradation in skill for MJJ.  Five models retain 

some skill, although these are scattered across the domain, and skill levels are 

relatively low. 

 

• JJA:  Figure 8.42 illustrates the degradation in skill for JJA. No models retain 

potentially useful skill into the validation period. 
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• JAS:  Figure 8.43 illustrates the degradation in skill for JAS.  Some skill is retained 

for models located over Belgium, western France and Spain, with R2 values between 

0.22 and 0.49.  One model off the west coast of France has R2=0.49 for the validation 

period, and an MAE of 1.1.  The predictors for this model are North American and 

Greenland snow cover and the SCA teleconnection pattern, both from the preceding 

September. 

 

• ASO:  Figure 8.44 illustrates the degradation in skill for ASO.  Ten models retain 

skill.  These are mostly scattered across eastern and central Europe, with some skill 

over the Mediterranean. 

 

• SON:  Figure 8.45 illustrates the degradation in skill for SON.  Five models retain 

some skill, located over Scandinavia and Eastern Europe.  R2 values range from 0.20 

to 0.47. 

 

• OND:  Figure 8.46 illustrates the degradation in skill for OND.  Seven models retain 

some skill during the validation period.  Three of these are located over the UK, with 

R2 values ranging from 0.43 to 0.55.  the dominant predictor for these models is the 

third PC of JAS 50hPa temperature. 

 

• NDJ:  Figure 8.47 illustrates the degradation in skill for NDJ.  A similar pattern of 

persistent skill over the UK exists in NDJ, with R2 levels ranging from 0.40 to 0.80.  

The third PC of JAS 50hPa temperature, and 150hPa geopotential height are the 

dominant predictors. 

 

• DJF:  Figure 8.48 illustrates the degradation in skill for DJF.  The pattern observed in 

the 90th percentile wind exceedance models for DJF, and the 95th percentile models 

for JFM is present here, although to a substantially lesser extent, particularly in the 

southern region.  The Baltic region shows relatively high levels of potential skill, with 

R2 values ranging from 0.28 to 0.55.  Predictors for these models include the third PC 

of SON 50hPa temperature, the early autumn Arctic Oscillation, and other 

stratospheric indices. 
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Table 8.4  shows the predictors retained, by season, for the 95th percentile wind models.  For 

each season, they are ranked by the frequency of occurrence and parameter (β).  Slightly 

fewer predictors contribute to potentially useful skill here than for the 90th percentile wind 

models, although a greater number are retained than for either of the precipitation 

predictands.  JFM has the largest number of potentially useful models, and as for the 90th 

percentile wind models, the third PC of SON 50hPa temperature features relatively 

prominently, in eight gridboxes.  Interestingly, the first PC of this variable during SON also 

features.  While these modes are orthogonal, it may be that they describe respectively the 

intensity and location of anomalies, and both contribute towards potential predictability.  

Stratospheric temperature predictors also feature in other seasons throughout the year, but are 

particularly important in the autumn and winter.  The AO is also relatively important, and to 

a lesser extent the NAO.  Other Northern Hemisphere teleconnection patterns also feature, 

most notably the EA pattern during the winter seasons.  Indian Ocean SST predictors – 

generally from the preceding summer and autumn – contribute to potentially useful skill in a 

small number of locations during the spring, and also to some extent in the ASO and NDJ 

seasons, where SST anomalies with lead times of up to a year appear to be significant.  Snow 

cover indices contribute to a slightly larger number of models than for the 90th percentile 

wind models, and North American (including Greenland) snow cover anomalies from the 

preceding August feature in three models during the JAS season.  Since snow cover 

anomalies are typically related to NAO variability during the winter, it is not clear what 

causes this relationship, particularly since it is driven by August snow anomalies, which are 

likely to be less widespread in absolute terms. 

 

Validation results for the 95th percentile wind exceedance models are generally similar to 

those for the 90th percentile wind models.  Overall, skill levels decrease dramatically beyond 

the training period, although some regions do show coherent skillful responses to the models 

throughout the validation period, particularly in the autumn and winter seasons.  Further 

detail on the most notable areas where skill is retained is discussed further in 8.3.8. 
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Figure 8.37.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JFM 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.38.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for FMA 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.39.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MAM 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.40.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for AMJ 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.41.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for MJJ 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.42.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JJA 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.43.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for JAS 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.44.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for ASO 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Figure 8.45.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for SON 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.46.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for OND 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 - 230 - 



 
Figure 8.47.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for NDJ 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 

 
Figure 8.48.  Change in R2 and MAE values from model training period (1959-1995) to model validation 
period (1996-2005) for DJF 95th percentile wind exceedance models.  Solid gridboxes in the validation 
plots indicate models where useful skill persists beyond the training period. 
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Season Predictor Frequency β   Season Predictor Frequency β 
JFM T50 P3 SON 8       0.447   ASO T30 P2 DJF 3 -     0.245  
 EAP Lead 05 4       0.351    IND P1 MJJ 2       0.262  
 T50 P1 SON 4       0.241    IND P1 SON 2       0.233  
 AOS Lead 06 3       0.296    ATL P5 AMJ 2       0.204  
 H100P2 SON 3       0.295    ATL P2 FMA 2 -     0.225  
 ATL P3 JAS 3       0.181    PV150P3AMJ 2 -     0.264  
 T50 P1 JJA 3 -     0.218    NHT Lead 04 1       0.228  
 AOS Lead 04 2       0.227    T30 P1 SON 1       0.227  
 T150P3 OND 2 -     0.237    T50 P1 MAM 1 -     0.149  
 T150P2 AMJ 2 -     0.237    T100P3 FMA 1 -     0.196  
 EAP Lead 03 2 -     0.274    SST2 Lead03 1 -     0.211  
 SDNH Lead08 1       0.366     H100P1 DJF 1 -     0.213  
 SST2 Lead06 1       0.341   SON SHT Lead 04 2       0.243  
 T100P2 MAM 1       0.266    ATL P4 NDJ 2 -     0.152  
 IND P4 JJA 1       0.256    AOS Lead 09 1       0.283  
 POL Lead 04 1       0.235    HTD Lead 04 1       0.215  
 PV30 P3JFM 1       0.217    SHT Lead 10 1       0.148  
 IND P4 ASO 1 -     0.144    EAW Lead 09 1 -     0.183  
 T30 P3 FMA 1 -     0.204    DAR Lead 03 1 -     0.240  
 T50 P1 ASO 1 -     0.236     SST1 Lead05 1 -     0.320  
 TAR Lead 06 1 -     0.238   OND T50 P3 JAS 3       0.320  
 T100P1 MJJ 1 -     0.245    PCM P5 JFM 2       0.238  
 PCM P4 OND 1 -     0.263    TAR Lead 02 2 -     0.248  
  T50 P3 OND 1 -     0.380    PV100P2OND 1       0.321  
FMA AOS Lead 07 2       0.076    PCM P4 AMJ 1       0.270  
 TAR Lead 07 1 -     0.141    H30 P1 NDJ 1       0.209  
 SDNH Lead09 1 -     0.178    ATL P2 OND 1       0.200  
  IND P2 MJJ 1 -     0.200    EAW Lead 08 1       0.178  
MAM AOS Lead 08 3 -     0.101    SDNH Lead10 1 -     0.153  
 IND P4 JAS 2       0.036     GLO P4 MAM 1 -     0.289  
 GLO P5 NDJ 1       0.330   NDJ T50 P3 JAS 3       0.311  
 SDNH Lead10 1       0.224    PV30 P2MAM 3       0.310  
 EPN Lead 02 1       0.177    IND P5 NDJ 3       0.102  
  PV50 P3OND 1 -     0.231    H150P3 JAS 2       0.280  
AMJ SDNG Lead05 2       0.221    EAP Lead 03 2       0.240  
 NAO Lead 11 2 -     0.182    SST3 Lead04 1       0.399  
 IND P3 OND 2 -     0.196    PV30 P3ASO 1       0.344  
 SDNH Lead07 1       0.220    IND P5 AMJ 1       0.310  
  POL Lead 10 1 -     0.175    SDNH Lead06 1       0.285  
MJJ T100P3 JFM 1       0.238    ATL P3 JAS 1       0.259  
 TNH Lead 03 1       0.232    AOS Lead 04 1       0.237  
 SDNA Lead10 1       0.218    PCM P5 JJA 1       0.224  
 PNA Lead 05 1       0.192    SST5 Lead03 1       0.193  
 T150P2 ASO 1       0.183    SDEU Lead07 1       0.185  
 NAO Lead 11 1       0.141    H50 P2 JJA 1       0.171  
 PV100P3JAS 1       0.134    GLO P2 MJJ 1 -     0.216  
 POL Lead 08 1 -     0.163    T30 P2 JFM 1 -     0.261  
 H30 P3 NDJ 1 -     0.233     T30 P3 FMA 1 -     0.347  
  AOS Lead 11 1 -     0.276   DJF T50 P3 SON 5       0.362  
JAS SDNG Lead11 3       0.205    T100P2 MAM 2       0.458  
 PNA Lead 02 2       0.336    T50 P3 JAS 2       0.410  
 PV30 P2ASO 2       0.268    H150P3 JAS 2       0.406  
 SCA Lead 11 2 -     0.224    EAP Lead 04 2       0.383  
 SHT Lead 11 1       0.236    H100P2 SON 2       0.371  
 PCM P4 MAM 1 -     0.211    PV50 P3AMJ 1       0.450  
  NAO Lead 07 1 -     0.226    AOS Lead 03 1       0.351  
      SST3 Lead06 1       0.337  
      PV30 P2MAM 1       0.281  
      SDNH Lead07 1       0.273  
      EAW Lead 11 1       0.249  
      AOS Lead 05 1       0.234  
      TNH Lead 11 1 -     0.138  
      ATL P2 MJJ 1 -     0.157  
      ATL P1 SON 1 -     0.267  
      EAP Lead 02 1 -     0.289  
            PV50 P3JFM 1 -     0.443  

