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CHAPTER 3: METHODS AND ANALYSES APPLIED. 

 

3.1. INTRODUCTION. 

This chapter deals with the extraction of the meteorological variables to be used in the 

analyses and the description of different mathematical and statistical tools to explore the 

patterns and variability of the climatic change in Mexico. 

 

The construction of a large network of long-term high-quality databases of daily 

precipitation and temperature is addressed in the first part of the chapter. The extraction 

procedure for these meteorological time-series and the process of data quality control are 

both explained here. Because one of the purposes of the thesis is to link climate change 

patterns in Mexico during instrumental periods with the El Niño-Southern Oscillation 

(ENSO) phenomenon, the extraction of the three different indices (SOI, Niño 3.4 and 

MEI) used in these thesis are also considered in the first half of this chapter. 

 

Three main mathematical methods are discussed in the second half of this chapter. The 

first is the application of Principal Component Analysis as a tool to find groups of 

stations that vary coherently, together with their use in calculating weighted regional 

averages. The second topic deals with the changes of the climatic variables at the fringes 

of their probability distributions, usually called weather extremes. The last method 

describes the two different approaches to estimate correlations between meteorological 

variables. Non-parametric correlations are obtained using Kendall’s tau, as an alternative 

(to measure the association between the time-series) to the extensively used linear 

correlation is shown first. Lag-cross correlations are finally presented as a tool to find the 

lag that maximises the coherence (linear correlation) between a pair of variables. 
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3.2. DATA EXTRACTION. 

 

In México the longest meteorological time series are those of (land surface) precipitation 

and air temperature, especially the former. This is true for either daily or monthly data. 

As several studies have been made using monthly values, daily figures were the first 

objective of the extraction, in order to explore the possibility of having a database of 

relatively long climatic records with high temporal resolution. 

 

3.2.1. PRECIPITATION AND TEMPERATURE DAILY DATA. 

Among the digitized data considered (because of their digital accessibility and length) 

are: 

 

DAT322© 

This software was prepared by the Mexican Institute of Water Technology (Instituto 

Mexicano de Tecnología del Agua, IMTA) to manage the 322 meteorological stations 

with the longest time series. The selection of the stations included was made by the 

Mexican Meteorological Office (Servicio Meteorológico Nacional, SMN). The 

documentation of this software states that climatological analyses were performed 

according to the Manual of the CLImat COMputing (CLICOM) project of the World 

Meteorological Organization (WMO) to identify outliers in the information. Strangely, it 

does not contain several of the largest cities (presumably with the longest data files) in 

Mexico, failing to present a complete national picture of the potential instrumental 

records. Another problem found is that missing values are defined with a zero value 

instead of the other options conventionally accepted.  

 

ERIC© 

This software was also prepared by IMTA with the latest version released in 2000, and 

contains daily precipitation and temperature data among other variables. Most of the 

stations have information from 1960 to 1995.  No data quality analyses were performed 

in this database, and being typed manually this is not a minor issue. For instance, for 

certain months at several stations, temperature data was typed instead of precipitation in 
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the rainfall time series. That is why, careful attention and reserved use was given to this 

source. 

  

CLICOM 

Another source of data is the already mentioned CLImat COMputing Project (CLICOM) 

of the World Meteorological Organization (WMO). It incorporates digital daily data for 

almost all the stations considered by DAT322 and ERIC, but some of them have been 

updated until 2002 inclusive. Like DAT 322 this database does not include sufficient 

information for the largest - and most of the times oldest - cities in Mexico.  

 

GASIR  

GASIR (Gerencia de Aguas Superficiales e Ingeniería de Ríos) was developed by the 

office of Dams operation and river engineering of the National Water Commission 

(Comisión Nacional del Agua, CNA).  They received daily precipitation data from many 

stations located across the country. Unfortunately, they only have digital information 

available from 1989 to 2001, so this database was used mainly to complete many recent 

gaps. Because this source is used mainly for reservoir purposes, its format is slightly 

different (the date is one day ahead) from the other databases, a program in fortran was 

needed to adapt the precipitation values to the WMO general rules. An important aspect 

of GASIR data, on the other hand, is that it has good quality as a whole and is almost free 

of errors. 

 

 

3.2.2. STATIONS SELECTED. 

 

Having all those daily digital databases available, it was necessary to choose the most 

appropriate stations for the subsequent analyses. Because, according to its 

documentation, DAT322 claimed to have the longest records selected by SMN, it was 

selected as the first reference or the start of the extraction for every station to be 

processed.  The first condition defined – for climatological reasons - was that every 

station to be considered should have at least thirty years of information. Less than ten per 

cent of missing values was considered as a second limitation to extract a time series. So, 
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every other source already mentioned with time series fulfilling both conditions was 

included initially. 

 

 

DATA EXTRACTION PROCEDURE. 

 

Having enough information is not a sufficient condition for climatic studies. It is essential 

to assure the quality of the data extracted. That is why a procedure was designed to 

compare and complete the data for every station to be processed. Basically, it could be 

described as follows: every station in DAT322 having thirty or more years of information 

was compared with the other different sources and the missing values filled when 

possible. Then, with the daily data ready, a process to compute monthly values (mean 

temperatures or accumulated precipitation) and basic statistics was performed. The 

maximum number of missing values allowed for a month was set to four, otherwise the 

month was considered as missing. With these statistics it was also possible to identify 

(for instance, in comparison with known climatological normals) suspicious values (see 

fig. 3.1). An example in which data from ERIC substitute missing values (tagged as -1 in 

fig. 3.2) in the CLICLOM database. Another case in which the values in the CLICOM 

database has been multiply by a factor of ten are replaced with the ERIC data (see fig. 

3.3). 

