CHAPTER 3: METHODS AND ANALYSES APPLIED.

3.1. INTRODUCTION.
This chapter deals with the extraction of the metiegical variables to be used in the
analyses and the description of different mathesahtind statistical tools to explore the

patterns and variability of the climatic changeMaxico.

The construction of a large network of long-terngiiguality databases of daily
precipitation and temperature is addressed initeedart of the chapter. The extraction
procedure for these meteorological time-seriesthagrocess of data quality control are
both explained here. Because one of the purposteedhesis is to link climate change
patterns in Mexico during instrumental periods witie El Nifio-Southern Oscillation

(ENSO) phenomenon, the extraction of the threesidfit indices (SOI, Nifio 3.4 and

MEI) used in these thesis are also considereddtitst half of this chapter.

Three main mathematical methods are discusseckeisaghond half of this chapter. The
first is the application of Principal Component Aysds as a tool to find groups of
stations that vary coherently, together with these in calculating weighted regional
averages. The second topic deals with the charfgée alimatic variables at the fringes
of their probability distributions, usually calledeather extremes. The last method
describes the two different approaches to estiroateelations between meteorological
variables. Non-parametric correlations are obtaum&dg Kendall’s tau, as an alternative
(to measure the association between the time-}etteshe extensively used linear
correlation is shown first. Lag-cross correlatiams finally presented as a tool to find the

lag that maximises the coherence (linear correiati@tween a pair of variables.
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3.2. DATA EXTRACTION.

In México the longest meteorological time series thiose of (land surface) precipitation
and air temperature, especially the former. Thigus for either daily or monthly data.
As several studies have been made using monthlyesaldaily figures were the first
objective of the extraction, in order to explore thossibility of having a database of

relatively long climatic records with high temporeakolution.

3.2.1. PRECIPITATION AND TEMPERATURE DAILY DATA.
Among the digitized data considered (because af thgital accessibility and length)
are:

DAT3220

This software was prepared by the Mexican Instimfté/NVater Technology (Instituto
Mexicano de Tecnologia del Agua, IMTA) to manage 822 meteorological stations
with the longest time series. The selection of stegions included was made by the
Mexican Meteorological Office (Servicio Meteorolégi Nacional, SMN). The
documentation of this software states that clinmgjigial analyses were performed
according to the Manual of the CLImat COMputing (COM) project of the World
Meteorological Organization (WMO) to identify owlfs in the information. Strangely, it
does not contain several of the largest citiess{preably with the longest data files) in
Mexico, failing to present a complete national piet of the potential instrumental
records. Another problem found is that missing galare defined with a zero value

instead of the other options conventionally acagpte

ERICO
This software was also prepared by IMTA with theesh version released in 2000, and

contains daily precipitation and temperature dateorsg other variables. Most of the
stations have information from 1960 to 1995. Ntadguality analyses were performed
in this database, and being typed manually thisoisa minor issue. For instance, for

certain months at several stations, temperatui@ as typed instead of precipitation in
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the rainfall time series. That is why, careful atien and reserved use was given to this

source.

CLICOM

Another source of data is the already mentionech@itICOMputing ProjectGLICOM)

of the World Meteorological Organization (WMO).iticorporates digital daily data for
almost all the stations considered by DAT322 andERut some of them have been
updated until 2002 inclusive. Like DAT 322 this alaise does not include sufficient

information for the largest - and most of the tioégest - cities in Mexico.

GASIR

GASIR (Gerencia de Aguas Superficiales e IngenideiaRios) was developed by the
office of Dams operation and river engineering bé& tNational Water Commission
(Comision Nacional del Agua, CNA). They receivealylprecipitation data from many
stations located across the country. Unfortunatilgy only have digital information
available from 1989 to 2001, so this database \gad mainly to complete many recent
gaps. Because this source is used mainly for resepurposes, its format is slightly
different (the date is one day ahead) from therotla¢abases, a program in fortran was
needed to adapt the precipitation values to the Wid@eral rules. An important aspect
of GASIR data, on the other hand, is that it hasdgguality as a whole and is almost free

of errors.

3.2.2. STATIONS SELECTED.

Having all those daily digital databases availalileyas necessary to choose the most
appropriate stations for the subsequent analysescau®e, according to its
documentation, DAT322 claimed to have the longesbrds selected by SMN, it was
selected as the first reference or the start of ékeaction for every station to be
processed. The first condition defined — for cliohagical reasons - was that every
station to be considered should have at leasy/théérs of information. Less than ten per

cent of missing values was considered as a seawmitdtlon to extract a time series. So,
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every other source already mentioned with timeesefulfilling both conditions was

included initially.

DATA EXTRACTION PROCEDURE.

Having enough information is not a sufficient cdrafi for climatic studies. It is essential
to assure the quality of the data extracted. Thawhy a procedure was designed to
compare and complete the data for every statidmetprocessed. Basically, it could be
described as follows: every station in DAT322 hawinirty or more years of information
was compared with the other different sources dra rhissing values filled when
possible. Then, with the daily data ready, a pr@descompute monthly values (mean
temperatures or accumulated precipitation) andcbagatistics was performed. The
maximum number of missing values allowed for a rmoméas set to four, otherwise the
month was considered as missing. With these statigtwas also possible to identify
(for instance, in comparison with known climatoloali normals) suspicious values (see
fig. 3.1). An example in which data from ERIC sutogé missing values (tagged as -1 in
fig. 3.2) in the CLICLOM database. Another caseninich the values in the CLICOM
database has been multiply by a factor of ten epé&aced with the ERIC data (see fig.
3.3).

After all this information was processed, onlyraited number (93 stations, see table 3.1
and fig. 3.4) of daily data stations were consideas being long enough, resulting -
already pointed out by several authors - in thessfyeof the meteorological observations
network (O’ Hara and Metcalfe, 1995; Englehart &wliglas, 2003). So, another source
was used. Such a database is a monthly precipitatibection from 1931 to 1989; it was
prepared by Carlos Espinosa Cruishank (specialistyidraulics) in the SMN. Hence, a
triple checking process was made with every timgeseamong Espinosa’s monthly
data, climatological monthly figures by Garcia (8R8nd the data processed (DAT322,
CLICOM, ERIC, and GASIR) from the stations repogtidaily. Finally, a plot of every
annual time series was made in order to find angrisistency among of them.
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Fg. 3.1. DALY DATA EXTRACTION PROCEDURE
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PRINCIPAL COMPONENT ANALYSIS
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Fig. 3.2. Example of daily precipitation data beimgected. Two different databases are compaitbi tase,
missing values (-1) in one time-series (CLICOMyareected with the second dataset (ERIC).

o CLICOM m ERIC

Fig. 3.3. Example of daily precipitation data beimgected. Two different databases are compaitbi tase,
a systematic error (values are multiplied by arfatt10) in the first ime-series (CLICOM) aretitited by
the corrected values in the second dataset (ERIC).
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STATION NAME STATE |SMN ID |LONGITUDE |LATITUDE JALTITUDE*
1|PABELLON DE ARTEAGA AGS |01014 -102.33 22.18 1920
2|PRESA CALLES AGS 01018 -102.43 22.13 2025
3|PRESA RODRIGUEZ BCN |02038 -116.90 32.45 100
4|EL PASO DE IRITU BCS |03012 11112 24.77 140
5|LA PURISIMA BCS |03029 -112.08 26.18 95
6|LORETO BCS |03035 -111.33 26.00 15
7|SAN JOSE DEL CABO BCS |03056 -109.67 23.05 7
8|SANTA ROSALIA BCS |03061 -112.28 27.30 17
9|SANTIAGO BCS |03062 -109.73 23.47 125

10/TODOS SANTOS (DGE) BCS |03066 -110.22 23.43 18
11|CHAMPOTON CAMP 04008 -90.72 19.35 2
12|HECELCHAKAN CAMP 04011 -90.13 20.18 13
13|SABANCUY CAMP 04029 91.11 18.97 2
14|RAMOS ARIZPE COAH 05032 -100.98 25.53 1399|
15|SALTILLO COAH 05048 -101.00 25.42 645
16]/COLIMA COL 06040 -103.73 19.23 495
17|0COZOCUAUTLA CHIAP |07123 -93.38 16.70 864
17|CIUDAD GUERRERO CHIH |08028 -108.52 28.52 2000
18|CD CUAUHTEMOC CHIH |08026 -106.85 28.42 2050
19|CIUDAD DELICIAS CHIH |08044 -105.43 28.20 1170
20|HIDALGO DEL PARRAL CHIH |08078 -105.67 26.93 1950
21|LA JUNTA CHIH 08090 -107.97 28.75 1900
22|BATOPILAS CHIH |08161 -107.75 27.02 556
23|EL PALMITO DUR |10021 -104.78 25.52 1540
24|FCO. 1 MADERO DUR |10027 -104.30 24.47 1960
25| GUANACEVI DUR |10029 -105.97 25.93 2200
26|RODEO DUR |10060 -104.53 25.18 1340
27|SAN MARCOS DUR |10070 -103.50 24.27

28|SANTIAGO PAPASQUIARO |DUR  |10100 -105.42 25.05 1740
29[IRAPUATO GTO |11028 -101.35 20.68 1725
30/SAN DIEGO DE LA UNION GTO |11064 -100.87 21.47 2080
31|SAN JOSE ITURBIDE GTO |11066 -100.40 21.00 2100
32|AYUTLA (CFE) GRO |12012 -99.10 16.95