Table 8.4.  Predictor frequency for 95th percentile wind exceedance models, where skill is retained in the 
validation period.  For each season, all predictors which feature in skillful models are included, together 
with their frequency of occurrence, and the mean value of the model coefficient (β). 
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8.3.5 90th Percentile Precipitation Model Validation: Skillful Models 

 

The most noteworthy case of potentially useful skill that persists into the validation period 

for the 90th percentile precipitation models is during AMJ, including a number of the gridbox 

models in Western Europe, from the Bay of Biscay and the Pyrenees, north to the Irish Sea 

and the Netherlands.  A sample of these models is described in Table 8.5, and the exceedance 

count predictions illustrated in Figure 8.49.   

 

The Irish Sea location model uses indices of stratospheric potential vorticity and temperature 

from the preceding summer.  This is a very long lead time for stratospheric predictors, and 

there is little evidence to support the persistence of such features.  Both predictors are highly 

correlated with other stratospheric indices into the autumn and winter, and it is possible that 

either persistence or dynamical evolution of the summer anomalies is pertinent to the 

troposphere during the following AMJ. 

 

The Bay of Biscay predictors (for both models) are February Tahiti MSLP values, August 

Darwin MSLP values, and December Baltic SST anomalies.  The Baltic SST anomalies are 

unlikely to have a direct influence on the predictand – it is more likely that they are the result 

of some large-scale dynamical process which affects the Bay of Biscay also, although this 

index is not correlated with any of the Bay of Biscay SST indices (SST region 4).  The SOI 

indices selected here are weakly correlated with NAO indices the following spring. 

 

Despite the apparent spatial concentration of skill that persists into the validation period, the 

models and predictors associated with this skill do not lend themselves to easy interpretation 

– there being a large number of different predictors, which do not appear to be related 

between all the models, and with some of them having long lead times which do not 

plausibly signify a direct link between that predictor and the subsequent precipitation 

extremes. 

 

For most of these models, while the R2 values appear significant, the MAE values are all 

higher during the validation period.  Figure 8.49 illustrates a consistent negative bias to the 

forecasts, partly due to an apparent slight upward trend in the precipitation extremes in these 

gridboxes. 
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Location Irish Sea Bay of Biscay 

(W) 
English Channel Bay of Biscay 

(E) 
Netherlands 

Predictor1 PV100 P3 JAS TAR LEAD 03 GLO P2 AMJ DAR LEAD 09 H100 P1 SON 
Predictor2 T150 P3 JJA SST3 LEAD 05 PV30 P3 AMJ SST3 LEAD 05 IND P2 NDJ 
β0 1.9811 1.8058 1.7886 1.7387 1.7759 
β1 0.2361 -0.2255 0.225 0.1808 -0.278 
β2 -0.1535 -0.211 0.2171 -0.282 0.1748 
R2 training 0.231 0.293 0.3537 0.3053 0.2655 
R2 validation 0.5037 0.4634 0.3667 0.4355 0.4001 
MAE training 2.3239 1.7293 1.9952 1.7771 1.8438 
MAE validation 3.2226 4.2155 3.4529 4.3597 3.1056 

Table 8.5.  Selected 90th percentile precipitation model specifications and skill for the AMJ season.  Five 
gridbox locations are included where potentially useful skill persists into the validation period.  Gridbox 
locations are given in the first row, and can be compared with the top right panel of Figure 8.4.  Predictor 
names, together with the predictor season or lead time, and the associated coefficients complete the model 
specifications, and R2 and MAE values from the training and validation periods are included for 
comparison. 
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Figure 8.49.  Observed and predicted AMJ 90th percentile precipitation exceedance counts for selected 
locations across western Europe, where potentially useful predictive skill persists into the validation 
period. Blue lines show the observed values, red shows the values predicted during the training period, 
and green shows the validation period predictions. R2 values during the training and validation period 
are shown for each gridbox, as are the predictors for each model.  Locations are as follows: A – Irish Sea; 
B – Bay of Biscay (W); C – English Channel; D – Bay of Biscay (E); E - Netherlands 
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8.3.6 95th Percentile Precipitation Model Validation: Skillful Models 

 

For the 95th percentile precipitation models, AMJ also shows the largest region of coherent 

skill that persists throughout the validation period, comprising a group of gridboxes over the 

south and west UK, as well as others in France, Benelux and Scandinavia (see Figure 8.16).  

Table 8.6 shows the parameters for five selected models, located over the UK and surrounds, 

including indicators of models skill during the training and validation periods.  Figure 8.50 

shows the corresponding observed and predicted timeseries.  As with the 90th percentile 

models discussed in 8.3.5, the fit in the training and validation periods is quite good, with 

respect to the R2 metric.  However the MAE increases notably during the validation period – 

and as is the case with the 90th percentile models, this appears to be due to a positive 

tendency in the exceedance counts from 1995 onwards. 

 

The predictors selected for these models superficially bear little resemblance to those 

selected for the 90th percentile models – however there are some correlations between the 

indices.  In particular, the SON stratospheric temperature index in the Irish Sea model is 

highly correlated with simultaneous ENSO indices (both SST and MSLP indices), including 

the Niño 4 region index at 10 months lead time, selected for the central England gridbox.  

More generally, this is a feature of a number of the stratospheric indices – they seem to lag 

ENSO/SOI indices by some months, in some cases with remarkably strong correlations.  This 

response has been noted by Kodera et al. (1996), Broennimann (2004) and Broennimann et 

al. (2007). 