 

After all this information was processed, only a limited number (93 stations, see table 3.1 

and fig. 3.4) of daily data stations were considered as being long enough, resulting - 

already pointed out by several authors - in the sparsity of the meteorological observations 

network (O’ Hara and Metcalfe, 1995; Englehart and Douglas, 2003). So, another source 

was used. Such a database is a monthly precipitation collection from 1931 to 1989; it was 

prepared by Carlos Espinosa Cruishank (specialist in Hydraulics) in the SMN. Hence, a 

triple checking process was made with every time series: among Espinosa’s monthly 

data, climatological monthly figures by García (1988), and the data processed (DAT322, 

CLICOM, ERIC, and GASIR) from the stations reporting daily. Finally, a plot of every 

annual time series was made in order to find any inconsistency among of them. 
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Fig. 3.1. DAILY DATA EXTRACTION PROCEDURE 
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Fig. 3.2. Example of daily precipitation data being corrected. Two different databases are compared. In this case, 

missing values (-1) in one time-series (CLICOM) are corrected with the second dataset (ERIC). 
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Fig. 3.3. Example of daily precipitation data being corrected. Two different databases are compared. In this case, 

a systematic error (values are multiplied by a factor of 10) in the first time-series (CLICOM) are substituted by 

the corrected values in the second dataset (ERIC). 
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STATION NAME STATE SMN ID LONGITUDE LATITUDE ALTITUDE*

1 PABELLON DE ARTEAGA AGS 01014 -102.33 22.18 1920
2 PRESA CALLES AGS 01018 -102.43 22.13 2025
3 PRESA RODRIGUEZ BCN 02038 -116.90 32.45 100
4 EL PASO DE IRITU BCS 03012 -111.12 24.77 140
5 LA PURíSIMA BCS 03029 -112.08 26.18 95
6 LORETO BCS 03035 -111.33 26.00 15
7 SAN JOSE DEL CABO BCS 03056 -109.67 23.05 7
8 SANTA ROSALíA BCS 03061 -112.28 27.30 17
9 SANTIAGO BCS 03062 -109.73 23.47 125

10 TODOS SANTOS (DGE) BCS 03066 -110.22 23.43 18
11 CHAMPOTON CAMP 04008 -90.72 19.35 2
12 HECELCHAKAN CAMP 04011 -90.13 20.18 13
13 SABANCUY CAMP 04029 -91.11 18.97 2
14 RAMOS ARIZPE COAH 05032 -100.98 25.53 1399
15 SALTILLO COAH 05048 -101.00 25.42 645
16 COLIMA COL 06040 -103.73 19.23 495
17 OCOZOCUAUTLA CHIAP 07123 -93.38 16.70 864
17 CIUDAD GUERRERO CHIH 08028 -108.52 28.52 2000
18 CD CUAUHTEMOC CHIH 08026 -106.85 28.42 2050
19 CIUDAD DELICIAS CHIH 08044 -105.43 28.20 1170
20 HIDALGO DEL PARRAL CHIH 08078 -105.67 26.93 1950
21 LA JUNTA CHIH 08090 -107.97 28.75 1900
22 BATOPILAS CHIH 08161 -107.75 27.02 556
23 EL PALMITO DUR 10021 -104.78 25.52 1540
24 FCO. I MADERO DUR 10027 -104.30 24.47 1960
25 GUANACEVI DUR 10029 -105.97 25.93 2200
26 RODEO DUR 10060 -104.53 25.18 1340
27 SAN MARCOS DUR 10070 -103.50 24.27
28 SANTIAGO PAPASQUIARO DUR 10100 -105.42 25.05 1740
29 IRAPUATO GTO 11028 -101.35 20.68 1725
30 SAN DIEGO DE LA UNION GTO 11064 -100.87 21.47 2080
31 SAN JOSE ITURBIDE GTO 11066 -100.40 21.00 2100
32 AYUTLA (CFE) GRO 12012 -99.10 16.95
33 CHILAPA GRO 12110 -99.18 17.60 1450
34 HUICHAPAN HGO 13012 -99.65 20.38 1102
35 MIXQUIHUALA HGO 13018 -99.20 20.23 2050
36 CHAPALA JAL 14040 -103.20 20.30 1523
37 MASCOTA JAL 14096 -104.82 20.52 1240
38 SAN FRANCISCO MEX 15089 -99.97 19.30 2630
39 LA PIEDAD CABADAS (DGE) MICH 16065 -102.03 20.37 1700
40 TACAMBARO MICH 16123 -101.47 19.23 1820
41 YURECUARO MICH 16141 -102.28 20.35 1537
42 ZAMORA MICH 16144 -102.28 20.00 1540
43 CUERNAVACA MOR 17004 -99.25 18.92 1529
44 ACAPONETA NAY 18001 -105.37 22.50 22
45 CADEREYTA NL 19008 -100.00 25.60 350
46 EL CUCHILLO NL 19016 -99.25 25.73 145  
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STATION NAME STATE SMN ID LONGITUDE LATITUDE ALTITUDE*

47 LOS RAMONES NL 19042 -99.63 25.70 210
48 MONTEMORELOS NL 19048 -99.83 25.20 425
49 MONTERREY NL 19052 -100.30 25.68 540
50 JUCHITAN OAX 20048 -95.03 16.43 46
51 MATIAS ROMERO OAX 20068 -95.03 16.88 201
52 SANTO DOMINGO TEHUANTEPEC OAX 20149 -95.23 16.33 95
53 PIAXTLA PUE 21063 -98.25 18.20 1155
54 TEZIUTLAN PUE 21091 -97.35 19.82 2050
55 HUAUCHINANGO PUE 21118 -98.05 20.18 1575
56 JALPAN QRO 22008 -99.47 21.22 860
57 PRESA CENTENARIO QRO 22025 -99.90 20.52 1880
58 ALVARO OBREGON QROO 23001 -88.62 18.30
59 CHETUMAL QROO 23032 -88.30 18.50 6
60 CHARCAS SLP 24010 -101.12 23.13 2020
61 MATEHUALA SLP 24040 -100.63 23.65 1575
62 MEXQUITIC SLP 24042 -101.12 22.27 2030
63 SAN LUIS POTOSI (DGE) SLP 24069 -100.97 22.15 1870
64 CIUDAD DEL MAIZ SLP 24116 -99.60 22.40 1245
65 BADIRAGUATO SIN 25110 -107.55 25.37 230
66 QUIRIEGO SON 26075 -109.25 27.52 521
67 TRES HERMANOS SON 26102 -109.20 27.20 100
68 YECORA SON 26109 -108.95 28.37
69 SAN FERNANDO TAM 28086 -98.15 24.85 43
70 TAMPICO (DGE) TAM 28111 -97.87 22.22 12
71 VILLAGRAN TAM 28118 -99.48 24.48 380
72 APIZACO TLX 29002 -98.13 19.42 2404
73 TLAXCALA TLX 29030 -98.23 19.32 2552
74 TLAXCO TLX 29032 -98.13 19.63 2444
75 CATEMACO VER 30022 -95.10 18.42 338
76 CHICONTEPEC VER 30041 -98.17 20.98 595
77 IXHUATLAN VER 30072 -98.00 20.70 306
78 JALTIPAN VER 30077 -94.43 17.97 46
79 PAPANTLA VER 30125 -97.32 20.45 298
80 RINCONADA VER 30141 -96.55 19.35 313
81 SOLEDAD DOBLADO VER 30163 -96.42 19.05 183
82 VERACRUZ VER 30192 -96.13 19.20 16
83 JALAPA VER 30228 -96.92 19.53 1999
84 TUXPAN VER 30229 -97.40 20.95 4
85 PANUCO VER 30285 -98.17 22.05 60
86 PROGRESO YUC 31023 -89.65 21.28 8
87 SOTUTA YUC 31030 -89.02 20.60 11
88 MERIDA (DGE) YUC 31044 -89.62 20.98 9
89 EL SAUZ ZAC 32018 -103.23 23.18 2100
90 SOMBRERETE ZAC 32054 -103.63 23.63 2300
91 JUCHIPILA ZAC 32067 -103.13 21.42 1240
92 TEUL DE GLEZ. ORTEGA ZAC 32070 -103.47 21.47 1900
93 ZACATECAS ZAC 32086 -102.57 22.77 2450  