33|CHILAPA GRO |12110 -99.18 17.60 1450
34|HUICHAPAN HGO |13012 -99.65 20.38 1102
35|MIXQUIHUALA HGO |13018 -99.20 20.23 2050
36| CHAPALA JAL  |14040 -103.20 20.30 1523
37|MASCOTA JAL  |14096 -104.82 20.52 1240
38|SAN FRANCISCO MEX |15089 -99.97 19.30 2630
39|LA PIEDAD CABADAS (DGE) |MICH [16065 -102.03 20.37 1700
40| TACAMBARO MICH |16123 -101.47 19.23 1820
41|YURECUARO MICH 16141 -102.28 20.35 1537
42|ZAMORA MICH |16144 -102.28 20.00 1540
43|CUERNAVACA MOR |[17004 -99.25 18.92 1529
44| ACAPONETA NAY |18001 -105.37 22.50 22
45|CADEREYTA NL 19008 -100.00 25.60 350
46|EL CUCHILLO NL 19016 -99.25 25.73 145
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STATION NAME STATE [SMN ID |LONGITUDE |LATITUDE |ALTITUDE*
47|LOS RAMONES NL 19042 -99.63 25.70 210
48|MONTEMORELOS NL 19048 -99.83 25.20 425
49|MONTERREY NL 19052 -100.30 25.68 540
50|JUCHITAN OAX 20048 -95.03 16.43 46
51|MATIAS ROMERO OAX 20068 -95.03 16.88 201
52|SANTO DOMINGO TEHUANTEPEC|OAX 20149 -95.23 16.33 95
S53|PIAXTLA PUE 21063 -98.25 18.20 1155
S54|TEZIUTLAN PUE 21091 -97.35 19.82 2050
55|HUAUCHINANGO PUE 21118 -98.05 20.18 1575
56|JALPAN QRO 22008 -99.47 21.22 860
57|PRESA CENTENARIO QRO 22025 -99.90 20.52 1880
58|ALVARO OBREGON QROO [23001 -88.62 18.30
59|CHETUMAL QROO [23032 -88.30 18.50 6
60|CHARCAS SLP 24010 -101.12 23.13 2020
61|MATEHUALA SLP 24040 -100.63 23.65 1575
62|MEXQUITIC SLP 24042 -101.12 22.27 2030
63|SAN LUIS POTOSI (DGE) SLP 24069 -100.97 22.15 1870
64|CIUDAD DEL MAIZ SLP 24116 -99.60 22.40 1245
65|BADIRAGUATO SIN 25110 -107.55 25.37 230
66|QUIRIEGO SON 26075 -109.25 27.52 521
67|TRES HERMANOS SON 26102 -109.20 27.20 100
68]YECORA SON 26109 -108.95 28.37
69|SAN FERNANDO TAM 28086 -98.15 24.85 43
70]TAMPICO (DGE) TAM 28111 -97.87 22.22 12
71|VILLAGRAN TAM 28118 -99.48 24.48 380
72]|APIZACO TLX 29002 -98.13 19.42 2404
73|TLAXCALA TLX 29030 -98.23 19.32 2552
74| TLAXCO TLX 29032 -98.13 19.63 2444
75|CATEMACO VER 30022 -95.10 18.42 338
76]|CHICONTEPEC VER 30041 -98.17 20.98 595
77]IXHUATLAN VER 30072 -98.00 20.70 306
78]JALTIPAN VER 30077 -94.43 17.97 46
79|PAPANTLA VER 30125 -97.32 20.45 298
80|RINCONADA VER 30141 -96.55 19.35 313
81|SOLEDAD DOBLADO VER 30163 -96.42 19.05 183
82|VERACRUZ VER 30192 -96.13 19.20 16
83|JALAPA VER 30228 -96.92 19.53 1999
84| TUXPAN VER 30229 -97.40 20.95 4
85|PANUCO VER 30285 -98.17 22.05 60
86|PROGRESO YUC 31023 -89.65 21.28 8
87|SOTUTA YUC 31030 -89.02 20.60 11
88|MERIDA (DGE) YUC 31044 -89.62 20.98 9
89|EL SAUZ ZAC 32018 -103.23 23.18 2100
90|SOMBRERETE ZAC 32054 -103.63 23.63 2300
91|JUCHIPILA ZAC 32067 -103.13 21.42 1240
92|TEUL DE GLEZ. ORTEGA ZAC 32070 -103.47 21.47 1900
93|ZACATECAS ZAC 32086 -102.57 22.77 2450

Table 3.1. Spatially incomplete network of daikadiations for precipitation. The period of resdodall the
stations is from 1931 to 2001. * meters abovegeh |
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Fig. 3.4. Resulting network of 93 stations aftefitist stage of extraction of daily rainfall data.

The final network consists of a set of 175 statibaging monthly precipitation, 168 are
Mexican and 7 are southern USA stations, with gspdtial coverage (Table 3.2, and
Fig. 3.5). The length of every time series is ofyghrs, starting in 1931 and ending in

2001. The maximum percentage of missing valuesrestscted to 10%.

It is possible that some information has beendaftof the extraction efforts as there are
some records still on paper in SMN, but this isikaty to happen in terms of digital

databases. All the currently known Mexican climagital digitised sources were

considered. That is why an acceptable spatial e@eeis expected, markedly better than
all the few former studies aiming at a nationalrapgal of the Mexican climate using the
longest time series available. For extraction psegsoof precipitation and temperature
data, the definitions of wet and dry seasons dstadl in section 2.2.1 are applied in this

chapter.
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STATION NAME STATE [SMN ID ]JLONGITUDE |LATITUDE* |ALTITUDE+
1JAGUASCALIENTES AGS 01001 -102.30 21.88 1870
2|PABELLON DE ARTEAGA AGS 01014 -102.33 22.18 1920]
3|PRESA CALLES AGS ]01018 -102.43 22.13 2025
4|PRESA RODRIGUEZ BCN  ]02038 -116.90 32.45 100}
5|ENSENADA BCN 102072 -116.60 31.88 24
6]|BUENAVISTA BCS  |03004 -111.80 25.10 30]
7|EL PASO DE IRITU BCS 03012 -111.12 24.77 140
8|LA PURISIMA BCS 103029 -112.08 26.18 95
9|LORETO BCS |03035 -111.33 26.00 15

10|MULEGE BCS 03038 -111.98 26.88 35
11]SAN BARTOLO BCS 03050 -109.85 23.73 395
12|SAN JOSE DEL CABO BCS |03056 -109.67 23.05 7
13]SANTA GERTRUDIS BCS 03060 -110.10 23.48 350
14|SANTA ROSALIA BCS |03061 -112.28 27.30 17
15|SANTIAGO BCS 03062 -109.73 23.47 125
16/ TODOS SANTOS (DGE) BCS |03066 -110.22 23.43 18]
17|LA PAZ BCS 103074 -110.37 24.15 10
18|SABANCUY CAMP 04029 -91.11 18.97 2
19]CAMPECHE CAMP |04038 -90.53 19.85 8
20|]CHAMPOTON CAMP |04041 -90.72 19.37 2
21|PRESA VENUSTIANO CARRANZA |COAH |05030 -100.60 27.52 270
22|RAMOS ARIZPE COAH 05032 -100.98 25.53 1399]
23]|MONCLOVA COAH 05047 -101.42 26.90 645
24|SALTILLO COAH [05048 -101.00 25.42 1520]
25|MANZANILLO COL |06018 -104.32 19.05 3
26]COLIMA COL  |06040 -103.73 19.23 495
27|COMITAN CHIAP 107025 -92.13 16.25 1530
28|MOTOZINTLA CHIAP |07119 -92.25 15.37 1455
29|CIUDAD DELICIAS CHIH 08044 -105.43 28.20 1170
30|HIDALGO DEL PARRAL CHIH 08078 -105.67 26.93 1950}
31|CHINIPAS CHIH 08167 -108.53 27.40 700
32|CANON FERNANDEZ DUR 110004 -103.75 25.28 1300}
33|LERDO DUR |10009 -103.52 25.53 1135
34|CUENCAME DUR 10012 -103.67 24.78 1580]
35]EL SALTO DUR 110025 -105.37 23.78 2538
36|FCO. | MADERO DUR 10027 -104.30 24.47 1960}
37|GUANACEVI DUR 10029 -105.97 25.93 2200
38|NAZAS DUR 110049 -104.12 25.23 1245
39]RODEO DUR 10060 -104.53 25.18 1340
40|CELAYA GTO |11009 -100.82 20.53 1754
41]|DOLORES HIDALGO GTO |11017 -100.93 21.15 1920
42]IRAPUATO GTO [11028 -101.35 20.68 1725
43| OCAMPO GTO |11050 -101.48 21.65 2250
44|SALVATIERRA GTO [11060 -100.87 20.22 1760]
45]SAN DIEGO DE LA UNION GTO 11064 -100.87 21.47 2080
46|SAN JOSE ITURBIDE GTO [11066 -100.40 21.00 2100]
47]SANTA MARIA YURIRIA GTO |11071 -101.15 20.22 1751]
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STATION NAME STATE [SMN ID |LONGITUDE |LATITUDE* [ALTITUDE+
48|PRESA VILLA VICTORIA GTO |11082 -100.22 21.22 1740
49|SAN MIGUEL DE ALLENDE GTO |11093 -100.75 20.92 1900
50]GUANAJUATO GTO [11094 -101.25 21.02 2037
51]LEON (LA CALZADA, DGE) GTO |11095 -101.68 21.08 1809
52|AYUTLA (CFE) GRO |12012 -99.10 16.95
53|IGUALA GRO 12116 -99.53 18.35 635
54|HUICHAPAN HGO 13012 -99.65 20.38 1102
55|SANTIAGO TULANTEPEC HGO 13031 -98.37 20.08 2180
56]PACHUCA HGO |13056 -98.73 20.12 2435
57|PRESA REQUENA HGO 13084 -99.32 19.97 2109
58|ATEQUIZA (CHAPALA) JAL 14016 -103.13 20.40 1520
59|CHAPALA JAL 14040 -103.20 20.30 1523
60|EL FUERTE, OCOTLaN JAL 14047 -102.77 20.30 1527
61|GUADALAJARA JAL 14066 -103.42 20.72 1583
62|MAZAMITLA JAL 14099 -103.02 19.92 2800
63| TEPALPA JAL 14142 -103.77 19.95 2060
64|CD. GUZMAN JAL 14500 -103.47 19.70 1535
65]APATZINGAN MICH 16007 -102.35 19.08 682
66]|PRESA COINTZIO MICH 16022 -101.27 19.62 1997
67|CUITZEO DEL PORVENIR MICH 16027 -101.15 19.97 1831
68|HUINGO MICH 16052 -100.83 19.92 1832
69|JESUS DEL MONTE (MORELIA) [MICH 16055 -101.15 19.65 1950
70|LA CAIMANERA MICH 16059 -100.90 18.47 287
71|PRESA LA VILLITA MICH 16070 -102.18 18.05
72|MORELIA (DGE) MICH ]16081 -101.18 19.70 1941
73|YURECUARO MICH ]16141 -102.28 20.35 1537
74]ZAMORA MICH ]16144 -102.28 20.00 1540
75|ZINAPECUARO MICH 16145 -100.82 19.87 1840
76]ARTEAGA MICH ]16151 -102.28 18.35 860
77|CIUDAD HIDALGO MICH 16152 -100.57 19.70 2000
78|URUAPAN MICH 16164 -102.07 19.42 1610
79|ZACAPU MICH ]16171 -101.78 19.82 1986
80|ATLATLAHUAC&N MOR [17001 -98.90 18.93 1630
81|CUERNAVACA MOR |17004 -99.25 18.92 1529
82|CUAUTLA MOR 17005 -98.95 18.82 1291
83|PRESA EL RODEO MOR |17006 -99.32 18.78 1100
84|ACAPONETA NAY ]18001 -105.37 22.50 22
85|AHUACATLAN NAY |18002 -104.48 21.05 990
86]IXTLAN DEL RIO NAY 18016 -104.37 21.03 1035
87|LAS GAVIOTAS NAY 18021 -105.15 20.88 43
88|TEPIC NAY |18038 -104.88 21.50 920
89|ALLENDE NL 19003 -100.03 25.28 457
90|CERRALVO NL 19010 -99.62 26.08 345
91|EL CUCHILLO NL 19016 -99.25 25.73 145
92|HIGUERAS NL 19025 -100.02 25.95
93|ITURBIDE NL 19027 -99.92 24.73 1480
94|LAMPAZOS NL 19028 -100.52 27.03 320
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STATION NAME STATE |SMN ID |LONGITUDE | ATITUDE* ALTITUDE+
95/LOS RAMONES NL 19042 -99.63 25.70 210
96]MIMBRES, GALEANA NL 19047 -100.25 24.97
97IMONTEMORELOS NL 19048 -99.83 25.20 425
98]MONTERREY NL 19052 -100.30 25.68 540
99/HUAJUAPAN DE LEON OAX 20035 -97.78 17.80 1650