 

Together with the AMJ response of 90th percentile precipitation, these comprise the most 

notable potentially useful predictability in the precipitation predictands on the basis of the 

analyses carried out.  A wide range of predictors are identified as having potential skill, with 

SOI and stratospheric predictors featuring most strongly. Further work is required on the 

mechanisms which might link these processes before seasonal forecasts can be made with 

confidence. 
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Location Irish Sea Scilly Isles North Wales South Wales Central England 
Predictor1 T100 P2 SON SDEU LEAD 

06 
H100 P1 NDJ EAW LEAD 11 N4  LEAD 10 

Predictor2 PNA LEAD 09 PV50 P3 AMJ EAW LEAD 06 ATL P1 JJA SST2 LEAD 03 
β0 1.3026 1.3424 1.4108 1.1922 1.1699 
β1 0.2753 0.2131 -0.203 0.2173 0.3257 
β2 -0.213 -0.455 0.2862 -0.178 -0.352 
R2 training 0.2098 0.3334 0.2697 0.2256 0.3145 
R2 validation 0.2341 0.3326 0.4245 0.7807 0.3212 
MAE training 1.7509 1.2451 1.7342 1.3918 1.5811 
MAE validation 2.3446 2.9268 3.3819 3.6703 1.7275 

Table 8.6.  Selected 95th percentile precipitation model specifications and skill for the AMJ season.  Five 
gridbox locations are included where potentially useful skill persists into the validation period.  Gridbox 
locations are given in the first row, and can be compared with the top right panel of Figure 8.16.  
Predictor names, together with the predictor season or lead time, and the associated coefficients complete 
the model specifications, and R2 and MAE values from the training and validation periods are included 
for comparison. 
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Figure 8.50.  Observed and predicted AMJ 95th percentile precipitation exceedance counts for selected 
locations across the UK, where potentially useful predictive skill persists into the validation period. Blue 
lines show the observed values, red shows the values predicted during the training period, and green 
shows the validation period predictions. R2 values during the training and validation period are shown 
for each gridbox, as are the predictors for each model.  Locations are as follows: A – Irish Sea; B – Scilly 
Isles; C – North Wales; D – South Wales; E – South-Central England 

 
 
 
 

 - 238 - 



8.3.7 90th Percentile Wind Model Validation: Skillful Models 

 

A number of responses stand out for the 90th percentile wind models.  Those discussed here 

are the NDJ response over the Benelux countries, and the DJF response over the Baltic, and 

southern and central Europe. 

 

The NDJ response over the Benelux countries is summarised in Table 8.7, which describes 

the model parameters and skill for five selected gridboxes showing persistent skill, Figure 

8.52 which illustrates the observed and predicted timeseries for the same gridboxes, and 

Figure 8.35 which illustrates the spatial pattern of the response. 

 

The model fit in the validation period is substantially higher than that for the precipitation 

models, with MAE values that are similar or in some cases lower than during the training 

period.  The predictor set is more constrained, with every model in this case having the third 

PC of JAS 50hPa temperature as a predictor, and a number of the models sharing the 2nd PC 

of MJJ global SST anomalies as a predictor.  JFM stratospheric temperature, and Tahiti 

MSLP from the preceding August comprise the rest of the predictors. 

 

The JAS 50hPa temperature predictor is shown in Figure 8.51, and consists of a dipole with 

the positive loadings over Canada and Greenland, and the negative loadings over Alaska and 

eastern Siberia.  This pattern is also related to North American and Greenland snow cover 

anomalies during October and November, as well as the September EA pattern. 

 

It is not clear how this pattern might physically relate to NDJ wind extremes – in particular, 

does it propagate downwards into the troposphere, and if so over what period of time?  Also, 

does it cause the snow cover anomalies over North America, or is it driven by these 

anomalies?  The nature of the lagged relationship surely indicates the former.  However, this 

mode is only associated with 3% of variance in this field.  While is certainly appears to be a 

coherent pattern, it must also be questioned whether the variance can be measured accurately, 

and whether such a predictor can be regarded as useful.  It is worth noting that the first PC of 

this field during JAS is associated with a strong trend, and accounts for 66% of the total 

variability.  If the detrending stage is carried out prior to the PCA the third PC accounts for 

5% of the observed variability – a somewhat greater amount, but still possibly too small to 
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justify its association with the observed predictability.  This is certainly an area that warrants 

further investigation. 

 

The other notable predictor during NDJ is the 2nd PC of MJJ global SST anomalies.  This 

pattern describes the MJJ variability of ENSO, and is positively correlated to the SOI indices, 

whereas the first PC is positively correlated with the Nino regional SST anomalies.  It also 

seems to be related to tropical Atlantic variability, more so than the first PC of Pacific 

variability.  The SOI link seems to correspond with the observed pattern in this study that 

atmospheric variability in the tropical Pacific seems to be more important as a predictor for 

the European climate than variability in the SSTs – in other words, some independent 

component of the atmospheric variability is of interest here.  This possibly accounts for the 

fact that generally the responses to Tahiti MSLP are stronger than those for Darwin, and a 

further analysis of tropical Pacific MSLP might yield a more optimal predictor for the 

European climate.  

 

 
 
 
Location France (W) Belgium (W) France (E) Netherlands Belgium (S) 
Predictor1 T50 P3 JAS T50 P3 JAS T50 P3 JAS T50 P3 JAS T50 P3 JAS 
Predictor2 TAR LEAD 04 T30 P2 JFM GLO P2 MJJ GLO P2 MJJ GLO P2 MJJ 
β0 1.8381 1.8203 1.8177 1.777 1.863 
β1 0.2321 0.2335 0.2581 0.2141 0.1622 
β2 -0.1497 -0.1893 -0.1729 -0.1932 -0.2085 
R2 training 0.312 0.318 0.4637 0.2893 0.4995 
R2 validation 0.3544 0.3739 0.6053 0.4409 0.4091 
MAE training 2.0459 2.017 1.8199 2.0439 1.4916 
MAE validation 2.4244 1.9256 1.6567 1.9488 1.6141 

Table 8.7.  Selected 90th percentile wind model specifications and skill for the NDJ season.  Five gridbox 
locations are included where potentially useful skill persists into the validation period.  Gridbox locations 
are given in the first row, and can be compared with the top right panel of Figure 8.35.  Predictor names, 
together with the predictor season or lead time, and the associated coefficients complete the model 
specifications, and R2 and MAE values from the training and validation periods are included for 
comparison. 
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Figure 8.51.  The third principal component of JAS 50hPa temperature anomalies.  This predictor shows 
potentially useful skill in predicting 90th percentile wind exceedances over regions of western Europe 
during the following NDJ season.  The pattern comprises positive loadings over Canada and Greenland, 
and negative loadings over Alaska and eastern Siberia, and accounts for 3.06% of variability in this field. 
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Figure 8.52.  Observed and predicted NDJ 90th percentile wind exceedance counts for selected locations 
across the Benelux region, where potentially useful predictive skill persists into the validation period. 
Blue lines show the observed values, red shows the values predicted during the training period, and green 
shows the validation period predictions. R2 values during the training and validation period are shown 
for each gridbox, as are the predictors for each model.  Locations are as follows: A – France (W); B – 
Belgium (W); C – France (E); D – Netherlands; E – Belgium (S) 
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The DJF season has the largest coherent regions of persistent skill for the 90th percentile wind 

models (and indeed for all the predictand variables).  The spatial pattern is illustrated in 

Figure 8.36, and comprises a region of skill stretching from the North Sea to the Baltic states 

(referred to here as the northern region), and a region from the Pyrenees to the Czech 

Republic and the Balkans (referred to here as the southern region). 

 

Selected models for the northern region are described in Table 8.8, and the corresponding 

observed and predicted timeseries are illustrated in Figure 8.53.  Generally the interannual 

variability in the extremes is captured well throughout the validation period, although the 

magnitude of the variance is sometimes low compared to the observations.  The T50 P3 JAS 

predictor features in one of the models over the Netherlands, as for the NDJ models, and 

other stratospheric predictors related to this, such as the equivalent index during SON also 

feature.  The 2nd PC of 100hPa temperature is also frequently selected.  This is a quasi-

annular pattern, with positive loadings over the North Pole, and negative loadings in the 

midlatitudes, which are almost continuous but interrupted over North America.  This pattern 

is weakly correlated with the AO and NAO, and this relationship is strongest when it leads 

the AO by several months, into the late summer. This lead time is not sufficient to directly 

account for the observed predictability. 