Table 3.1. Spatially incomplete network of daily data stations for precipitation. The period of records for all the 

stations is from 1931 to 2001. * meters above sea level.  
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Fig. 3.4. Resulting network of 93 stations after the first stage of extraction of daily rainfall data. 

 

The final network consists of a set of 175 stations having monthly precipitation, 168 are 

Mexican and 7 are southern USA stations, with good spatial coverage (Table 3.2, and 

Fig. 3.5). The length of every time series is of 71 years, starting in 1931 and ending in 

2001. The maximum percentage of missing values was restricted to 10%.  

 

It is possible that some information has been left out of the extraction efforts as there are 

some records still on paper in SMN, but this is unlikely to happen in terms of digital 

databases. All the currently known Mexican climatological digitised sources were 

considered. That is why an acceptable spatial coverage is expected, markedly better than 

all the few former studies aiming at a national appraisal of the Mexican climate using the 

longest time series available. For extraction purposes of precipitation and temperature 

data, the definitions of wet and dry seasons established in section 2.2.1 are applied in this 

chapter. 
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STATION NAME STATE SMN ID LONGITUDE LATITUDE* ALTITUDE+

1 AGUASCALIENTES AGS 01001 -102.30 21.88 1870
2 PABELLON DE ARTEAGA AGS 01014 -102.33 22.18 1920
3 PRESA CALLES AGS 01018 -102.43 22.13 2025
4 PRESA RODRIGUEZ BCN 02038 -116.90 32.45 100
5 ENSENADA BCN 02072 -116.60 31.88 24
6 BUENAVISTA BCS 03004 -111.80 25.10 30
7 EL PASO DE IRITU BCS 03012 -111.12 24.77 140
8 LA PURíSIMA BCS 03029 -112.08 26.18 95
9 LORETO BCS 03035 -111.33 26.00 15

10 MULEGE BCS 03038 -111.98 26.88 35
11 SAN BARTOLO BCS 03050 -109.85 23.73 395
12 SAN JOSE DEL CABO BCS 03056 -109.67 23.05 7
13 SANTA GERTRUDIS BCS 03060 -110.10 23.48 350
14 SANTA ROSALíA BCS 03061 -112.28 27.30 17
15 SANTIAGO BCS 03062 -109.73 23.47 125
16 TODOS SANTOS (DGE) BCS 03066 -110.22 23.43 18
17 LA PAZ BCS 03074 -110.37 24.15 10
18 SABANCUY CAMP 04029 -91.11 18.97 2
19 CAMPECHE CAMP 04038 -90.53 19.85 8
20 CHAMPOTON CAMP 04041 -90.72 19.37 2
21 PRESA VENUSTIANO CARRANZA COAH 05030 -100.60 27.52 270
22 RAMOS ARIZPE COAH 05032 -100.98 25.53 1399
23 MONCLOVA COAH 05047 -101.42 26.90 645
24 SALTILLO COAH 05048 -101.00 25.42 1520
25 MANZANILLO COL 06018 -104.32 19.05 3
26 COLIMA COL 06040 -103.73 19.23 495
27 COMITAN CHIAP 07025 -92.13 16.25 1530
28 MOTOZINTLA CHIAP 07119 -92.25 15.37 1455
29 CIUDAD DELICIAS CHIH 08044 -105.43 28.20 1170
30 HIDALGO DEL PARRAL CHIH 08078 -105.67 26.93 1950
31 CHINIPAS CHIH 08167 -108.53 27.40 700
32 CAÑON FERNANDEZ DUR 10004 -103.75 25.28 1300
33 LERDO DUR 10009 -103.52 25.53 1135
34 CUENCAME DUR 10012 -103.67 24.78 1580
35 EL SALTO DUR 10025 -105.37 23.78 2538
36 FCO. I MADERO DUR 10027 -104.30 24.47 1960
37 GUANACEVI DUR 10029 -105.97 25.93 2200
38 NAZAS DUR 10049 -104.12 25.23 1245
39 RODEO DUR 10060 -104.53 25.18 1340
40 CELAYA GTO 11009 -100.82 20.53 1754
41 DOLORES HIDALGO GTO 11017 -100.93 21.15 1920
42 IRAPUATO GTO 11028 -101.35 20.68 1725
43 OCAMPO GTO 11050 -101.48 21.65 2250
44 SALVATIERRA GTO 11060 -100.87 20.22 1760
45 SAN DIEGO DE LA UNION GTO 11064 -100.87 21.47 2080
46 SAN JOSE ITURBIDE GTO 11066 -100.40 21.00 2100
47 SANTA MARíA YURIRíA GTO 11071 -101.15 20.22 1751  
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STATION NAME STATE SMN ID LONGITUDE LATITUDE* ALTITUDE+