100[SANTA MARIA JACATEPEC OAX 120042 -96.20 17.85

101]JUCHITAN OAX 120048 -95.03 16.43 46
102|MATIAS ROMERO OAX 120068 -95.03 16.88 201
103)OAXACA DE JUAREZ OAX 120079 -96.72 17.03 1550
104|SANTO DOMINGO TEHUANTEPEC OAX 120149 -95.23 16.33 95
105|PIAXTLA PUE 21063 -98.25 18.20 1155
106|PUEBLA PUE 21065 -98.18 19.03 2209
107|TEZIUTLAN PUE 21091 -97.35 19.82 2050
108|ZOQUITLAN PUE |21114 -97.02 18.35 2140
109|PRESA CENTENARIO QRO [22025 -99.90 20.52 1880
110]ALVARO OBREGON QROO 23001 -88.62 18.30

111)CHETUMAL QROO0 23032 -88.30 18.50 6
112|BALLESMI SLP 124005 -98.93 21.75 30
113|CERRITOS SLP 124008 -100.28 22.43 1150
114|CHARCAS SLP 124010 -101.12 23.13 2020
115|MATEHUALA SLP 124040 -100.63 23.65 1575
116|MEXQUITIC SLP 124042 -101.12 22.27 2030
117)SAN LUIS POTOSI (DGE) SLP  [24069 -100.97 22.15 1870
118| TANZABACA SLP 124090 -99.22 21.67 120
119|BOCATOMA SUFRAGIO SIN _ [25009 -108.78 26.08 152
120|CULIACAN SIN 125015 -107.40 24.82 62
121|CHOIX (DGE) SIN 25019 -108.33 26.73 350
122|EL FUERTE SIN 125023 -108.62 26.42 84
123|GUAMUCHIL SIN 125037 -108.08 25.47 45
124|BADIRAGUATO SIN 125110 -107.55 25.37 230
125|MAZATLAN SIN 125135 -106.38 23.22 3
126|CIUDAD OBREGON SON 126018 -109.97 27.50 35
127|PRESA LA ANGOSTURA SON 126069 -109.37 30.43 50
128|TRES HERMANOS SON 126102 -109.20 271.20 100
129]YECORA SON  [26109 -108.95 28.37

130|HERMOSILLO SON 126138 -110.97 29.07 200
131)(PRESA) PLUTARCO ELIAS CALLES SON  [26191 -110.63 29.93

132|COLMACALCO TAB _ |27009 -93.22 18.27 10
133|TAPIJULAPA TAB  |27042 -92.77 17.45 60
134|TEAPA TAB  |27044 -92.95 17.55 72
135]ABASOLO TAM  |28001 -98.37 24.05 61
136]MANTE (CAMPO EXPERIMENTAL INGENIO ) |TAM _ |28012 -98.98 22.73 100
137]ANTIGUO MORELOS (EL REFUGIO) TAM 128032 -99.08 22.55 242
138|MIGUEL HIDALGO TAM _ |28038 -99.43 24.25

139|MAGISCATZIN TAM 128058 -98.70 22.80 90
140]SAN FERNANDO TAM _ |28086 -98.15 24.85 43
141|TAMPICO (DGE) TAM 28111 -97.87 22.22 12
142]VILLAGRAN TAM 28118 -99.48 24.48 380
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STATION NAME STATE |[SMN ID |LONGITUDE |LATITUDE* ALTITUDE+
143|SOTO LA MARINA TAM 128152 -98.20 23.77 25
144|APIZACO TLX 29002 -98.13 19.42 2404
145|TLAXCALA TLX 29030 -98.23 19.32 2552
146]TLAXCO TLX 29032 -98.13 19.63 2444
147]ANGEL R. CABADAS VER 30011 -95.45 18.60 19]
148|ATZALAN VER |30012 -97.25 19.80 1842
149|CATEMACO VER  [30022 -95.10 18.42 338
150|CD. ALEMaAN VER  |30025 -96.08 18.18 29]
151|CHICONTEPEC VER [30041 -98.17 20.98 595
152[IXHUATLAN VER |30072 -98.00 20.70 306
153|JALTIPAN VER |30077 -94.43 17.97 46
154|PAPANTLA VER 30125 -97.32 20.45 298
155|RINCONADA VER 30141 -96.55 19.35 313
156|VERACRUZ VER 30192 -96.13 19.20 16
157|LAS VIGAS VER 30211 -97.10 19.65 37
158|JALAPA VER 30228 -96.92 19.53 1999]
159| TUXPAN VER 30229 -97.40 20.95 4
160|PANUCO VER 30285 -98.17 22.05 60]
161|PROGRESO YUC 131023 -89.65 21.28 8
162|SOTUTA YUC 31030 -89.02 20.60 11
163|MERIDA (DGE) YUC |31044 -89.62 20.98 9]
164|EL SAUZ ZAC 132018 -103.23 23.18 2100]
165|]SOMBRERETE ZAC  |32054 -103.63 23.63 2300
166|JUCHIPILA ZAC 132067 -103.13 21.42 1240|
167|TEUL DE GLEZ. ORTEGA|ZAC  |32070 -103.47 21.47 1900]
168|ZACATECAS ZAC 132086 -102.57 22.77 2450]
169|ABILENE TX ABITX -99.70 32.40
170]EL PASO TX ELPTX -106.50 31.80
171|ELEPHANT BUTTE DAM |NM EPBNM -107.18 33.15
172|PHOENIX AZ PHXAZ -112.00 33.50
173|SAN DIEGO CA SANCA -117.20 32.70
174|SAN ANTONIO TX SATTX -98.47 29.53
175|TUCSON AZ TUSAZ -110.95 32.23

Table 3.2. Spatially incomplete network of daikadiations for precipitation. The period of resdodall the
stations is from 1931 to 2001. * meters abovegeh |
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Fig. 3.5. Meteorological network of 175 with moptpfecipitation data from 1931 to 2001 as useden t
analysis of Principal Components (PC).

3.2.3 ENSO INDICES.

The Southern Oscillation Index (SOI).
One of the most typical measures utilised to expltre impacts of ENSO, is the

Southern Oscillation Index (SOI). Since the 180fls phenomenon had been observed
as a difference in the sea-level pressures in thehSPacific, but its characteristics,
extent and linked impacts in temperature and pitatipn were not fully established by
Walker and Bliss in the 1930s (Trenberth and Cagf)0). Nowadays, it is widely
accepted that the Southern Oscillation (SO) is angtary-scale phenomenon, which
involves an atmospheric mass of air in a standiageashape, with a coherent exchange
between the Eastern and Western hemispheres. Tha$@s centre over Indonesia and
the south tropical area of the Pacific Ocean. T@eisSstrongly associated with El Nifio

(EN), in this sense the cold phase is now calledNi@a, while the warm phase is
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frequently termed as EI Nifio, although their asstbmn is not always present.
Nevertheless, the phenomenon is now universallermed as ElI Nifio Southern
Oscillation or ENSO (Ropelewski and Halpert, 1996).