 

The southern region shows similarly strong fitting compared to the northern region, as 

illustrated in Figure 8.55, although the predictor set is somewhat different.  Local SST 

anomalies feature more prominently – in particular the SST5 region, which comprises the 

Adriatic, and is a predictor for the Czech Republic models, as shown in Table 8.9.  

Stratospheric temperature predictors from the preceding summer and autumn also feature 

prominently. 

 

90th percentile wind models show the most skill during the winter seasons, and it appears that 

the dominant features driving this predictability are related to stratospheric temperature, at 

lead times of up to eight months, and to a lesser extent indices associated with tropical 

Pacific atmospheric variability.  Further work is required to uncover physical mechanisms 

supporting this potential predictability. 
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Location Netherlands Denmark SE Sweden Baltic Sea Estonia 
Predictor1 T50 P3 JAS T100 P2 MAM T100 P2 MAM T100 P2 MAM TAR LEAD 05 
Predictor2 DAR LEAD 04 H100 P2 SON H150 P3 JAS T50 P3 SON H150 P3 JAS 
β0 1.6224 1.7156 1.8085 1.6901 1.8666 
β1 0.2579 0.2685 0.2901 0.3299 0.181 
β2 0.2899 0.1904 0.3013 0.3109 0.25 
R2 training 0.3607 0.345 0.4677 0.4109 0.3666 
R2 validation 0.3161 0.3656 0.4706 0.4832 0.5349 
MAE training 2.23 1.967 2.1694 2.2999 2.17 
MAE validation 1.9571 2.8654 3.5632 3.9322 2.6362 

Table 8.8.  Selected 90th percentile wind model specifications and skill for the DJF season over northern 
Europe.  Five gridbox locations are included where potentially useful skill persists into the validation 
period.  Gridbox locations are given in the first row, and can be compared with the top right panel of 
Figure 8.36.  Locations chosen are a sample of those that retain skill in the north of the domain.  
Predictor names, together with the predictor season or lead time, and the associated coefficients complete 
the model specifications, and R2 and MAE values from the training and validation periods are included 
for comparison. 
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Figure 8.53.  Observed and predicted DJF 90th percentile wind exceedance counts for selected locations 
across northern Europe, where potentially useful predictive skill persists into the validation period. Blue 
lines show the observed values, red shows the values predicted during the training period, and green 
shows the validation period predictions. R2 values during the training and validation period are shown 
for each gridbox, as are the predictors for each model.  Locations are as follows: A – Netherlands; B – 
Denmark; C – SE Sweden; D – Baltic Sea; E - Estonia 
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Location Pyrenees SE France Czech Rep (W) Czech Rep (E) Serbia 
Predictor1 T150 P2 ASO TAR LEAD 05 EAP LEAD 04 SST5 LEAD 03 EPN LEAD 06 
Predictor2 SST1 LEAD 02 TNH LEAD 11 SST5 LEAD 03 T50 P3 SON  
β0 1.9012 1.8716 1.7594 1.8137 1.9695 
β1 -0.2761 -0.217 0.1906 0.1906 0.17 
β2 0.1768 -0.2332 0.195 0.2068  
R2 training 0.2985 0.3722 0.2508 0.2836 0.2081 
R2 validation 0.3231 0.4808 0.6456 0.5662 0.3585 
MAE training 2.0098 1.787 1.9326 1.9664 1.6455 
MAE validation 2.8905 1.5408 2.1027 2.3368 2.7047 

Table 8.9.  Selected 90th percentile wind model specifications and skill for the DJF season over southern 
Europe.  Five gridbox locations are included where potentially useful skill persists into the validation 
period.  Gridbox locations are given in the first row, and can be compared with the top right panel of 
Figure 8.36.  Locations chosen are a sample of those that retain skill in the south of the domain.  
Predictor names, together with the predictor season or lead time, and the associated coefficients complete 
the model specifications, and R2 and MAE values from the training and validation periods are included 
for comparison. 

 
 

 
Figure 8.54.  The second principal component of MAM 100hPa temperature anomalies.  This predictor 
shows potentially useful skill in predicting 90th percentile wind exceedances over regions of northern 
Europe during the following DJF season.  The pattern is almost annular, and leads the Arctic Oscillation 
and to a lesser extent the NAO by several months. 
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Figure 8.55.  Observed and predicted DJF 90th percentile wind exceedance counts for selected locations 
across southern Europe, where potentially useful predictive skill persists into the validation period. Blue 
lines show the observed values, red shows the values predicted during the training period, and green 
shows the validation period predictions. R2 values during the training and validation period are shown 
for each gridbox, as are the predictors for each model.  Locations are as follows: A – Pyrenees; B – SE 
France; C – Czech Republic (W); D – Czech Republic (E); E - Serbia 
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8.3.8 95th Percentile Wind Model Validation: Skillful Models 

 

The 95th percentile wind models exhibit a similar seasonal cycle and spatial configuration of 

persistent skill to the 90th percentile wind models.  The season with apparently the most skill 

is JFM, and the spatial pattern of this skill is very similar to the DJF pattern observed for the 

90th percentile models, although the regions of highest skill are shifted to the east, 

particularly in the southern region.  This is illustrated in Figure 8.37.  Table 8.10 describes a 

sample of five models within this region of validation period skill. As for the 90th percentile 

models, the T50 P3 SON predictor appears to be the dominant one, and other indices of 

stratospheric temperature also feature.  For the NE Germany (bordering the Czech Republic) 

model, T50 P1 SON is one of the predictors, along with the October AO index.  This model 

results in a relatively high R2 value of 0.68, and it can be seen from the second panel of 

Figure 8.56 that the predicted series corresponds well with the observed throughout the 

training and validation periods.  The stratospheric predictor for this model accounts for 47% 

of the variability in the SON 50hPa temperature field, and is represented spatially by a strong 

positive loading centred over the North Pole, and weakening towards the midlatitudes. This 

pattern is highly correlated with the October PNA, and to a lesser extent with the September 

and October NAO and AO indices. 

 

Compared to the 90th percentile wind models, the NDJ and DJF seasons also show coherent 

regions of persistent skill, implying that for both sets of wind predictands, significant 

predictability may exist in the late autumn and early winter seasons.  A number of the models 

capture the peaks in exceedance counts rather well, as illustrated in Figure 8.56.   Further 

investigation is required into the physical basis of this potential predictability. 
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Location NE Germany (B) NE Germany 

(C) 
N Poland Latvia NE Poland 

Predictor1 T50 P3 SON AOS Lead 04 T50 P3 SON T50 P3 SON T50 P3 SON 
Predictor2 POL Lead 04 T50 P1 SON EAP Lead 03 PV30 P3 JFM T30 P3 FMA 
β0 1.0412 1.1487 0.9316 0.9589 0.9483 
β1 0.3998 0.237 0.5059 0.4961 0.3731 
β2 0.2348 0.2728 -0.2681 0.2171 -0.2036 
R2 training 0.489 0.3594 0.3178 0.4041 0.3543 
R2 validation 0.5421 0.6824 0.7053 0.5524 0.4513 
MAE training 1.3457 1.369 1.761 1.5621 1.6078 
MAE validation 1.7165 2.2462 1.4528 1.9517 2.1843 

Table 8.10.  Selected 95th percentile wind model specifications and skill for JFM season.  Five gridbox 
locations are included where potentially useful skill persists into the validation period.  Gridbox locations 
are given in the first row, and can be compared with the top right panel of Figure 8.37.  Predictor names, 
together with the predictor season or lead time, and the associated coefficients complete the model 
specifications, and R2 and MAE values from the training and validation periods are included for 
comparison.  The two gridboxes for NE Germany are situated on the Baltic Coast (B), and neighbouring 
the Czech Republic (C), respectively. 
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Figure 8.56  Observed and predicted JFM 95th percentile wind exceedance counts for selected locations in 
the southern Baltic Sea region, where potentially useful predictive skill persists into the validation period. 
Blue lines show the observed values, red shows the values predicted during the training period, and green 
shows the validation period predictions. R2 values during the training and validation period are shown 
for each gridbox, as are the predictors for each model.  Locations are as follows: A – NE Germany (Baltic 
Coast); B –NE Germany (Czech border); C – N Poland; D – Latvia; E – NE Poland. 
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8.4 Summary 

 

This chapter presents the results of the model validation experiment applied to the models 

fitted in Chapter 7.  The models have been selected based on predictors which exhibit field 

significance and combine to result in the lowest MAE based on a cross-validation test.   