48 PRESA VILLA VICTORIA GTO 11082 -100.22 21.22 1740
49 SAN MIGUEL DE ALLENDE GTO 11093 -100.75 20.92 1900
50 GUANAJUATO GTO 11094 -101.25 21.02 2037
51 LEON (LA CALZADA, DGE) GTO 11095 -101.68 21.08 1809
52 AYUTLA (CFE) GRO 12012 -99.10 16.95
53 IGUALA GRO 12116 -99.53 18.35 635
54 HUICHAPAN HGO 13012 -99.65 20.38 1102
55 SANTIAGO TULANTEPEC HGO 13031 -98.37 20.08 2180
56 PACHUCA HGO 13056 -98.73 20.12 2435
57 PRESA REQUENA HGO 13084 -99.32 19.97 2109
58 ATEQUIZA (CHAPALA) JAL 14016 -103.13 20.40 1520
59 CHAPALA JAL 14040 -103.20 20.30 1523
60 EL FUERTE, OCOTLáN JAL 14047 -102.77 20.30 1527
61 GUADALAJARA JAL 14066 -103.42 20.72 1583
62 MAZAMITLA JAL 14099 -103.02 19.92 2800
63 TEPALPA JAL 14142 -103.77 19.95 2060
64 CD. GUZMAN JAL 14500 -103.47 19.70 1535
65 APATZINGAN MICH 16007 -102.35 19.08 682
66 PRESA COINTZIO MICH 16022 -101.27 19.62 1997
67 CUITZEO DEL PORVENIR MICH 16027 -101.15 19.97 1831
68 HUINGO MICH 16052 -100.83 19.92 1832
69 JESUS DEL MONTE (MORELIA) MICH 16055 -101.15 19.65 1950
70 LA CAIMANERA MICH 16059 -100.90 18.47 287
71 PRESA LA VILLITA MICH 16070 -102.18 18.05
72 MORELIA (DGE) MICH 16081 -101.18 19.70 1941
73 YURECUARO MICH 16141 -102.28 20.35 1537
74 ZAMORA MICH 16144 -102.28 20.00 1540
75 ZINAPECUARO MICH 16145 -100.82 19.87 1840
76 ARTEAGA MICH 16151 -102.28 18.35 860
77 CIUDAD HIDALGO MICH 16152 -100.57 19.70 2000
78 URUAPAN MICH 16164 -102.07 19.42 1610
79 ZACAPU MICH 16171 -101.78 19.82 1986
80 ATLATLAHUACáN MOR 17001 -98.90 18.93 1630
81 CUERNAVACA MOR 17004 -99.25 18.92 1529
82 CUAUTLA MOR 17005 -98.95 18.82 1291
83 PRESA EL RODEO MOR 17006 -99.32 18.78 1100
84 ACAPONETA NAY 18001 -105.37 22.50 22
85 AHUACATLAN NAY 18002 -104.48 21.05 990
86 IXTLAN DEL RIO NAY 18016 -104.37 21.03 1035
87 LAS GAVIOTAS NAY 18021 -105.15 20.88 43
88 TEPIC NAY 18038 -104.88 21.50 920
89 ALLENDE NL 19003 -100.03 25.28 457
90 CERRALVO NL 19010 -99.62 26.08 345
91 EL CUCHILLO NL 19016 -99.25 25.73 145
92 HIGUERAS NL 19025 -100.02 25.95
93 ITURBIDE NL 19027 -99.92 24.73 1480
94 LAMPAZOS NL 19028 -100.52 27.03 320  
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STATION NAME STATE SMN ID LONGITUDE LATITUDE* ALTITUDE+

95 LOS RAMONES NL 19042 -99.63 25.70 210
96 MIMBRES, GALEANA NL 19047 -100.25 24.97
97 MONTEMORELOS NL 19048 -99.83 25.20 425
98 MONTERREY NL 19052 -100.30 25.68 540
99 HUAJUAPAN DE LEON OAX 20035 -97.78 17.80 1650

100 SANTA MARíA JACATEPEC OAX 20042 -96.20 17.85
101 JUCHITAN OAX 20048 -95.03 16.43 46
102 MATIAS ROMERO OAX 20068 -95.03 16.88 201
103 OAXACA DE JUAREZ OAX 20079 -96.72 17.03 1550
104 SANTO DOMINGO TEHUANTEPEC OAX 20149 -95.23 16.33 95
105 PIAXTLA PUE 21063 -98.25 18.20 1155
106 PUEBLA PUE 21065 -98.18 19.03 2209
107 TEZIUTLAN PUE 21091 -97.35 19.82 2050
108 ZOQUITLAN PUE 21114 -97.02 18.35 2140
109 PRESA CENTENARIO QRO 22025 -99.90 20.52 1880
110 ALVARO OBREGON QROO 23001 -88.62 18.30
111 CHETUMAL QROO 23032 -88.30 18.50 6
112 BALLESMI SLP 24005 -98.93 21.75 30
113 CERRITOS SLP 24008 -100.28 22.43 1150
114 CHARCAS SLP 24010 -101.12 23.13 2020
115 MATEHUALA SLP 24040 -100.63 23.65 1575
116 MEXQUITIC SLP 24042 -101.12 22.27 2030
117 SAN LUIS POTOSI (DGE) SLP 24069 -100.97 22.15 1870
118 TANZABACA SLP 24090 -99.22 21.67 120
119 BOCATOMA SUFRAGIO SIN 25009 -108.78 26.08 152
120 CULIACAN SIN 25015 -107.40 24.82 62
121 CHOIX (DGE) SIN 25019 -108.33 26.73 350
122 EL FUERTE SIN 25023 -108.62 26.42 84
123 GUAMUCHIL SIN 25037 -108.08 25.47 45
124 BADIRAGUATO SIN 25110 -107.55 25.37 230
125 MAZATLAN SIN 25135 -106.38 23.22 3
126 CIUDAD OBREGON SON 26018 -109.97 27.50 35
127 PRESA LA ANGOSTURA SON 26069 -109.37 30.43 50

128 TRES HERMANOS SON 26102 -109.20 27.20 100
129 YECORA SON 26109 -108.95 28.37
130 HERMOSILLO SON 26138 -110.97 29.07 200
131 (PRESA) PLUTARCO ELIAS CALLES SON 26191 -110.63 29.93
132 COLMACALCO TAB 27009 -93.22 18.27 10
133 TAPIJULAPA TAB 27042 -92.77 17.45 60
134 TEAPA TAB 27044 -92.95 17.55 72
135 ABASOLO TAM 28001 -98.37 24.05 61
136 MANTE (CAMPO EXPERIMENTAL INGENIO ) TAM 28012 -98.98 22.73 100
137 ANTIGUO MORELOS (EL REFUGIO) TAM 28032 -99.08 22.55 242
138 MIGUEL HIDALGO TAM 28038 -99.43 24.25
139 MAGISCATZIN TAM 28058 -98.70 22.80 90
140 SAN FERNANDO TAM 28086 -98.15 24.85 43
141 TAMPICO (DGE) TAM 28111 -97.87 22.22 12
142 VILLAGRAN TAM 28118 -99.48 24.48 380  
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STATION NAME STATE SMN ID LONGITUDE LATITUDE* ALTITUDE+