The most extensively SO index recently used, bec#ascorrelation consistency, is the
difference in sea level pressures between TahdtiRarwin. In this research we are going
to use the index defined by Ropelewski and Jon@87)1 The index is calculated using
five-month running means of the SOI that lie beltve threshold of -0.5 standard
deviations for more than five consecutive monthsese cases considered "warm®
episodes, and "cold" episodes are referred to dmerary conditions. Ropelewski and
Jones (1987) state the post 1935 is a reliablecedior ENSO related studies, and this

condition makes it suitable with the purposes efdhalysis.

Nifio 3.4 Index
The high intensity of the ENSO events of the 198liswed the necessity to extend the

definitions of the four regions established in #880s. In this sense, Nifio 3.4 (5° N - 5°
S, 120°- 170° W) is today identified through Seaf&e Temperature (SST) anomalies
centred approximately in the eastern half of theasorial Pacific towards the west near
the date line (fig. 3.6). up to date this index pasved to have the strongest link with
ENSO-related impacts during the last decades (Bamremnd Chelliah, 1997). Since April
1996 the measure also has allowed an improvedtgmeansight of the SSTs within the
vital area between ENSO regions 3 and 4 (fig. 36).the purposes of this research the
standardised version of the Niflo 3.4 index has lm#dected and extracted from the

Climate Diagnostics Center (CDC) websitép://www.cdc.noaa.gov/Climatelndices/
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Fig 3.6. Current defined ENSO regions extracteth ffee Climate Diagnostics Center (CDC) website:
http/Amwwv.cdc.noaa.gov/Climatelndices/

MULTIVARIATE ENSO INDEX (MEI)

Another option to explore the ENSO influence inradaer way (in the Mexican climate
change context) is the Multivariate ENSO Index (MHEIhe MEI is a more complete
climatic measure when compared with the other EN&Iizes available. The ocean and
atmospheric variations are better considered bytitle it is also less vulnerable to the
infrequent data errors of the monthly updating pssc The index is computed as a
weighted average of six different variables overtiiopical Pacific, these parameters are:
sea-level pressure (P), zonal (U) and meridiona) €vrface winds, sea surface
temperature (S), surface air temperature (A), atal tloudiness fraction of the sky (C).
The MEI values are calculated for twelve slidingnmnthly seasons (Dec/Jan, Jan/Feb,
..., Nov/Dec) based on the first unrotated Priac{pomponent of the six combined fields
of observation using the covariance matrix for graction, then standardised with
respect to each season and considering 1950-9Beareterence period. More details
about the index calculations can be found in Wo(E387) and Wolter and Timlin
(1993). Positive MEI values are linked to warm ENS&®iods (El Nifio), while negative
values to cold periods of ENSO (La Nifia). As timdex is said to perform better at large-

scale correlationshftp://www.cdc.noaa.gov/people/klaus.wolter/MElI&ahtml and not

necessarily at regional scales, It is expected k&t can reflect better the relationships
of the ENSO phenomenon with the meteorological aldeis chosen for this study,

despite MEI incorporates more ocean and atmospparameters than the other indices,.
In any case, MEI has been selected to check censigin the results with those of the
SOl and El Nifio 3.4 indices.
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3.3. MATHEMATICAL AND STATISTICAL METHODS APPLIED.

3.3.1. CONSIDERING DATA HOMOGENEITY.
It is well documented that small spatial and terapweariations or observational practices

such as a slight change in the elevation of theostar the type of instrument could
affect the consistency of records of a meteoroklgiariable (Easterling et al., 1999).
These changes could be reflected in the shortray term variation of the time series,
and consequently influence the analysis of climatremes variability, and their
influence on the results can be significant, fanépal Component Analysis (see section
3.3.2) as well. For this reason, it is desirabledst the homogeneity of the stations

selected before applying any analysis.

A time series is said to be homogeneous if allflistuations are caused by natural
variability. In this sense, when an inhomogenedus series is adjusted we are reducing
the uncertainties of the results, and improving aunderstanding of the climate
accordingly. The necessity of a precise scienkfiowledge in this topic has recently
increased its importance within the context of shedy of climate change. Therefore, in
applying the process of homogenisation to the ddilésing different techniques, we are
searching for factors other than climate and weathkhough there is no single best
technique, the approaches currently recommendetiotoogenise a time series are

discussed in the following four steps (Aguilar ket 2003):

1) Metadata analysis and quality control.
2) Creation of a reference time series.
3) Breakpoint detection.

4) Data adjustment.

For the analysis of homogeneity a detailed docuatiemt of the history of the station is
desired. For meteorological purposes the inforrmaéibout the data is called metadata.
Knowledge of the station’s history plays an essémqart when preparing a high-quality

dataset. Consequently, the reliability of the ressid increased when the documentation
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for the stations is available.

Metadata can help to identify changes in the camdit of the station. Among the

changes that can be mentioned are: relocationaceplent of the instrument, exposure
modifications, and changes in the recording procesiuGreater or lesser, all of them
have a direct impact on the parameter values ofsthgon. That is why a complete

history of the station relates actual changes m shation with (gradual or sudden)
observed changing patterns in the time series.

For the present study only digital instrumentaladaere used, in such a way that the
objective was to extract the largest number ofistat Having this sort of digital
information the available metadata was restrictedhe most basic characteristics like
station identifier, location, elevation and climatical normals. Other sources of
metadata like changes in location, instruments, abdervational practices were
inaccessible to this research, making it extrendfficult to determine the artificial

nature of some of the identified inhomogeneities.
Data quality control was addressed in section BiBis chapter, as part of the process of

detection of inhomogeneities. Daily comparisonspagnthe different digital databases

were applied in order to find inconsistencies.
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Once the time series was ready, a set of basitstgtatwere computed like: mean,
standard deviation, maximum and minimum to compgit other climatic studies in
Mexico; these statistics were also used to easlntify outliers. Finally, annual
precipitation, mean temperature and double-masts pere prepared in this quality
control process for every single time series tot spalden changes in the climatic
patterns. The Double-Mass plot is a technique sefili to find inconsistencies in a
climatogical time-series. The underlying assumptien that the plotting of the
accumulation of one quantity (a meteorological paeter at one station) against another
during the same period will produce a straight [{4&° slope) as far as the data are
proportional. So, when a break is found that meanshange in the constant of
proportionality, or that the constant of proporabity is not the same at all rates of
accumulation. Double-mass plots can be used tdifgesme or more inhomogeneities,
and to correct them if the errors are clear endi@his, 1983). An example of a plot

after the application of this technique is seefigares 3.9 and 3.10.
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Fig. 3.9. Annual total precipitation (in mm) fatisin 27042; Tapijulapa, Tabasco.
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No sudden jumps appear in Fig. 3.9 for station 270Papijulapa, Tabasco) after the
guality control process described in section 3.ferAthis analysis and “filtering out”
evident errors like mistyped values, no major clegngeem to have occurred in this
location. The nearly “perfect” slope of the doubtass plot of fig. 3.10 shows that the
time-series of 27042 (against the data for sta?ioP44) can be considered as a reliable

source for the climatic analyses to be applied.

Another stage ofjuality control of the datavas performed using the interactive program
called RClimdex as an initial step to the extremneéces calculation. The main objective
here was to identify possible mistyped errors timatld affect the analysis. For instance,
all precipitation values lower than 0 were constdeas missing data; the same treatment
was applied to the case in which daily minimum terapure was greater or equal than
daily maximum temperature. Fig. 3.7 shows examipleghich Tmin are equal or exceed
the values of Tmax. Meanwhile the fig. 3.8 show regkes in which Tmin values
systematically are equal than Tmax, both set of datrors were corrected before
applying subsequent analyses. The software is alit® to identify outliers for a user-
defined threshold, for the values of temperaturailfyd maximum and minimum
temperature) the lower limit was set to the meanusithree standard deviations (mean -
3 ) and the mean plus three standard deviations (medn) as the upper limit. All
values beyond these thresholds were marked ascguspiand checked, then corrected

accordingly when undisputable errors were present.

Due to the inherent characteristics of inhomog&sitsometimes their variations are

equal or even smaller than real natural climatictthations- the process of detection is
frequently difficult. To overcome this complexityis recommended to create a reference
time series. The most frequent way to construantiseto compute a weighted average
using data from neighbouring stations or to sedesction of surrounding stations whose

data are considered homogeneous.
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A clear regionalisation of the rainfall stationgdwerk made using PCA (see chapter 4)
has facilitated the analysis of homogenisation.ifiga group of stations that coherently
varied across time made the comparisons easiereihted regional and individual
time-series were prepared using the approach pedpby Jones and Hulme (1996).
Using different indices like the Percentage Anomhigex (PAI) and Standardised
Anomaly Index (SAl) all the stations were plotteBeé one example in fig. 3.11)

searching for inhomogeneities.