 

The results of further testing on an independent validation period, presented here indicate that 

in the great majority of cases, the levels of skill apparent during the training period and as 

quantified by R2 and the MAE, do not hold for the validation dataset. 

 

There are a number of possible causes for this degradation in skill levels.  Firstly, from a 

purely statistical point of view, the establishment of reliable predictive models in the context 

of an exploratory study is inherently hazardous, and the models are prone to overfitting.  That 

is, the models are conditioned on variability in the training data which may not relate to any 

physical processes.  Secondly, the relationships observed during the training period may be 

nonlinear, for example as postulated in Pozo-Vazquez et al. (2005) with respect to the ENSO 

influence on European winter precipitation, and Wu and Hsieh (2004) on nonlinearities in the 

ENSO relationship with winter SLP over the North Atlantic and Europe.  In this case, the 

linear fit obtained in the training period is not representative of the true influence of the 

predictor variable.  The main constraints to further investigation of this aspect are the length 

of the observational record and shortcomings in the ability of numerical models to capture all 

the subtleties of interactions within and between the ocean, troposphere, stratosphere and 

land surface.  On the basis of the work carried out in this study, among others, it is clear that 

the statistical investigation of nonlinear climate interactions requires a dataset substantially 

longer than the 37 year training period available here.  Thirdly, the relationships observed 

during the training period may be physically valid, and linear within the training period, but 

nonstationary in the longer term.  For example, Zanchettin et al. (2008) find that the Pacific 

Decadal Oscillation (PDO), which is a Pacific-wide mode varying on decadal timescales, 

affects the impact of ENSO on European winter precipitation.  Similarly to the problem of 

nonlinearity, a much longer dataset is required to fully assess this problem.  Broennimann 

(2007) uses reconstructed indices of ENSO and European climate variables over a 500 year 

period to investigate the nonstationarity of the ENSO influence on Europe in more detail – 

although at a coarser resolution than would allow an assessment of the effect on extremes of 
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either precipitation or wind.  An important influence in modulating the nature of the ENSO 

signal in Europe is found in the north Pacific, which may be related to variability of the PDO.  

It is worth noting that the period 1996-2005 was characterised by a number of remarkable 

events, including the exceptionally strong El Niño event of 1997-98, the 2003 summer 

heatwave across Europe, and also a number of major flooding events – for example autumn 

2000 in the UK, and summer 2002 in central Europe.  It is possible that these events have 

contributed to the breakdown in skill during the validation period.  For stratospheric 

predictors, the issue of nonstationarity is perhaps less important, since there is less evidence 

that the stratosphere varies on decadal timescales (although van Loon and Meehl, 2008, note 

that there is a statistically discernible solar influence on the Southern Oscillation and in the 

stratosphere at decadal timescales), but is still more difficult to address, owing to the lack of 

data or proxy data over a sufficient time period. 

 

There are a relatively small number of cases where potentially useful skill does persist, 

particularly for the wind predictands during winter, and to a lesser extent the precipitation 

predictands during spring.  Both of these results correspond with other research into 

European seasonal predictability – although not relating directly to the frequency of 

extremes.  For example, Lloyd-Hughes and Saunders (2002) with respect to spring 

precipitation, and Thompson et al. (2002) with respect to winter circulation anomalies both 

identify similar opportunities for potential predictability. 

 

For precipitation, the validation period degradation in skill is the greatest, and no large 

coherent regions of persistent skill exist in any season, for either of the variables.  The most 

notable case where there is something approaching a coherent response is during AMJ, for 

both the 90th and 95th percentile models.  This skill is located over Western Europe – in 

particular the Bay of Biscay and the UK regions.  The key predictors driving this skill appear 

to be related to ENSO – in particular the atmospheric descriptors thereof, at lead times of up 

to ten months, and also to some extent local SST anomalies, and stratospheric predictors.  

However, the validation period skill levels are still relatively low, although this is not 

unexpected as a general feature of precipitation predictability.  Furthermore, in the cases 

where skill persists, as identified here, there appears to be an upwards trend in some of the 

observed precipitation predictand variables during the validation period, resulting in large 

increases in the MAE values of the models. 
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The wind models exhibit similar degradation in validation period skill throughout the year, 

except for the late autumn and winter seasons, where some coherent regions of persistent 

skill are identified.  In particular, during NDJ a large region over the Benelux countries 

shows some skill for 90th percentile precipitation and during DJF for the 90th percentile 

models, two distinct regions retain some skill.  The northern of these regions reaches from 

the North Sea to the Baltic States, and the southern region from the Pyrenees to the Balkans.  

This pattern is repeated during JFM for the 95th percentile wind models, albeit shifted 

eastward.  In all cases, stratospheric predictors (and in particular temperature) appear to be 

the most important predictors.  Other potentially useful predictors include those derived from 

ENSO, teleconnection patterns such as the AO, and snow cover anomalies.  On this basis, it 

appears that some potentially useful predictive skill may be offered for winter extremes of 

wind in Europe.  For both the wind and precipitation models where skill is apparent during 

the validation period the nature of the possible physical processes causing predictability at 

these timescales is unclear.  A comprehensive assessment of these relationships would 

ideally include the reproduction in a dynamical model of these effects as observed, and a 

detailed analysis of the physics which enable predictable relationships at such long lead 

times. 

 

On a practical note, if the skill identified here as useful were to be developed into an 

operational scheme, a number of refinements would be necessary.  Primarily, the use of 

predictors with different lead times might well be constrained in an operation setting, and 

depending on the lead of the forecast, some of the predictors may not be available.  

Additionally, if the lead time of a predictor as given here is longer than that of the forecast, it 

may be possible to enhance the forecast with the addition of new information.  Both of these 

adjustments would to some extent compromise the model selection process as outlined here, 

in which case there would need to be a sound physical understanding of the predictability on 

which to base further predictor selection and refinement. 
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9 Conclusions and Suggestions for Further Work 
 

 

9.1 Summary of data for model development 

 

This thesis presents an empirical analysis of the potential seasonal predictability of 

extremes of precipitation and wind in Europe.  The predictand data are derived from the 

ERA-40 reanalysis (Uppala et al. 2005), which are found to compare favourably with the 

available station data and gridded monthly means.  The ERA-40 analysis is extended to 

include years up to 2005 by including the ECMWF Operational Analysis data up to this 

date.  ERA-40 is selected on the basis that temporal and spatial coverage is continuous, 

which is conducive to the type of exploratory analysis undertaken here.  The predictands 

are constructed from percentile exceedance counts above the 90th and 95th threshold for 

both wind and precipitation, where the thresholds are determined by first filtering the 

gridbox timeseries so that for the precipitation data only rain days (with more than 

0.1mm of precipitation) are included, and for the wind gust data only the larger of the 

values is included where consecutive days exceed the threshold.  The thresholds are 

determined by fitting a gamma distribution to the data.  Twelve overlapping three-month 

seasons are considered in order to best represent any sensitivity deriving from 

seasonality. 

 

A wide range of potential predictors are considered, on the basis that a three stage process 

of predictor and model refinement clarifies potential predictive skill.  The initial stage 

considers a ‘full set’ of predictors, including a wide range of atmospheric teleconnection 

indices; large scale indices of SST variability for all the major ocean basins; indices of 

local European coastal SST anomalies; indices of stratospheric geopotential height, 

temperature and potential vorticity; Northern Hemisphere snow cover and Solar output.  

Altogether the full set comprises approximately 850 predictors when each index is 

considered at a range of lead times from two to eleven months ahead of the middle month 
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of each predictand season.  Since the research is concerned with interannual variability, 

and the observation period for model development is not necessarily long enough to 

capture decadal variability, each predictor timeseries is low-pass filtered to remove trends 

and decadal variability.  The predictors are selected on the basis that they either represent 

an important component of atmospheric, oceanic or land-surface variability, or there 

exists previous work which has identified potentially useful predictive skill for some 

aspect of the European climate for that predictor. 