143 SOTO LA MARINA TAM 28152 -98.20 23.77 25
144 APIZACO TLX 29002 -98.13 19.42 2404
145 TLAXCALA TLX 29030 -98.23 19.32 2552
146 TLAXCO TLX 29032 -98.13 19.63 2444
147 ANGEL R. CABADAS VER 30011 -95.45 18.60 19
148 ATZALAN VER 30012 -97.25 19.80 1842
149 CATEMACO VER 30022 -95.10 18.42 338
150 CD. ALEMáN VER 30025 -96.08 18.18 29
151 CHICONTEPEC VER 30041 -98.17 20.98 595
152 IXHUATLAN VER 30072 -98.00 20.70 306
153 JALTIPAN VER 30077 -94.43 17.97 46
154 PAPANTLA VER 30125 -97.32 20.45 298
155 RINCONADA VER 30141 -96.55 19.35 313
156 VERACRUZ VER 30192 -96.13 19.20 16
157 LAS VIGAS VER 30211 -97.10 19.65 37
158 JALAPA VER 30228 -96.92 19.53 1999
159 TUXPAN VER 30229 -97.40 20.95 4
160 PANUCO VER 30285 -98.17 22.05 60
161 PROGRESO YUC 31023 -89.65 21.28 8
162 SOTUTA YUC 31030 -89.02 20.60 11
163 MERIDA (DGE) YUC 31044 -89.62 20.98 9
164 EL SAUZ ZAC 32018 -103.23 23.18 2100
165 SOMBRERETE ZAC 32054 -103.63 23.63 2300
166 JUCHIPILA ZAC 32067 -103.13 21.42 1240
167 TEUL DE GLEZ. ORTEGA ZAC 32070 -103.47 21.47 1900
168 ZACATECAS ZAC 32086 -102.57 22.77 2450
169 ABILENE TX ABITX -99.70 32.40
170 EL PASO TX ELPTX -106.50 31.80
171 ELEPHANT BUTTE DAM NM EPBNM -107.18 33.15
172 PHOENIX AZ PHXAZ -112.00 33.50
173 SAN DIEGO CA SANCA -117.20 32.70
174 SAN ANTONIO TX SATTX -98.47 29.53
175 TUCSON AZ TUSAZ -110.95 32.23  

 

 

Table 3.2. Spatially incomplete network of daily data stations for precipitation. The period of records for all the 

stations is from 1931 to 2001. * meters above sea level.  
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Fig. 3.5. Meteorological network of 175 with monthly precipitation data from 1931 to 2001 as used in the 

analysis of Principal Components (PC). 

 

 

3.2.3 ENSO INDICES. 

 
The Southern Oscillation Index (SOI). 

One of the most typical measures utilised to explore the impacts of ENSO, is the 

Southern Oscillation Index (SOI). Since the 1800s this phenomenon had been observed 

as a difference in the sea-level pressures in the South Pacific, but its characteristics, 

extent and linked impacts in temperature and precipitation were not fully established by 

Walker and Bliss in the 1930s (Trenberth and Caron, 2000). Nowadays, it is widely 

accepted that the Southern Oscillation (SO) is a planetary-scale phenomenon, which 

involves an atmospheric mass of air in a standing wave shape, with a coherent exchange 

between the Eastern and Western hemispheres. The SO has its centre over Indonesia and 

the south tropical area of the Pacific Ocean. The SO is strongly associated with El Niño 

(EN), in this sense the cold phase is now called La Niña, while the warm phase is 



 39 

frequently termed as El Niño, although their association is not always present. 

Nevertheless, the phenomenon is now universally referred as El Niño Southern 

Oscillation or ENSO (Ropelewski and Halpert, 1996). 

 

The most extensively SO index recently used, because its correlation consistency, is the 

difference in sea level pressures between Tahiti and Darwin. In this research we are going 

to use the index defined by Ropelewski and Jones (1987). The index is calculated using 

five-month running means of the SOI that lie below the threshold of -0.5 standard 

deviations for more than five consecutive months; these cases considered "warm" 

episodes, and "cold" episodes are referred to the contrary conditions. Ropelewski and 

Jones (1987) state the post 1935 is a reliable source for ENSO related studies, and this 

condition makes it suitable with the purposes of the analysis. 

 

Niño 3.4 Index  

The high intensity of the ENSO events of the 1990s showed the necessity to extend the 

definitions of the four regions established in the 1980s. In this sense, Niño 3.4 (5° N - 5° 

S, 120°- 170° W) is today identified through Sea Surface Temperature (SST) anomalies 

centred approximately in the eastern half of the equatorial Pacific towards the west near 

the date line (fig. 3.6). up to date this index has proved to have the strongest link with 

ENSO-related impacts during the last decades (Barnston and Chelliah, 1997). Since April 

1996 the measure also has allowed an improved scientific insight of the SSTs within the 

vital area between ENSO regions 3 and 4 (fig. 3.6). For the purposes of this research the 

standardised version of the Niño 3.4 index has been selected and extracted from the 

Climate Diagnostics Center (CDC) website: http://www.cdc.noaa.gov/ClimateIndices/. 
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Fig 3.6. Current defined ENSO regions extracted from the Climate Diagnostics Center (CDC) website: 

http://www.cdc.noaa.gov/ClimateIndices/. 

 

 
MULTIVARIATE ENSO INDEX (MEI) 

Another option to explore the ENSO influence in a broader way (in the Mexican climate 

change context) is the Multivariate ENSO Index (MEI). The MEI is a more complete 

climatic measure when compared with the other ENSO indices available. The ocean and 

atmospheric variations are better considered by it, while it is also less vulnerable to the 

infrequent data errors of the monthly updating process. The index is computed as a 

weighted average of six different variables over the tropical Pacific, these parameters are: 

sea-level pressure (P), zonal (U) and meridional (V) surface winds, sea surface 

temperature (S), surface air temperature (A), and total cloudiness fraction of the sky (C). 