Fig. 3.11. Standard Anomalised Index (SAI) foetmauial precipitation of all the stations of theliieg Region
4 after the Principal Component Analysis (PCAseetion 4.1).
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In the process of calculation of the regional PAIs SAIs, similarities include the
possibility that the indices of the regions canagaltly avoid local effects. They share the
same order of magnitude, are also designed to $nsoioiden jumps in the series, and can
identify the quasi-periodicity or modulation effexftlarge-atmospheric controls as can be
fully observed in the very wet years of the lat&a® or the prolonged droughts of the
1990s. Among several differences, regional indicas preserve particularities inherent
only to some regions like those along both codmtsdre strongly impacted by hurricanes
(as is the case of the north-eastern region hiflnyicane Gilbert on 1988) or some areas
by ENSO (like the north-western part of Mexicoidgrthe strong El Nifio of 1982-83).
Fig. 3.12 shows the calculated SAls for the elexegions extracted (of total annual

precipitation) using Principal Component Analysied section 4.2).

Fig. 3.12. Standard Anomalised Index (SAI) fordifierent regions (with total annual precipitatiefigr the
Principal Component Analysis (PCA, see table 4.1).
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Unfortunately, the detection of these inconsistemdior temperature using reference
time-series was not feasible, as no clear resudts coherent regions, were obtained with
PCA (see section 4.3). So the construction of theglted regional average was
impossible. Another reason that impeded the compasi among the stations for
temperature was the sparsity of the network; neghhg stations were not available for
comparison of the dubious time-series. Finally, fdwwmogeneous neighbouring

temperature stations were ready to be used irpthisess.

Other indirect methods have been explored to iflemtidocumented inhomogeneities.
If, it is not possible to build a reference timeisg, for reasons such as the sparsity of the
network, there are alternative methods to iderttify sorts of inhomegeneities within the
data. In order to identify a sudden jump in a teeeles, common statistical methods like
t-test are able to deal with the problem very wiélgradual artificial trends are involved
like those caused by urbanisation, then regressmatysis can perform better. For this
study, the R-based program called RHtest was wsitbntify breakpoints. The approach
of the program is the one outlined in Wang (200d)e objective of the two-phase
regression model is to find a sudden changepoint irfic the time-series. This
undocumented breakpoint is found when:

Frax= max k
1£c£En

in which the changepoint ¢ maximises For multiple changepoints c {2,..., n-1} the
Fc is computed as:

_ (SSked - SSkew)
SSEu/(n- 3)

[¢

under the null hypothesis of no changepoints ands&an errors ;, SSEy (the "full
model" sum of squared errors) and |&Hthe "reduced model" of squared errors) are
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defined as:

SSBu = (X Az 8t)'+ (X Fn- 4ty

t=c+1

SSERed: n (Xl' MEd' a’\ Redt)2
t=1

For this technique the case of a two-phase regmessodel with a common trend

( = 1= »)isconsidered, so the time-series is defined as:
_ m+tat+a, 1£t£c
t m+at+ae, C<tEn

In the context of climatology, extremes are singwdaents, within the limits of the
dataset distributions having special weather camttassociated, that makes them of
high interest for climatic studies. In order toesssthese weather extremes daily data are
essential. Until today there are only a few methdds correct sub-monthly
inhomogeneities, Aguilar et al. (2003) give a gasdount of these techniques, although
no recommendations are made to deal with extremtdeege scales. Nevertheless, as it
has been addressed in this section, several pescésyve been applied to identify the

most obvious inconsistencies in the data, in otdl@void misleading results.

Finally, rapid urban growth is a possible factor floe increasing trend in temperatures
across the globe. If we take the definition of urlzes those places with a population
greater than 50,000 (Easterling et al., 1997), axeehthat 8 stations for precipitation and
9 for temperature in Mexico fall under this coraliti The urban heat island has been
explored locally in tropical cities particularly Mexico City by Jauregui (1995), or at

regional and subregional scales by Englehart andglas (2003). Several procedures

have been suggested by Karl et al. (1988) to cbthes urbanisation temperature bias.
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But when compared with the global average rise @amtemperatures, heat urban biases
are relatively small (Karl et al., 1991). Howewverth the geographically widespread and
accumulating evidence towards warming in tempeeatuit is unlikely that urbanisation
plays a key role in the upward trend (Karl et 4B93). Principally because the SST
average of the world is warming at a similar ragetiie land average (IPCC, 2007).
Urbanisation influences cannot be ignored at |lacalles, and care will be taken when

evaluating the results on climate extreme indicesfations within urban areas.

Recent social and economic impacts of extreme svgante highlighted the necessity of
having more than a global network of average mgnthatic conditions. Extraordinary
weather events require by definition long-term, dmgh-quality daily data. Although
there are a few attempts to have a global setibf data (Alexander et al., 2006; Vose et
al., 2005; Easterling et al., 1999), there is & laica worldwide dataset that impedes the
evaluation of climatic changes during the twentiegimtury (Karl and Easterling, 1999;
Jones et al., 1999). This data deficiency is egflgabserved in tropical regions across
the world (Easterling et al., 1997). Until the goéla global database of daily data of the
most important meteorological variables is reactedet of widely accepted climatic
extreme indices is being used instead (Alexandal..€2006; Easterling et al., 2000). The
development in this research of a set of Mexicanatblogical stations with spatial and
temporal improved resolution permits the applicatd up-to-date methods to assess the
secular behaviour of weather extremes in this eguiihis evaluation will contribute to a
better understanding and comparison of the pashatit conditions, in a region
encompassing tropical to subtropical regions witthia context of a global changing

climate.
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3.3.2 PRINCIPAL COMPONENT ANALYSIS (PCA).

No matter what statistics and climatological nosmaduld show us, non-linear behaviour
and multi-dimensionality are still intrinsic, andem more important, frequently dominate
the climate (Hannachi, 2004). In this context ofnptexity, how to extract the most
important information behind a large set of metémywal stations with time discrete
observations, and then make the data simpler torides is one of the basic questions
within atmospheric sciences, and particularly imtmatology. Principal Component

Analysis (PCA) is the main technique to reducedineensionality.

Principal Component Analysis is a powerful multiaée analysis tool that reduces the
high dimensionality of a dataset preserving as nascpossible of the original variability
of the data. In order to achieve these purposes B@wsforms the original set of
observations to a new smaller group of pairwiseowetated variables (Principal
Components, PCs) capturing the largest parts ofatad variance. In that sense, the first
member of the group or First PC is able to extthet highest fraction of the data
variance, then the second Principal Component taairofrom the remaining variance

the second highest part of the variability, andsdFig. 4.2).

The first PC ( {x) is a linear function of the elements x (for pightes) with the largest

maximum variancea, is a vector of constants;y, a1, ... , a1 and¢meaning transpose

(Joliffe, 2002), so the formula could be expresssd

— _ b
9(_311X1+312X2+"'+a1p P j:laljxi

In the same manner, k uncorrelated PG ( ¢x,..., £x) with the maximum variances

in descending order can be extracted. A relativetyall number (m<<p) of PCs

containing most of the variance of the data is gahethe result.

How are these PCs developed? Bebe the covariance (or correlation) matrix of the

vector of random variables (or S for the varianta sample), for each k=1, 2, ..., p. The
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K" PC is defined by,z (xin which , is an eigenvector db that corresponds to thé
largest eigenvalué. If |, (sometimes called loading or coefficient) is coneatly
chosen having unit length { , =1, or normalisation constraint), then vag)€t « is the

variance of gz The searching of the largest eigenvalue that migeis the variance of

each K PC ( (x) could then be expressed in general with the féamu

Var[ (x]=l« for k=1,2,...p.

In the early developments of PCA, unrotated tealesgwere the only option possible;
this condition has gradually changed to the curmeidle spectrum of orthogonal and
oblique rotated solutions which today allow beftesults to be produced. Unrotated
solution techniques, as pointed by Richman (1986)amly suitable for application to

those cases when weak simple structures are prasdnthe PCs extracted have both
positive and negative correlations throughout bé field of study. For this reason,

although explored, unrotated techniques were afplicisregarded in the present

research as being useful for the final interpreteti

The resulting orthogonal PCs often allow easiegrprietation than the original variables
by reducing their dimensionality but conserving thighest possible variance, and
therefore their most important characteristicsebw simple structure is one of the most
important characteristics of PCA. Its objectivetasdecrease the dimensions (p) of the
original matrix in such a way than a linear composif the m PCs found permits a

concise scientific description of every variablecfiinan, 1986).

It is precisely targeting simplicity in the phydicaterpretation that a technique for
rotating PCs is used. Orthogonal solutions west fieveloped to overcome most of the
unrotated techniques limitations, in particular MRX has been extensively used in
climatological studies; the special characterificorthogonal solutions in which each
axis has to be normal to the rest has been frelyugoihted out as artificial. In (rotated)
orthogonal solutions like VARIMAX, QUARTIMAX and EQAMAX the axes are
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selected in such a manner that maximum variationgaleach axis is found, and also
another condition is that any axis must be perprnali to the others. Therefore, all these
rotation methods try to define “important” compotsemas those with the maximum
absolute loadings, and are separated from the towmess. Loadings with moderate

values (not easy for interpretation) are explicatiyided.

Orthogonality is sometimes considered as a nonraatapproach constraining the
solution. Ignoring the orthogonal condition led donew generation of techniques in
which the restriction of perpendicularity was noégent. For this reason, oblique (non-
orthogonal) rotated solutions represented an @t answer to unrotated and
orthogonal solutions in PCA. Oblique methods liKBLOIMIN or PROMAX try to define

clusters and associate them precisely to only amaponent. This characteristic is
frequently linked to the process of clarifying theerpretation when compared with
orthogonal rotated solutions. In atmospheric s@snoblique rotations are sometimes
preferred to orthogonal solutions for their advgetin the interpretation of the results
(Englehart and Douglas, 2002). DIRECT OBLIMIN haeb frequently used amongst
oblique rotations. Nevertheless, PROMAX permitsae results in meteorology when a
network with a large number of stations and higldgrof complexity are found. So, one
orthogonal (VARIMAX) and one oblique solution (PR@M with kappa=2) were

selected as suitable options to explore the complematic variability conditions of

México.