 

9.2 Summary of initial predictor selection phase 

 

The full predictor set is reduced substantially by assessing each predictor individually for 

a field-significant response at 95% confidence over the training period of 1958 to 1995 in 

each predictand dataset.  Only those predictors which are associated with a field 

significant response are retained to be considered in the model selection phase.  A wide 

range of the full set of potential predictors is retained.  Overall for the 90th and 95th 

percentile precipitation predictors 9.4% and 8.5% of the full predictor set is retained 

respectively.  For the 90th and 95th percentile wind predictands 5.8% and 5.9% are 

retained respectively.  Given that a confidence level of 95% is taken as the threshold for 

significance it might be inferred that a considerable proportion of the retained predictors 

are selected due to chance, particularly when taking into account cross-correlation 

between the predictors.  However, it is noted that there are frequent instances of 

correspondence between the field-significant relationships observed here, and 

relationships identified in the literature.  For example, Northern Hemisphere snow cover 

anomalies are seen to be associated with variability in the wind predictands, although 

contrary to other findings (e.g. Cohen et al., 2001), the North American component 

seems to be more important than Eurasia and the associated Siberian High.  ENSO-

related indices are also found to be important, and corroborate work by (for example) 

Pozo-Vazquez et al. (2005) on the observed relationship between ENSO and winter 

precipitation in Europe.  Here there are found to be statistical links between SST and 

atmospheric indices of ENSO variability at the full range of lead times from two to 
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eleven months and for most of the predictand seasons considered.  However, typically the 

Niño regional SST indices and the SOI-related indices are found to be of more interest 

than the PCA-based indices, and in particular due to the model selection and validation 

phases, SOI-related indices are found to be more important as potentially useful 

predictors than the Niño regional SST indices.  In many cases the predictor-predictand 

relationships have field-significance over remarkably large ranges of lead times, and 

large portions of the annual cycle.  This is particularly true of the ENSO-related 

predictors, and in the case of the wind predictands, for some of the stratospheric 

predictors. 

 

There also appears to be an annual cycle component to the predictor retention, with the 

precipitation analysis resulting in seasonal peaks of predictor density in the spring and 

autumn, and the wind analysis resulting in seasonal peaks in from late summer to early 

winter.  It is unclear as to whether this results from spatial properties of the predictands 

during these peak seasons, or cross-correlation between the predictor indices, or whether 

a ‘real’ feature of seasonal predictability is illustrated. 

 

It is important to note that for this analysis the results should be interpreted strictly within 

the context of the model training period, and as a purely empirical illustration of potential 

predictability.  Nevertheless, a number of potentially interesting relationships are 

identified. 

 

9.3 Summary of model skill during the training period 

 

The second stage of model development uses the reduced predictor set and an all-subsets 

model selection algorithm is implemented, using the cross-validated MAE to select the 

best model over the training period.  This results in a final model comprising one or two 

predictors for each gridbox over the predictand domain.  It is found that potentially useful 

levels of skill – as measured using the R2 and MAE statistics – exist for all predictands, 

although there is substantial variability by season and spatially.  R2 values (describing the 
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proportion of variation explained by the model) range from zero to in excess of 0.5 – the 

latter corresponding to 50% of variation explained.  This is a surprisingly high value for 

European seasonal predictability – particularly for wind and precipitation – and it is 

speculated that some of the models may be over-fitted to the data. 

 

Some predictand gridboxes do not have a viable model – largely due to the lack of field-

significant predictors at that location.  The frequency of this occurrence varies by 

predictand and by season, corresponding to the predictor density pattern discussed in 9.2 

above. 

 

Again, notwithstanding the possibility of overfitting, and the existence of some models 

which do not have useful levels of skill, several points relating specifically to the 

predictors retained at this stage are worthy of further mention.  Generally, since on 

average a larger number of predictors per gridbox are retained than are allowed in the 

final model, the spatial structure of the retained predictors loses some coherence 

compared to the field-significant fit of each predictor.  This is more notable for the 

precipitation models, partly because overall a larger number of predictors are retained for 

the precipitation predictands, and presumably partly also because the spatial correlation 

distance of precipitation extremes is considerably less than that for wind extremes. 

 

9.3.1 Summary of predictor selection for the precipitation models 

 

Owing to the similarities between the 90th and 95th percentile precipitation predictands, 

the results are summarised together, for clarity.  The most frequently selected predictors – 

in other words those resulting in the most cross-validation skill within the training period 

– are as follows.  Indices of stratospheric potential vorticity are the most frequently 

selected as contributing to the greatest cross-validation skill.  Selection of these indices 

tends to follow a seasonal cycle, peaking in the summer and early autumn.  Local SST 

indices are also important throughout the annual cycle, but in particular peak in the DJF 

and JFM seasons.  This is counter to the prevailing view that warm summer SST 
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anomalies might contribute to local precipitation anomalies (for example as discussed in 

Zheng and Frederiksen, 2006 relating to seasonal prediction of New Zealand summer 

rainfall).  Additionally, the exceptionally wet summer of 2007 in the UK is thought to be 

in part due to anomalously warm SSTs surrounding the UK.  However, the local SST 

anomalies typically show a positive fit with the precipitation extremes, consistent with 

the principle that warm SSTs would be expected to contribute greater quantities of 

moisture to the atmosphere.  It may be that the nature of the predictand – being somewhat 

coarsely gridded relative to extremes of convective precipitation – is more conducive to 

the identification of relationships with large-scale precipitation, which is dominant in the 

winter.  Furthermore, Bengtsson (2008) finds that the ECHAM5 GCM simulates up to a 

50% increase in extreme precipitation associated with North Atlantic extra-tropical 

cyclones over the 21st Century when the model is forced with the IPCC scenario A1B 

(Nakicenovic et al., 2000).  No large changes in wind speeds are found, and although the 

study does not relate the increased precipitation directly to warmer SSTs, it is plausible 

that along with a warmer atmosphere, the SSTs contribute to enhanced precipitation.  It 

may therefore be that local SST anomalies are a useful guide to extremes of rainfall on 

seasonal timescales. 

 

Atlantic and Pacific indices of large-scale SST variability are the third and fourth most 

frequently selected sets of predictors respectively.  There is no clearly defined seasonal 

cycle in the response to either of these sets, and no particular season or mode in the SSTs 

appears to be dominant.  The leading modes in each basin are selected rarely – typically 

the third, fourth or fifth modes are found to be more important here.  In the Pacific these 

modes tend to be related to variability in the North Pacific, and correlate with the PNA 

and EPNP patterns, suggesting a possible influence on the midlatitude planetary-scale 

flow upstream of the North Atlantic/European sector.  Indices describing the atmospheric 

component of ENSO (the SOI and its local components at Darwin and Tahiti) feature 

prominently.  The Darwin indices are most important in the FMA and MAM season, 

while the Tahiti indices are most important in the autumn and winter.  The SOI response 

is relatively important from the autumn through to the spring.  There are almost no 
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instances where ENSO-related predictors are selected in the summer months, and the 

Niño regional SST indices are selected very rarely relative to the atmospheric indices. 

 

 

9.3.2 Summary of predictor selection for the wind models 

 

As with the precipitation models, there is considerable similarity between the most 

frequently selected predictors for the 90th and 95th percentile wind predictands.  They are 

therefore considered together here.  Indices of Pacific large-scale SST variability 

comprise the most frequently selected family of predictors for the wind extremes.  The 

first and second PCs describing ENSO variability are almost never selected, and the fifth 

PC is the most frequently selected by some margin, particularly in the OND and NDJ 

seasons.  However there is no apparent likely explanation for the link between these 

indices and the wind extremes.  The AO is the second most frequently selected predictor, 

appearing throughout the year – including somewhat unexpectedly in the summer 

months.  It is worth noting here that extremes of wind in the summer are of relatively less 

importance as a climate hazard. 