The MEI values are calculated for twelve sliding bi-monthly seasons (Dec/Jan, Jan/Feb, 

... , Nov/Dec) based on the first unrotated Principal Component of the six combined fields 

of observation using the covariance matrix for the extraction, then standardised with 

respect to each season and considering 1950-93 as the reference period. More details 

about the index calculations can be found in Wolter (1987) and Wolter and Timlin 

(1993). Positive MEI values are linked to warm ENSO periods (El Niño), while negative 

values to cold periods of ENSO (La Niña). As this index is said to perform better at large-

scale correlations (http://www.cdc.noaa.gov/people/klaus.wolter/MEI/table.html) and not 

necessarily at regional scales, It is expected that MEI can reflect better the relationships 

of the ENSO phenomenon with the meteorological variables chosen for this study, 

despite MEI incorporates more ocean and atmospheric parameters than the other indices,. 

In any case, MEI has been selected to check consistency in the results with those of the 

SOI and El Niño 3.4 indices. 
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3.3. MATHEMATICAL AND STATISTICAL METHODS APPLIED. 
 

 

3.3.1. CONSIDERING DATA HOMOGENEITY. 

It is well documented that small spatial and temporal variations or observational practices 

such as a slight change in the elevation of the station or the type of instrument could 

affect the consistency of records of a meteorological variable (Easterling et al., 1999). 

These changes could be reflected in the short or long term variation of the time series, 

and consequently influence the analysis of climate extremes variability, and their 

influence on the results can be significant, for Principal Component Analysis (see section 

3.3.2) as well. For this reason, it is desirable to test the homogeneity of the stations 

selected before applying any analysis. 

 

A time series is said to be homogeneous if all its fluctuations are caused by natural 

variability. In this sense, when an inhomogeneous time series is adjusted we are reducing 

the uncertainties of the results, and improving our understanding of the climate 

accordingly. The necessity of a precise scientific knowledge in this topic has recently 

increased its importance within the context of the study of climate change. Therefore, in 

applying the process of homogenisation to the data, utilising different techniques, we are 

searching for factors other than climate and weather. Although there is no single best 

technique, the approaches currently recommended to homogenise a time series are 

discussed in the following four steps (Aguilar et al., 2003): 

 

1) Metadata analysis and quality control. 

2) Creation of a reference time series. 

3) Breakpoint detection. 

4) Data adjustment. 

 

For the analysis of homogeneity a detailed documentation of the history of the station is 

desired. For meteorological purposes the information about the data is called metadata. 

Knowledge of the station’s history plays an essential part when preparing a high-quality 

dataset. Consequently, the reliability of the results is increased when the documentation 
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for the stations is available. 

 

Metadata can help to identify changes in the conditions of the station. Among the 

changes that can be mentioned are: relocation, replacement of the instrument, exposure 

modifications, and changes in the recording procedures. Greater or lesser, all of them 

have a direct impact on the parameter values of the station. That is why a complete 

history of the station relates actual changes in the station with (gradual or sudden) 

observed changing patterns in the time series.   

 

For the present study only digital instrumental data were used, in such a way that the 

objective was to extract the largest number of stations. Having this sort of digital 

information the available metadata was restricted to the most basic characteristics like 

station identifier, location, elevation and climatological normals. Other sources of 

metadata like changes in location, instruments, and observational practices were 

inaccessible to this research, making it extremely difficult to determine the artificial 

nature of some of the identified inhomogeneities.  

 

Data quality control was addressed in section 3.2 of this chapter, as part of the process of 

detection of inhomogeneities. Daily comparisons, among the different digital databases 

were applied in order to find inconsistencies.  
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Fig. 3.7. Station with daily temperature errors before being corrected. In this case Tmin values are greater than 

Tmax. 

 

Fig. 3.8. Station with daily temperature errors before being corrected. In this case Tmin and Tmax have the same 

values. 
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Once the time series was ready, a set of basic statistics were computed like: mean, 

standard deviation, maximum and minimum to compare with other climatic studies in 

Mexico; these statistics were also used to easily identify outliers. Finally, annual 

precipitation, mean temperature and double-mass plots were prepared in this quality 

control process for every single time series to spot sudden changes in the climatic 

patterns. The Double-Mass plot is a technique utilised to find inconsistencies in a 

climatogical time-series. The underlying assumption is that the plotting of the 

accumulation of one quantity (a meteorological parameter at one station) against another 

during the same period will produce a straight line (45° slope) as far as the data are 

proportional. So, when a break is found that means a change in the constant of 

proportionality, or that the constant of proportionality is not the same at all rates of 

accumulation. Double-mass plots can be used to identify one or more inhomogeneities, 

and to correct them if the errors are clear enough (Cluis, 1983). An example of a plot 

after the application of this technique is seen in figures 3.9 and 3.10. 
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Fig. 3.9. Annual total precipitation (in mm) for station 27042; Tapijulapa, Tabasco. 

 

Fig. 3.10. Double Mass Plot for the station 27042; Tapijulapa, Tabasco. 
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No sudden jumps appear in Fig. 3.9 for station 27042 (Tapijulapa, Tabasco) after the 

quality control process described in section 3.2. After this analysis and “filtering out” 

evident errors like mistyped values, no major changes seem to have occurred in this 

location. The nearly “perfect” slope of the double mass plot of fig. 3.10 shows that the 

time-series of 27042 (against the data for station 27044) can be considered as a reliable 

source for the climatic analyses to be applied. 

 

Another stage of quality control of the data was performed using the interactive program 

called RClimdex as an initial step to the extremes indices calculation. The main objective 

here was to identify possible mistyped errors that could affect the analysis. For instance, 

all precipitation values lower than 0 were considered as missing data; the same treatment 

was applied to the case in which daily minimum temperature was greater or equal than 

daily maximum temperature. Fig. 3.7 shows examples in which Tmin are equal or exceed 

the values of Tmax. Meanwhile the fig. 3.8 show examples in which Tmin values 

systematically are equal than Tmax, both set of data errors were corrected before 

applying subsequent analyses. The software is also able to identify outliers for a user-

defined threshold, for the values of temperature (daily maximum and minimum 

temperature) the lower limit was set to the mean minus three standard deviations (mean - 

3σ) and the mean plus three standard deviations (mean + 3σ) as the upper limit. All 

values beyond these thresholds were marked as suspicious and checked, then corrected 

accordingly when undisputable errors were present. 