It is known within PCA, and to be more specifictie simple structure rotation theory,
that S-mode helps in regionalisation purposes. 8em® only one of six different matrix
configurations, in which the stations are the calsnaersus time that is the rows in the

array.

In order to cope with contrasting climatic condigoin México: wet regimes in some
south-eastern areas (total annual precipitatid®00 mm) and desert conditions in some
regions of the north (total annual precipitations@metimes less than 300 mm), the

correlation instead of the covariance matrix haanhgsed. Even, when we have variables
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with the same units (mm) as for precipitation, éavgriance differences would dominate
the low-order PCs; so the correlation matricespaederred to covariance matrices for the
PCA. Another reason to prefer correlation matrisethat covariance matrices are often
chosen because of their easier interpretation thirstical inference, but given that the
purpose of this regionalisation is purely descviptas a preparation for further analyses,

that advantage is not a factor for this study.

As this research has both an aim of regionalizatiokléxico but in contrasting climatic
conditions, an obvious question arises: How margiores are sufficient to precisely
describe Mexican climate? This discussion leadhéodetermination of the number of

components to be retained.

Several studies have assessed the performancengie snethods, or contrast the
competence of a number of different techniquesihmre is no consensus about the best
method for determing the most significant numbepmhcipal components (Peres-Neto
et al., 2005; Al-Kandari et al., 2005). Becausetltd size and complexities of the
datasets, a PCA graphical tool called the Screeiesed in this thesis. The component
numbers are the abscissa in the plot and theiegponding eigenvalues the ordinates.
The plot is seen as a mountain in which the slgptimed by the "true number” of
factors containing most of the variance, and thet foy the random components.
Therefore, the foot of the mountain or scree shitaigs closely matching a line at the end
of the plot. The aim is to find the last evidened before the variance between
components becomes negligible (Cattell, 1966). [Blaeorder PCs before this point of
inflexion are then considered as the most relesadtmeaningful for the study.

The determination of the number of PCs and theeedbrclimatic regions in Mexico has
also required a careful classification, i.e., teigis each one of the stations to only one of
the resulting regions. To comply with this requiesrh a strict rule was set of only
accepting absolute loadings greater than 0.4. @\tital., 1991). So, according to this,
the largest value in the loadings (or primary padtematrix clearly defines its

corresponding component and consequently the regiaich the station belongs. With
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the same classification purpose in mind, the ‘ergére one’ criterion was applied

(Mather, 1976), i.e. only eigenvalues greater th&hwere considered for the extraction.
The reason behind this is that, when is normalesach variable has a intrinsic variance
equal to unity, every eigenvalue less than one ldhthen be discriminated, and not
worthy to be considered in the analysis. Finalgcatling that the missing values total
was restricted to less than ten per cent for estton in the network and replaced with
the long-term mean, the election of pairwise dmiise deletion has no influence on the
final results.

All methods of rotation overcome the disadvantagfesnrotated solutions. Among the

drawbacks of these non-rotated solutions we cathiesfollowing:

Geographically dependent results It is a well known phenomenon that sometimes
topography has a strong influence on the delineatad contours. For some

meteorological variables like precipitation, altieu exerts a linear response. This
characteristic is frequently observed in the logdnatterns of the PCs across an area

using unrotated solutions.

No stability. In order to prove the consistency of the resudtsnpetimes the data are
divided into subdomains of the original variablEsr example, a group of stations could
be classified geographically taking into accourirtitoordinates, in which a latitudinal
or longitudinal line could represent a boundaryg&dless of any subdivisions, PCA
patterns should be in accordance to the resultsywihe whole domain is considered
(Comrie and Glenn, 1998).

Closed EigenvaluesWhen extracted eigenvalues are so closely spauest, of the time,
unrotated methods are unable to precisely sep&@g Even worse, sometimes this
problem becomes so difficult that eigenvalues cdadamixed among them.

Artificial Results. Unrotated solutions could produce patterns thattdave a physical
basis, i.eBuell patterns This is particularly true when from a previousight to the data

56



a well known configuration is expected. Richman aachb (1985) shows an example in
which PCs two to 10 are not completely in accordanith the observed patterns before
the analysis.

Regardless of orthogonal or oblique solution edseterpretability classifies the degrees
of simple structure as strong, moderate or weak. dihount of simple structure is best
explored through pairwise plots of the resultingféicients. In theory a strong simple
structure unveils a hidden order in the data.

Among the applications of PCA that can be menticare:

Identification of groups of variables that vary eoéntly in a dataset.

Reduction of the original dimension of the datasesulting in a smaller and

independent set.

PCA is able to eliminate redundancy in the origweaiables.

It could be considered as a preliminary step o$teluanalysis. PCA clarifies the

clustering by eliminating the eigenvectors with bwest-valued eigenvalues.

PCA is an alternative to the construction of acddinear functions of the original

variables; as opposed to a process based solaydori judgements.

The possibility to spot a new group of individuaksying coherently, that other

method cannot successfully achieve.

Principal Component Analysis could help to easitientify “outliers”, i.e.

individuals that are behaving clearly differentite other variables in a group.
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PCA could be considered as a preliminary tool tdtiple regression analysis.
The resulting components could be used as an agproba set of regressor
variables.

3.3.3. REGIONAL AVERAGES.

In performing PCA across the network, the objectives to find different groups of
stations that are varying coherently across tintee amplitude of a particular PC will
incorporate all the stations. Here we want to dateua regional average, based on PCA,
but just with the stations in a region. When calting regional averages we want the
dominant time-series features of the sites to rem@aiso, we are trying to avoid local
factors like topography. We use the approach sugddsy Jones and Hulme (1996) to
compute regional averages. Among the differentcesliproposed, the Standardised
Anomaly Index (SAI) has been selected, to be ctersiswith the extracted ENSO

indices (See section 3.2.3). Standardised anomeketrst calculated for each station as:

where DF}k is the standardised anomaly for year k at statfomm a group of N stations,

in accordance with the resulting regions of PCAtis@ 4.3.1).Pi ands, are mean and

standard deviation of the station i respectivelgs@al on a common period which is the

total length of the time-series).

The weighted regional SAI is computed as follows:

<DFA)|<> = N WiDISik

i=1
In this equation<D|5k>is the regional standardised anomaly for year (imokt The
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weights are obtained as the long-term ratio ofidleal (P ) to regional P means:

where the long-term mean (of the total N yearspfaingle station (i) is defined as:

— 1 N
P=— PR
N =1
and the mean (of all the N stations) of a regign a
_ 1 N _
Py 7
N iz

In order to test the stability of the regional \edwa different weight was utilised

P
W = —
I:)k(total)
in which
N
Petoray = P
i=1

is the sum of the precipitations of all the stasioma region, for a given year (month) k.

The two different results were compared year byr,yéading very similar results.

Therefore, the first approach was used in the gjuesd analyses.

It is important to notice here that, for the regbaverages the same seasonal definitions
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established in section 2.2.1 were applied heretotal annual precipitation, wet (May-
Oct) and dry (Nov-Apr) seasons. These time seriegldvalso be used in our ENSO-
related research. But monthly time-series are alsalable, especially for lag correlation

analyses.

3.3.4. EXTREME WEATHER ANALYSIS.

During the 2005 hurricane season in Mexico, trdpicgclone Stan struck the
south-eastern part of Chiapas State, and lateriddme Wilma hit the Mexican Atlantic
coast around the tourist city of Cancun. There wwagerception with the public,
influenced by the media that extraordinary evengsenwoccurring. The question for the
scientific community, however, is: Are the integséand frequency of extreme events
increasing and if so is this related to anthropagariluences on the climate system? To
scientifically evaluate these sorts of climatic sfiens is very difficult. What is important

first is to be sure that the climatic series argadd quality.

Average climatic conditions and their variabilitgde been extensively explored recently;
this is especially true in the case of anthropogerimate change (Easterling et al.,
1999). Mean conditions of the climate do not giveoanplete picture; they just tell us

part of the history of the changing regional cliesabf the world. Other aspects of these
meteorological parameters need to be explored ifaveeto understand the underlying
processes of the climate system. Amongst the irapbrtharacteristics that can be
assessed are the weather extremes, because theyaod measure of the rapid change
of climate, and also they generally have a gregdarh on society in general. Greater
trends in extremes compared to the mean temperatmds were found in an analysis
applied to long time series from Europe and Chian(et al., 2002). Unfortunately,

studies on climate extremes using daily data alteattively scarce, but improvements

and extension into unanalysed areas are gradualhglmade.

Time series of monthly data are sufficient to ekplahanges in the climatological

normals and their variability on similar or longeane scales (Jones et al., 1999). These
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databases are satisfactory for documenting theatlinmistory of the recent warming at
hemispheric and global scales. But, as recent years shown in different regions of the
world, there appear to be more extremes occurhgxander et al., 2006). Nevertheless,
unequivocal proofs of these fluctuations in weattidremes are necessary to support the

accumulating evidence.

Even in developed countries with potential for &aglimatic databases like the USA and
Canada, there is still a deficiency of homogeneadiunsatological time-series to evaluate
the recent secular behaviour of the extremes is tégion (Easterling et al., 1999).
Ironically the analysis of extremes can also hedp highlight that monthly-based

homogeneity analyses are inadequate (Yan et d12)26ewer studies exist dealing with
extreme weather in developing countries. This #idnais being rectified and a recent
study by Alexander et al. (2006) analyses extensi@msets. This work stems from
developed datasets in specific regions: Africa (Netval.,, 2006), South America
(Haylock et al., 2006), South East Asia and thetlsdRacific (Manton et al., 2001),

Central America and northern South America (Aguidral., 2005), and Central and
South Asia (Klein Tank et al., 2006).