 

Indices of large-scale Atlantic SST variability are frequently selected in the autumn and 

early winter; in particular during OND, the second and fifth PCs from the preceding 

OND season account for a large number of models.  To some extent this supports the idea 

that temperature anomalies within the mixed layer of the ocean may become isolated 

from the shallow summer mixed layer and re-emerge the following autumn and winter as 

the mixed layer deepens as discussed in Timlin et al. (2002).  The precise mechanism for 

any subsequent coupling between the ocean and atmosphere remains unclear. 

 

The snow cover predictors are more important to the model cross-validation skill for 

wind than for precipitation.  However, it is interesting to note that the Eurasian snow 

cover index is of considerably lesser importance than those for North America or the 

Northern Hemisphere as a whole.  This is contrary to findings by – for example – Saito 
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and Cohen (2003) who link Eurasian snow cover with interannual and decadal variability 

of the NAO/AO. 

 

ENSO indices derived from SST anomalies do not feature prominently in the final model 

selection phase as discussed above.  However, in common with the precipitation models, 

atmospheric indices of ENSO – specifically the Tahiti MSLP index – are frequently 

selected during the winter months from OND to JFM.  The SOI is selected to a lesser 

extent during the same seasons, and the Darwin index is hardly selected at all. This raises 

interesting questions about the way in which ENSO variability is summarised with 

respect to its possible influence on the European climate.  Traditionally, studies have 

looked at indices describing SST anomalies, or the SOI as a whole (Fraedrich, 1994), or 

in some cases have used indices expressing the coupled ocean-atmosphere variability (as 

reviewed in Broennimann, 2007).  Jia et al. (2008) identify distinct responses to tropical 

Pacific SSTs in the Northern Hemisphere, where western Pacific SST anomalies tend to 

be associated with AO responses, and eastern Pacific anomalies tend to be associated 

with the PNA.  It is not known whether further studies support the finding in this research 

that atmospheric anomalies in the eastern tropical Pacific appear to relate more strongly 

to extreme wind events in Europe than do other components of the ENSO coupled 

system. 

 

In general, the model selection process for the wind predictands results in more coherent 

predictor selection in space.  This is likely due to the larger spatial correlation scale of 

extreme wind events – which is also a likely cause of the smaller reduced predictor subset 

obtained for the wind predictors due to the field-significance testing.  Absolute skill 

levels are not notably different between wind and precipitation, although the skill of the 

wind models is smoother in space. 
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9.4 Summary of model validation skill 

 

As a final assessment of the potential usefulness of the models from a statistical 

perspective, further testing is carried out on an independent validation period from 1996 

to 2005.  This results in widespread degradation in the levels of skill, implying that the 

models developed on the training period data are either over-fitted, or depict nonlinear or 

nonstationary relationships.  The extent to which each of these factors applies is not clear.  

It is likely that in a substantial number of cases the models are overfitted, due to the 

relatively large number of predictors available in the model training phases. However, 

there is also evidence to support the existence of both nonlinear and nonstationary 

relationships – particularly between ENSO and the European climate (for example Pozo-

Vazquez et al. (2005) and Broennimann (2007).  It is also well understood that decadal 

variability in the North Atlantic is an important component of the climate variability, and 

the period of observations in this study is not sufficient to account for this – hence only 

interannual variability is considered.  It may be that post 1995 (comprising the validation 

period) the apparent shift in the NAO trend compared to the last three decades comprises 

a more important influence than the observed interannual variability from the 1960s to 

the 1990s.  This is documented in Scaife et al. (2008). 

 

Despite the widespread degradation in skill, there are a small number of cases where skill 

persists into the validation period.  There are fewer instances of this for the precipitation 

models than for the wind models, but some of the models for the AMJ season for both 

90th and 95th percentile precipitation models seem to retain some skill.  This skill is based 

on local SST anomalies, the SOI indices and some stratospheric predictors.  The physical 

basis of the observed predictability is not determined and would likely require substantial 

further investigation – using both empirical and numerical methods. 

 

Overall the wind models appear to perform better in the validation period.  In particular, 

the winter seasons of NDJ, DJF and JFM show large regions of coherent skill situated 

over the Benelux countries in NDJ, and over two distinct regions in both DJF and JFM, 

where the northerly region reaches from the North Sea to the Baltic States, and the 
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southern region from the Pyrenees to the Balkans.  Stratospheric temperature predictors 

from the preceding summer appear to be the main cause of this potential predictability, 

with some of the model fit also deriving from AO, ENSO and snow cover predictors.  On 

the basis of this research the potential predictability of extreme winter wind events over 

these regions is the most promising finding of this study, and warrants further 

investigation to determine the likely mechanisms which facilitate this apparent 

predictability. 

 

9.5 Conclusions 

 

A comprehensive exploratory investigation into the linear empirical predictability of 

wind and precipitation extremes in Europe is carried out. The emphasis is on identifying 

potential predictive skill at seasonal timescales rather than the precise quantification of 

predictive skill.  It is found that the potential predictability is very limited based on the 

criteria of model validation on independent data.  This implies that either nonlinear 

processes are important, nonstationary processes affect the model training and validation 

periods differently, or the models are overfitted and no useful skill can be obtained from 

the predictors used here.  Further investigation would be required to clarify this.  

However, the length of the observational record available to carry out such a study is not 

conducive to nonlinear methods or those considering decadal signals in the climate 

system. 

 

Some instances of potentially useful predictability are found on the basis that skill 

persists during the validation period.  In particular, the frequency of extreme wind events 

during the winter can be related significantly to stratospheric temperature predictors from 

the previous summer.  The mechanisms causing this potential predictability are as yet 

undetermined.  Precipitation appears to be inherently less predictable within the context 

of this research.  There are few scattered instances – most notably in the spring – where 

potentially useful skill appears to persist, although no clear physical explanation for this 

is apparent. 
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Independently of the model validation period, many instances of apparently significant 

relationships are found between the predictands and predictors at lead times of up to 

eleven months.  These relationships include responses to ENSO, large-scale SST modes 

in all the major ocean basins, atmospheric teleconnection patterns, modes of variability in 

the stratosphere, and Northern Hemisphere snow cover.  In many cases there is 

considerable empirical and theoretical support for these observed relationships in the 

literature conditioned on empirical model training, independent validation and numerical 

modelling.  Although the findings presented here do not discount any of this work, it is 

clear from this work and a review of the literature that evidence for any skill in the 

seasonal prediction of European climate is marginal at best, and highly sensitive to the 

data and methods employed, both for empirical and model studies.  Furthermore, it is 

recognised that for any exploratory study of this nature it is imperative that any 

apparently significant results are presented in the full context of all those results which do 

not yield apparently significant skill. 

 

9.6 Further Work 

 

The seasonal predictability of European wind and precipitation extremes is a subject 

which requires extensive further research.  The findings presented here constitute a wide 

ranging study, and a number of issues relating to the predictability of European extremes 

have been addressed.  However, the study is not exhaustive.  Based on the findings, it is 

possible to identify what may well be key avenues for further research in this area. 

 

9.6.1 Data and methods 

By definition the observation data are the key component of any empirical study into the 

seasonal predictability of climate.  As discussed in Chapter 4, a range of datasets are 

available to derive both the predictor and predictand indices.  Here the predictand indices 

are derived from the ERA-40 reanalysis data (including four years of ECMWF 
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Operational Analysis data), which each present a spatially and temporally complete and 

homogenous record.  However, in the study of extremes, the sensitivity to spatial scale is 

important, particularly for precipitation, and it may be that ERA-40 as used here does not 

provide the optimal representation of this process.  Although extensive and largely 

favourable comparisons were carried out between ERA-40 and station records for both 

wind and precipitation where available, it is not clear whether station timeseries or a 

gridded dataset such as the ENSEMBLES high resolution daily dataset for Europe 

(Haylock et al. in preparation) might identify potential predictability more effectively.    