 

Due to the inherent characteristics of inhomogeneities -sometimes their variations are 

equal or even smaller than real natural climatic fluctuations- the process of detection is 

frequently difficult. To overcome this complexity it is recommended to create a reference 

time series. The most frequent way to construct them is to compute a weighted average 

using data from neighbouring stations or to select a section of surrounding stations whose 

data are considered homogeneous.  
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A clear regionalisation of the rainfall stations network made using PCA (see chapter 4) 

has facilitated the analysis of homogenisation. Having a group of stations that coherently 

varied across time made the comparisons easier. A weighted regional and individual 

time-series were prepared using the approach proposed by Jones and Hulme (1996). 

Using different indices like the Percentage Anomaly Index (PAI) and Standardised 

Anomaly Index (SAI) all the stations were plotted (See one example in fig. 3.11) 

searching for inhomogeneities.  

 

Fig. 3.11. Standard Anomalised Index (SAI) for the annual precipitation of all the stations of the resulting Region 

4 after the Principal Component Analysis (PCA, see section 4.1). 
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In the process of calculation of the regional PAIs or SAIs, similarities include the 

possibility that the indices of the regions can generally avoid local effects. They share the 

same order of magnitude, are also designed to smooth sudden jumps in the series, and can 

identify the quasi-periodicity or modulation effect of large-atmospheric controls as can be 

fully observed in the very wet years of the late 1950s or the prolonged droughts of the 

1990s. Among several differences, regional indices can preserve particularities inherent 

only to some regions like those along both coasts that are strongly impacted by hurricanes 

(as is the case of the north-eastern region hit by Hurricane Gilbert on 1988) or some areas 

by ENSO (like  the north-western part of Mexico during the strong El Niño of 1982-83). 

Fig. 3.12 shows the calculated SAIs for the eleven regions extracted (of total annual 

precipitation) using Principal Component Analysis (see section 4.2).  
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Fig. 3.12. Standard Anomalised Index (SAI) for the different regions (with total annual precipitation) after the 

Principal Component Analysis (PCA, see table 4.1). 
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Unfortunately, the detection of these inconsistencies for temperature using reference 

time-series was not feasible, as no clear results, i.e., coherent regions, were obtained with 

PCA (see section 4.3). So the construction of the weighted regional average was 

impossible. Another reason that impeded the comparisons among the stations for 

temperature was the sparsity of the network; neighbouring stations were not available for 

comparison of the dubious time-series. Finally, few homogeneous neighbouring 

temperature stations were ready to be used in this process. 

 

Other indirect methods have been explored to identify undocumented inhomogeneities. 

If, it is not possible to build a reference time series, for reasons such as the sparsity of the 

network, there are alternative methods to identify the sorts of inhomegeneities within the 

data. In order to identify a sudden jump in a time series, common statistical methods like 

t-test are able to deal with the problem very well. If gradual artificial trends are involved 

like those caused by urbanisation, then regression analysis can perform better. For this 

study, the R-based program called RHtest was used to identify breakpoints. The approach 

of the program is the one outlined in Wang (2003). The objective of the two-phase 

regression model is to find a sudden changepoint (c) in the time-series. This 

undocumented breakpoint is found when: 

 

Fmax = 
nc≤≤1

max  Fc 

 

in which the changepoint c maximises Fc. For multiple changepoints c Є {2,..., n-1} the 

Fc is computed as: 

 

Fc =
)3/(

)(

−

−

nSSE

SSESSE

Full

Fullred
 

 

under the null hypothesis of no changepoints and Gaussian errors Єt, SSEFull (the "full 

model" sum of squared errors) and SSERed (the "reduced model" of squared errors) are 
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defined as: 
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For this technique the case of a two-phase regression model with a common trend α  

(α = α 1= α 2) is considered, so the time-series is defined as: 
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In the context of climatology, extremes are singular events, within the limits of the 

dataset distributions having special weather conditions associated, that makes them of 

high interest for climatic studies. In order to assess these weather extremes daily data are 

essential. Until today there are only a few methods to correct sub-monthly 

inhomogeneities, Aguilar et al. (2003) give a good account of these techniques, although 

no recommendations are made to deal with extremes at these scales. Nevertheless, as it 

has been addressed in this section, several processes have been applied to identify the 

most obvious inconsistencies in the data, in order to avoid misleading results. 

 

Finally, rapid urban growth is a possible factor for the increasing trend in temperatures 

across the globe. If we take the definition of urban as those places with a population 

greater than 50,000 (Easterling et al., 1997), we have that 8 stations for precipitation and 

9 for temperature in Mexico fall under this condition. The urban heat island has been 

explored locally in tropical cities particularly in Mexico City by Jauregui (1995), or at 

regional and subregional scales by Englehart and Douglas (2003). Several procedures 

have been suggested by Karl et al. (1988) to correct this urbanisation temperature bias. 
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But when compared with the global average rise in mean temperatures, heat urban biases 

are relatively small (Karl et al., 1991). However, with the geographically widespread and 

accumulating evidence towards warming in temperatures, it is unlikely that urbanisation 

plays a key role in the upward trend (Karl et al., 1993). Principally because the SST 

average of the world is warming at a similar rate to the land average (IPCC, 2007). 

Urbanisation influences cannot be ignored at local scales, and care will be taken when 

evaluating the results on climate extreme indices for stations within urban areas. 

 

Recent social and economic impacts of extreme events have highlighted the necessity of 

having more than a global network of average monthly climatic conditions. Extraordinary 

weather events require by definition long-term, and high-quality daily data. Although 

there are a few attempts to have a global set of daily data (Alexander et al., 2006; Vose et 

al., 2005; Easterling et al., 1999), there is a lack of a worldwide dataset that impedes the 

evaluation of climatic changes during the twentieth century (Karl and Easterling, 1999; 

Jones et al., 1999). This data deficiency is especially observed in tropical regions across 

the world (Easterling et al., 1997). Until the goal of a global database of daily data of the 

most important meteorological variables is reached, a set of widely accepted climatic 

extreme indices is being used instead (Alexander et al., 2006; Easterling et al., 2000). The 

development in this research of a set of Mexican climatological stations with spatial and 

temporal improved resolution permits the application of up-to-date methods to assess the 

secular behaviour of weather extremes in this country. This evaluation will contribute to a 

better understanding and comparison of the past climatic conditions, in a region 

encompassing tropical to subtropical regions within the context of a global changing 

climate. 