As a country, Mexico is not not well representeddefinitively absent in the climatic
extreme analyses. The very few assessments ohtdrgmg climate in the country were
made as part of a global evaluation or the NortheAgan region (e.g. Alexander et al.,
2006; Vose et al., 2005; Easterling et al., 1999hen dealing with climatological
monthly data as well as for evaluating extremes, glathe problem is the geographical
sparsity of the set of stations with suitable leéegn time-series of daily data. In Mexico,
the Servicio Meteoroldgico Nacional (Mexican Metdogical Service) maintain a
network that has remained unchanged assuring veljationg records with minor
variations (Easterling et al., 1999); but theseadaave only generally been kept in
manuscript form. A key factor that contributed he development in this field of science
was the needs of the Intergovernmental Panel omafd Change (IPCC) to monitor
firstly the mean climatic state of the world anda@®dly to evaluate the trends in extreme

weather at national, regional and global scales.
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There still is not a single way to define an exteemclimate. Up to today climatologists

continue dealing with the problem of isolating ches due to sampling, station location,
and indisputable changes in extremes (Frich et28l02). For these reasons, several
attempts have been made to build a scientific cuhee in the analysis of weather
extremes. Unfortunately, it is very frequent thiaege extraordinary events also have
socio-economic impacts, deeply affecting the wasy thre perceived. Therefore, not only
scientific but sometimes socio-economic considenatinave played an important role in

the process of defining climatic extremes.

The lack of climate extremes definitions has grégubeen overcome. For studying
weather extremes across the USA, Karl et al. (19@6ped an index which was termed
the Climate Extremes Index based not only on theeedence of thresholds for
meteorological variables (such as temperature exipitation), but also the percentage of
the country affected by severe drought. Followingrom this, Beniston and Stephenson
(2004) developed a set of characteristics (not allytuexclusive) that can measure
extremes. These are listed in there study as fstlow

how rare they are, which involves notions of fraggyeof occurrence;

how intense they are, which involves notions oéshiold exceedence; and

the impacts they exert on environmental or econaeators in terms of costs or

damages.
They also point out the way in which weather exegerhave been defined in the Third
Assessment Report of the IPCC (2001) in terms exfiency, as several meteorological
variables (precipitation, wind velocity or tempena) exceed the 10% or 90% quantiles
of their distribution. But it really was when theQ@C 2nd Assessment report identified
the deficiency of studies on trends of daily datd alimate extremes that these efforts
significantly increased in scale: locally, regidpand globally (Alexander et al., 2006;
New et al., 2006; Haylock et al., 2006). Since thegroup of climatologists, The Expert
Team (ET) on Climate Change Detection and Indi€éEEC(CDI) have been conducting
an international effort to develop, calculate andlgse a set of indices to standardise and
compare the results globallgt{p://cccma.seos.uvic.ca/ETCCDMI/index.shtnata
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For Precipitation

PRCPTOT Wet-day precipitation Annual total precipitation from wet days mm
SDII Simple daily intensity index Average precipitation on wet days mm/day
CDD Consecutive dry days Maximum number of consecutive dry days | days
CWD Consecutive wet days Maximum number of consecutive wet days | days
R10mm Heavy precipitation days Annual count of days when RR>=10mm days
R20mm Very heavy precipitation days Annual count of days when RR>=20mm days
R95p Very day wet precipitation Annual total precipitation when RR>=95{ mm
percentile of 1961-1990
R99p Extremely wet day precipitation Annual total precipitation when RR>=99{ mm
percentile of 1961-1990
RX1day Max 1-day precipitation Annual maximum 1-day precipitation mm
RX5day Max 5-day precipitation Annual maximum 5-day precipitation mm
For Temperature
FD Frost days Annual count when TN(daily minimum)<0 C | days
SuU Hot days Annual count when TX(daily maximum)>25 | days
ID Cold days Annual count when TX(daily maximum)<© days
TR20 Warm nights Annual count when TN(daily minimum)> 20 | days
GSL Growing season length Annual count between first span of at le{ days
6 days with TG>5C after winter and first spa
after summer of 6 days with TGG
TXX Hottest day Monthly highest TX C
TNx Hottest night Monthly highest TN C
TXn Coolest day Monthly lowest TX C
TNn Coolest night Monthly lowest TN C
TN10p Cool night frequency Percentage of days when TNZ1percentile of
1961-1990
TX10p Cool day frequency Percentage of days when TX<1percentile of
1961-1990
TN9Op Hot night frequency Percentage of days when TN¥9percentile of
1961-1990
TX90p Hot day frequency Percentage of days when TX¥9percentile of
1961-1990
WSDI Warm spell day index Annual count of days with at least 6 consecuf
days when TX>9b percentile of 1961-1990
CSDI Cold spell day index Annual count of days with at least 6 consecuf
days when TN<1Dpercentile of 1961-1990
DTR Diurnal temperature range Monthly mean difference between TX and TN| C

Table. 3.3. Weather Extreme Indices as definedhieyBExpert Team (ET) on Climate

Detection and Indice€{ CCDI) and tabulated in New et al. (2006).
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quality and calculations can be performed using fiee statistical package “R”

(http://www.r-project.ory through a graphical-interfaced program called lIRDex”.

The current core indices - as defined by the ETtahdlated in New et al. (2006) - are:

REFINING THE DATA SELECTION FOR EXTREME ANALYSIS

Although the selection of stations nearly replisatee process of the Data Extraction (see
section 3.2.); a few additional characteristicsdeeketo be introduced in order to comply
with the slightly more particular conditions necays for the analysis of weather
extremes. As mentioned, meteorological daily res@ne practically indispensable in the
analysis of extreme<riginally, daily temporal resolution was targetédr the data
extraction However, during the process of reviewing and shggp the suitable stations
to be analysed many of them were incomplete withesmissing data. These data were
filled with their corresponding monthly averagestioé same stations whenever it was
available (see section 3.3.2). This means that aniglatively small humber of time-

series are free of unfilled data.

Daily data with low percentages of unfilled datareveoreferred when selecting the
stations to calculate the extreme indices. Givext food spatial coverage was obtained
for the Principal Component Analysis (PCA) (sectbid) for the network of monthly
precipitation, rainfall was used as the referenamlothse for the determination of both:
the best daily records of temperature and pretipitaln order to compare the extreme
analysis with the PCA results, at least one stati@s desirable to be selected per
(precipitation) region. A contrasting assessmentdthen be made between regional and
local scales. The main objective is to obtain faityddata the same database as that set of
monthly rainfall data used in the analysis of PCcdmparison will then be possible
between the regional time series —constructed filmenresults of PCA- and the single
station data, and hopefully find inconsistenciesddferences between their climatic
patterns. The resulting set of stations for bothemmlogical variables is listed in Table
3.2.
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station name longitude” W latitude™N | precip | temp| altfudet| popt
1/ PABELLON DE ARTEAGA AGUASCALIENTES 10233 218 X 1920 3429
2|PRESA RODRIGUEZ BAJA CALIFORNIA 1169 45 X X 100 126
3 COMOND( BAJA CALIFORNIA SUR 118 268 X 200 6386
4{ELPASO DE RITU BAJA CALIFORNIA SUR 1L N X (ﬂ|4 196.90
5/LA PURISIMA BAJA CALIFORNIA SUR 1120 2618 X %14
6/SAN BARTOLO BAJA CALIFORNIA SUR 1098 B3 X 3%
7/ SAN JOSE DEL CABO BAJA CALIFORNIA SUR -109.7 805 X 7 105.46§
8/ SANTA GERTRUDIS BAJA CALIFORNIA SUR 1101 2348 X 3p0
9/SANTIAGO BAJA CALIFORNIA SUR 1097 B4 X 15
10 CHAMPOTON CAMPECHE 0.1 108% X 2 1054
11 0JINAGA CHIHUAHUA 10442 05 X 8L 24307
12/FCO. I MADERO DURANGO 1049 A4 X 1960
13 GUANACEVI DURANGO 1059 58 X 200 10704
14EL PALMITO DURANGO 1047 5 X 1630 60U
15 SANTIAGO PAPASQUIARO DURANGO 10542 505 X 170 431
16{CELAYA GUANAJUATO 10082 2058 179 33298
17 IRAPUATO GUANAJUATO 1013 00 X X 1725 M0.14
1§ PERICOS GUANAJUATO 1011 2052 X 12 20665
19 SALAMANCA GUANAJUATO 10116 2057 X 17 206654
20/ APATZINGAN MICHOACAN 1003 1908 X 6 117989
21 CUITZEQ DEL PORVENIR MICHOACAN -101.1 1997 X 1681 269
22HUNGO MICHOACAN 1008 199 X 183 48917
23 CIUDAD HIDALGO MICHOACAN 10057 19, X 2000 106421
24 TACAPU MICHOACAN 1007 1980 X 196 697
25 AHUACATLAN NAYARIT -104.48 2105 X 9 1531
26{LAMPAZOS NUEVO LEON 10059 2.3 X 30 5305
27 JUCHITAN OAXACA 95,0: 1648 X 45 35245
28 MATIAS ROMERQ OAXACA 95, 1688 X a0 7500
29 SANTO DOMINGO TEHUANTEPEC| OAXACA 95,2 1633 X 5 26
30 MATEHUALA SANLUIS POTOSI 10068 265 X 155 78187
31 BADIRAGUATO SINALOA -107.53 By X X ) 3
32/ YECORA SONORA 108% 831 X 150 6469
33 SAN FERNANDO TAMAULIPAS 981 4% X | X B 5141
JNATZALAN VERACRUZ 4725 1080 X X 189 4819
5 LAS VIGAS VERACRUZ 7.4 1069 X X 3 1416