Another potential issue is the possibility of significant inhomogeneities between the 

ERA-40 and ECMWF Operational Analysis.  The use of station timeseries results in 

susceptibility to local effects which may not be representative of the large-sale 

circulation, and the gridded dataset option does not include observations over the ocean, 

which compromises the approach taken here of assessment for field-significance.  

Nevertheless, it would be worthwhile further to assess the sensitivity of the observed 

relationships to different predictand data.  In summary, the specification of spatial scale 

in this study is subject to a number of limitations.  At one end of the scale, in order to 

represent the extremes as accurately as possible it is necessary to use a very high 

resolution in order to capture all the relevant local effects.  The disadvantage here is that 

when considering synoptic-scale forcing of the predictand this approach is highly 

sensitive to translational shifts in the extremes – in other words a particular predictor may 

be useful in describing variability at a larger scale than that at which the extreme event 

typically takes place.  At the other end of the scale – that at which the mean synoptic 

effects of potential predictors might be felt, the ability to identify extremes is severely 

compromised since they typically take place at a smaller scale within this domain.  From 

the work carried out in this thesis, it is implied that the gridbox size adopted here is 

firmly in the middle of this scale – that is, there is still good correspondence with the 

interannual variability of extremes at the point scale, but there is also significant noise in 

the model selection and parameter estimation, to the extent that it might be desirable to 

explore potential predictability at a still coarser spatial scale.  This would be a key goal of 

future work.  Such an undertaking would contribute towards simpler, more spatially 

coherent model selection.  Given that in many cases the best model as selected in this 

 - 264 - 



study is only marginally better than other models, this is a highly desirable outcome, and 

should lead to a more consistent set of predictors, which in turn might be expected to aid 

in the validation process. 

 

The form of the predictand indices presented here as seasonal counts of exceedance over 

a percentile threshold might also impose a limitation on the study.  That is, in order to 

gain a sufficient sample size for each predictand timeseries, at least a three month season 

is required, as used here.  However, it is apparent from the observed relationships that 

many of them are sensitive to the seasonal cycle, and some form of monthly index – for 

example of precipitation intensity – might be more suitable.  Furthermore, Pezzulli et al. 

(2005) find that significant departures occur in the seasonality of responses to Niño 3.4 

SSTs, such that the traditional approach as adopted in this study – of fixed three month 

seasons – may well hide important insights into seasonal predictability.  The exact 

formulation of a more flexible approach in this context is unclear, but future efforts might 

benefit from seeking to develop appropriate methods. 

 

The predictor data generally represent large-scale phenomena, and many of the indices 

are likely to be less sensitive to the exact formulation of the indices – although Hu and 

Huang (2006) find that the response of the NAO to leading SST anomalies is highly 

sensitive to the precise definition of the index to the point where only one index responds 

with statistical significance.  There are a number of ways of addressing this.  One would 

be to present multiple formulations of each predictor index, although this is likely to 

further compound the risk of overfitting the models.  Other approaches might include 

multivariate techniques such as canonical correlation analysis (CCA) which is applied to 

the analysis of large-scale circulation controls on extremes in Haylock and Goodess 

(2004).  Here the predictor data fields are related to the predictand in such a way as to 

maximise the correlation between the canonical ‘modes’ in each dataset.  It might be 

expected, for example to see a stronger fit between some of the predictands and MSLP in 

the eastern tropical Pacific based on the findings documented here.  An additional 

potential benefit of multivariate techniques is that the spatial response in the predictands 

might be more coherent, and not subject to large qualitative changes in the predictor 
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selection between neighbouring gridboxes as is the case here (van den Dool, 2007).  In 

other words, the CCA modes correspond approximately to the spatial scale at which 

variability is observed in the predictands, as discussed above.  However the predictand 

data used in this study results in some obstacles to standard multivariate techniques – 

being approximately Poisson distributed.  Furthermore, it is also worth noting that in a 

purely exploratory study such as this, while signals or potentially important predictors 

may be masked by noise in the model selection process, in cases where predictors have 

been selected across coherent regions of the domain despite the lack of constraint in the 

selection algorithm, it follows that this may highlight a predictor of particular importance. 

 

Another area where significant further work could be carried out is in exploring different 

training and validation periods.  In this study a relatively short (10 year) validation period 

is used, since the objective is more a binary appraisal of whether skill persists in the 

validation period, rather than a precise quantification of the validation period skill.  

However, such a short validation period also gives rise to the possibility that non-

stationary features of interannual to decadal climate variability might compromise the 

assessment of validation period skill.  For example the occurrence of a major El Niño 

event in 1997, as well as the 2003 European heatwave and a number of severe flood 

events might significantly bias the results.  Possible solutions to this problem are either to 

use a longer validation period, or to use multiple independent validation periods.  For 

practical reasons this would have to take place in conjunction with a simplification of the 

model selection process – perhaps limiting the number of predictors by selecting 

‘common’ predictors from subsets which are highly correlated, or by using a coarser 

spatial resolution in the predictand datasets.  The skill metrics used in this study are the 

mean absolute error (MAE) and coefficient of determination (R2).  These are used as they 

both represent simple appraisals of skill – namely the mean error of seasonal percentile 

exceedance counts, and the proportion of variance explained by the predictors.  It might 

be informative to use additional measures of skill, such as percentage improvement over 

climatology (e.g. Saunders and Qian, 2003). 
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One potentially interesting validation of the approach presented in this study would be to 

apply it to a different region or predictand variable, where predictability is better 

quantified.  An example might be South American precipitation (e.g. Folland et al., 2001) 

or other variability closely associated with ENSO.  This might allow additional insight 

into the potential for over-fitting for example. 

 

If the techniques applied in this thesis, and incorporating some of the suggestions for 

further work outlined above were applied to an operational forecast scheme, a number of 

further issues might need to be addressed.  Currently there is no constraint on the lead 

times of the selected predictors – the only criteria is that the best model is selected based 

on the training data.  In an operational scheme, there is frequently a delay in predictor 

data being made available, which might compromise some of the models – particularly 

those with predictors at short lead-times.  Conversely, if for example a forecast with a 

three month lead time were to be made, it might be thought inappropriate to use a 

predictor with a six month lead time, when more recent data are available – unless there 

is a sound physical reason for assuming that a six month lead gives the best skill.  

Furthermore, in general the greater the extent to which simplification in the models (i.e. a 

reduction in the overall number of predictors across the domain), the greater the ease of 

use will be of an operational scheme. 

 

9.6.2 The Physical Basis for Predictability 

 

For the models where skill is retained through the validation period, a source of seasonal 

predictability must be said to exist that is potentially useful, given that a viable theoretical 

explanation can be identified and verified.  The noteworthy case where further 

investigation might be useful is that of the winter wind extremes over the North Sea and 

Baltic regions, and over southern Europe.  It appears from the specifications of the 

models that stratospheric predictors from the preceding summer are important to the 

model skill, although to date the means by which this signal is transferred to the winter 

troposphere are not clear.  Perhaps the most useful approach to this problem would be to 
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investigate the forced response to stratospheric temperature anomalies such as those 

observed in this study of the subsequent winter wind extremes in a climate model.  To 

date research has typically focussed on interactions between the stratosphere and 

troposphere at shorter lead times, although it has been shown for example by 

Broennimann et al. (2004, 2007) and Kodera et al. (1996) that a link exists between 

ENSO and the Northern Hemisphere stratosphere, and Broennimann (2007) shows how 

this might affect the European climate in a schematic which relates ENSO-driven 

anomalies in the planetary wave activity to changes in the zonal and meridional flow in 

the stratosphere, which in turn affects the strength of the polar vortex.  Baldwin and 

Dunkerton (2001) show how anomalies in the polar vortex can propagate downwards on 

a timescale of weeks to affect the Northern Hemisphere midlatitude circulation.  Further 

work on assessing the potential seasonal predictability of the European climate through 

better understanding of the propagation of the ENSO signal to Europe is highly desirable.  

The ability to model successfully all the major components of this process is not yet fully 

realised, but may well be the most useful tool to move beyond a merely empirical 

appraisal of forecast skill. 
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