Table 3.2. Daily data stations for temperature aatipitation for extreme analysis. The
period of records for all the stations is from 19412001. * meters above sea level. +

Population in thousands.
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Thirty five stations were selected for the extreamalysis: 15 of those time-series have
daily precipitation and 26 temperature data. Unfioately for comparison purposes, only
six climatological stations have good enough databbth meteorological variables. The

period of the records for the analysis starts id11@nd ends in 2001. The lengths of
records for precipitation have been reduced fos gtudy to begin in 1941 instead of
1931 as for the monthly records. The reason bethisdlecision is that there should be at
least one climatic representative station contginiaily data per PCA region (see chapter
4). This is true for all regions except those freegion 7 to 11. Climatic regionalisation

using PCA had clear results for annual rainfaliattis why, a time-series per PCA

resulting region was computed utilising weightedrages, besides selecting one climatic
representative station per region. This permits gammson between regional and local
scales for rainfall. However, no clear results ¢hear PCA regions) were obtained for

temperature; this means no PCA regions could bd. Usa this reason, the 175 station
network with monthly precipitation (see section .4.2 was then considered as a
reference for the extraction of the largest numtfetemperature stations. Despite the
limitations, only some north and south-easternsacéghe country were not covered for

the extreme analysis. The spatial coverage of bettvorks is displayed in figure 3.6 a)

for precipitation, and 3.6 b) for temperature.
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Fig 3.13. Network of a) precipitation and b) teraipee stations with daily data for the analysextémes (in
accordance with table 3.2). The period of thedisi®from 1941 to 2001.
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Three main factors dominated the selection prooédbe time-series for the extreme
analysis: daily data, the length of the records #red completeness (low numbers of
missing values). However additional characteristeznsidered were the possible
influence on extremes from: altitude, homogeneitg airbanisation. As discussed in
section 4.2, even though the altitude effect islieitly avoided (using the ratio of the

precipitation of each station to its long-term me#or the PCA on precipitation, high

elevation could still exert its force in the atmbspc phenomena. It is interesting to note

that 6 rainfall and 10 temperature stations ex¢ked 000 m.a.s.l. threshold.

3.3.5 CORRELATION ANALYSES.

Non-parametric Correlations.

Frequently, the task of scientists is to establislationships between two or more
variables. A correlation measures the linear retethip between variables (Field, 2005).
The most widely used method (for the complexitythadir calculations, non-parametric
were more complicated than linear correlationss ihot until recently that computers
have overcome with this limitation) to evaluateskn correlations is the Pearson product-
moment correlation coefficient. Although a linearrelation coefficient can often give
an approximate idea of the strength of the relabietween the variables under study, it
has a limited resistance and robustness, and ad&s feliability in the determination of
the level of significance (Haylock, 2005). Rank (blon-parametric) correlation
coefficients can overcome these limitations; nolyndistributed data is also not a

condition for these techniques.

In contrast to the linear correlation, a non-paraimeorrelation coefficient measures
association, i.e. a monotonic relationship betweanmables. Very well known measures
of association are the Spearman rank-order and &kndau correlation coefficients.
Because Kendall's tau deals better (than Spearmarils small datasets and a large
number of tied ranks (Haylock, 2005), this is tlmniparametric correlation coefficient
that will be used to test the strength of the refethips and level of significance between

two variables in this thesis.
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Kendall's tau-b () is a non-parametric correlation that measuresassciation of the
number of concordant and discordant pairs of oladenvs. A pair of values is said to be
concordant if the vary together, and discordarthd vary differently. The coefficient
ranges between -1 (ranks increasing separatelyjan@anks increasing together). The

formula for Kendall's tau-b is:
_sgn(>§ - X,-)Sgn(yi - yj)

\/(To - Tl)(TO - Tz)

where
T, = n(n- 1)
2
Tl = ti (ti B 1)
2
T2 = ui(ui B 1)
2

t; is the number of tied values in they group of tiedx values, uis the number of tieg

values in they group of tiedy values,n is the number of observations and sgn(z) is

defined as:
1lif z>0
sgn@) = 0if z=0
- 1if z<0

The main advantages of Kendall's tau-b are thatdis&ibution has slightly better
statistical properties and also being defined mn&of probability of concordant and
discordant pairs of observation, this non-parametorrelation coefficient leads to a

direct interpretation of the results (ChrichtonQ 2

69



Lag Correlation.

Responses in meteorological parameters (e.g. Hinfa changes in large-scale
phenomena are not immediate. It sometimes takeseageriod the scale of months to
seasons for an ocean-atmospheric process, like HEENIfio Southern Oscillation), to
be fully developed. Then, for its scientific undargling, it is crucial to address these

delayed modulations when evaluating these atmogptatationships.

The Cross-Correlation function (or lag cross-catieh) is a suitable technique to
measure the time shifts between the continuum agd/ériations (Chatfield, 1991). Its
main purpose is to find the lag that maximisesdbieerence (linear correlation) between
two time series. When this tool is only applied ttee same variable is called
AutoCorrelation Function. Lag Cross-Correlationsstrbe compiled for all lags (positive
or negative), in such a way that a significant maxn correlation is found for a specific

time shift (). The formula that explains these relations behitbe variables is:

WN) (% - R)(Yhue - 3)
CCF(t,) = B

\/(1/N)_ (% - X)Z\/a/N)_ (v 9)°

i=1 i=1

where the lagy is the size of the time shifti=k t, k=0,1,...,N-1 andx y yare the

means of yand x.

This definition implicitly assumes that both timergs are stationary in their means and
variances in a sample of N pairs of values. A didependency expressed in the linear
correlation between the variables is also expectedertheless, this relationship could be
substituted by a non-parametric correlation (e.gead®man’s rho). Although CCF is
probably not the best estimator (Welsh, 1999),sitmainly utilised because of its

efficiency and consistency.
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CCF has among other limitations, the following:
It is defined in terms of linear dependency. Thastriction is really artificial; a
non-linear approach could lead to better results.
Because of its lack of robustness, non-paramedsits ican be more useful than the

linear correlation technique used in the formula.

3.4. CONCLUSIONS.

Studies on climate change using daily data arecscar developing countries. The
research in this area needs reliable informati@peeially long-term time-series. In
Mexico there have been several efforts to developational digital database of
climatological data. Unfortunately, those databastl lack sufficient geographical
coverage and analysis of data quality. Therefore,order to contribute to the
understanding of the climatic patterns of Mexicohw the context of global warming, it
was necessary to construct a national high-qudatabase of rainfall and temperature at

monthly and daily time-scales.

A network of 175 rainfall and 52 temperature stagiovith monthly data, with good
spatial coverage has been prepared to study clictz@ge patterns in Mexico. The
meteorological time-series have been extracted sondifferent digital sources, and a
process of inter-comparison has been applied amihvegn. Monthly data for
precipitation has 71 years of information from 1282001; meanwhile the length of the
daily data (rainfall and temperature) series isytears shorter, spanning 1941 to 2001.
The maximum fraction of missing values was restdcto ten per cent. Climatically
speaking, in most of the country the precipitati®rconcentrated during the months of
May to October, this period was considered as thesgason, while the interval from
November to April was called the dry season. Traefinitions and the computing of

annual figures were also applied to temperatureaddition, basic statistical properties
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like: mean, standard deviation, maximum and mininuaities were calculated to assure

the reliability of the results of the analyseshistresearch.

Three different ENSO-related indices of this pheapan have been selected in order to
test their relationships with the rainfall and teargiure across the country. They are the
Southern Oscillation Index (SOI), Nifio 3.4 and Meltivariate El Nifio index (MEI),

all of them are expressed in a standardised forander to avoid external influences. The
decades of 1980s and 1990s have seen a periodreasing intensity and frequency of
ENSOs, with accumulating evidence of global warmihigerefore, the extracted ENSO
indices are expected to be strongly linked to #iafall and temperature in Mexico at

regional and local scales.

The meteorological variables extracted are expdesseboth monthly and daily time
scales. These temporal scales have had directend in the methods selected and
applied for this research. For instance, PCA i ablunveil a hidden order among a set
of variables. Climatically speaking, one of the mosportant properties is that this
method can find groups of stations varying cohéyenftechnically, rotated are more
efficient than the unrotated solutions, in sepatatclusters of stations with similar
climatic patterns. Furthermore, in order to avolek timpact of any other external
influence like altitude, anomalies were used in #malysis for both temperature and

rainfall.

Based on the results of PCA (see chapter 4), difftemethods to calculate seasonal time-
series of weighted regional averages of precipiatvere explained. Two versions of
weights are considered to estimate the regionaése¢o compare the stability of the
results. Standardised anomalies were also desc¢rthey smooth sudden fluctuations,

while basically preserving the original climatictigans.
Weather extreme indices are defined using the §neteof the Expert Team (ET) on

Climate Change Detection and IndicdSTCCDI). These indices are going to be

calculated using the long-term and high-qualityabases of rainfall and temperature
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described in section 3.2. The main objective imtwease the understanding of weather
extremes in Mexico; as the few studies of climatéreznes were part of global or

regional assessments.

Kendall's tau was selected as an alternative toutheal Pearson correlation coefficient
due to its possibility of dealing with small datessand a great number of tied ranks. This
non-parametric correlation technique has bettertisital properties. Because

meteorological responses to large-atmospheric alsnaire sometimes delayed, lag cross
correlations try to find the lag that maximises tiwherence between two variables. In
this thesis lag correlation is a method that isngdio be applied to find the optimum

relationships between regional precipitation avesagr weather extreme indices and El
Niflo. This technique is preferred for its efficignand consistent results, but is also

sometimes limited to linear correlations so lackiogustness.
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