 

 

 

 

 

 

 

 

 



 52 

3.3.2 PRINCIPAL COMPONENT ANALYSIS (PCA). 

 

No matter what statistics and climatological normals could show us, non-linear behaviour 

and multi-dimensionality are still intrinsic, and even more important, frequently dominate 

the climate (Hannachi, 2004). In this context of complexity, how to extract the most 

important information behind a large set of meteorological stations with time discrete 

observations, and then make the data simpler to describe, is one of the basic questions 

within atmospheric sciences, and particularly in climatology. Principal Component 

Analysis (PCA) is the main technique to reduce the dimensionality. 

 

Principal Component Analysis is a powerful multivariate analysis tool that reduces the 

high dimensionality of a dataset preserving as much as possible of the original variability 

of the data. In order to achieve these purposes PCA transforms the original set of 

observations to a new smaller group of pairwise uncorrelated variables (Principal 

Components, PCs) capturing the largest parts of the total variance. In that sense, the first 

member of the group or First PC is able to extract the highest fraction of the data 

variance, then the second Principal Component can obtain from the remaining variance 

the second highest part of the variability, and so on (Fig. 4.2). 

 

The first PC ( xα1
′ ) is a linear function of the elements x (for p variables) with the largest 

maximum variance, αααα1 is a vector of constants α11, α12, … , α1p, and ′ meaning transpose 

(Joliffe, 2002), so the formula could be expressed as: 

 

∑ =
=+++=′

p

j jjpp xxxx
1 112121111 ... ααααxα  

 

In the same manner, k uncorrelated PCs ( xα1
′ , xα2

′ ,…, xαk
′ ) with the maximum variances 

in descending order can be extracted. A relatively small number (m<<p) of PCs 

containing most of the variance of the data is generally the result. 

 

How are these PCs developed? Let Σ be the covariance (or correlation) matrix of the 

vector of random variables (or S for the variance of a sample), for each k=1, 2, …, p. The 
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k
th PC is defined by zk= xαk

′ in which
kα is an eigenvector of Σ that corresponds to the kth 

largest eigenvalue λk. If kα (sometimes called loading or coefficient) is conveniently 

chosen having unit length ( kα′
kα =1, or normalisation constraint), then var (zk)=λk is the 

variance of zk. The searching of the largest eigenvalue that maximises the variance of 

each k
th

 PC ( xαk
′ ) could then be expressed in general with the formula: 

 

Var[ xαk
′ ]=λk           for k=1,2,…p. 

 

In the early developments of PCA, unrotated techniques were the only option possible; 

this condition has gradually changed to the current wide spectrum of orthogonal and 

oblique rotated solutions which today allow better results to be produced. Unrotated 

solution techniques, as pointed by Richman (1986) are only suitable for application to 

those cases when weak simple structures are present and the PCs extracted have both 

positive and negative correlations throughout all the field of study. For this reason, 

although explored, unrotated techniques were explicitly disregarded in the present 

research as being useful for the final interpretations. 

 

The resulting orthogonal PCs often allow easier interpretation than the original variables 

by reducing their dimensionality but conserving the highest possible variance, and 

therefore their most important characteristics. Indeed, simple structure is one of the most 

important characteristics of PCA. Its objective is to decrease the dimensions (p) of the 

original matrix in such a way than a linear composite of the m PCs found permits a 

concise scientific description of every variable (Richman, 1986).  

 

It is precisely targeting simplicity in the physical interpretation that a technique for 

rotating PCs is used. Orthogonal solutions were first developed to overcome most of the 

unrotated techniques limitations, in particular VARIMAX has been extensively used in 

climatological studies; the special characteristic for orthogonal solutions in which each 

axis has to be normal to the rest has been frequently pointed out as artificial. In (rotated) 

orthogonal solutions like VARIMAX, QUARTIMAX and EQUAMAX the axes are 
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selected in such a manner that maximum variation along each axis is found, and also 

another condition is that any axis must be perpendicular to the others. Therefore, all these 

rotation methods try to define “important” components as those with the maximum 

absolute loadings, and are separated from the lowest ones. Loadings with moderate 

values (not easy for interpretation) are explicitly avoided.  

 

Orthogonality is sometimes considered as a non-natural approach constraining the 

solution. Ignoring the orthogonal condition led to a new generation of techniques in 

which the restriction of perpendicularity was not present. For this reason, oblique (non-

orthogonal) rotated solutions represented an alternative answer to unrotated and 

orthogonal solutions in PCA. Oblique methods like OBLIMIN or PROMAX try to define 

clusters and associate them precisely to only one component. This characteristic is 

frequently linked to the process of clarifying the interpretation when compared with 

orthogonal rotated solutions. In atmospheric sciences, oblique rotations are sometimes 

preferred to orthogonal solutions for their advantages in the interpretation of the results 

(Englehart and Douglas, 2002). DIRECT OBLIMIN has been frequently used amongst 

oblique rotations. Nevertheless, PROMAX permits clearer results in meteorology when a 

network with a large number of stations and high grade of complexity are found. So, one 

orthogonal (VARIMAX) and one oblique solution (PROMAX with kappa=2) were 

selected as suitable options to explore the complex climatic variability conditions of 

México. 

 

It is known within PCA, and to be more specific in the simple structure rotation theory, 

that S-mode helps in regionalisation purposes. S-mode is only one of six different matrix 

configurations, in which the stations are the columns versus time that is the rows in the 

array. 

 

In order to cope with contrasting climatic conditions in México: wet regimes in some 

south-eastern areas (total annual precipitation ≈ 4000 mm) and desert conditions in some 

regions of the north (total annual precipitation is sometimes less than 300 mm), the 

correlation instead of the covariance matrix has been used. Even, when we have variables 
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with the same units (mm) as for precipitation, large variance differences would dominate 

the low-order PCs; so the correlation matrices are preferred to covariance matrices for the 

PCA. Another reason to prefer correlation matrices is that covariance matrices are often 

chosen because of their easier interpretation for statistical inference, but given that the 

purpose of this regionalisation is purely descriptive as a preparation for further analyses, 

that advantage is not a factor for this study. 

 

As this research has both an aim of regionalization of México but in contrasting climatic 

conditions, an obvious question arises: How many regions are sufficient to precisely 

describe Mexican climate? This discussion leads to the determination of the number of 

components to be retained.  

 

Several studies have assessed the performance of single methods, or contrast the 

competence of a number of different techniques, but there is no consensus about the best 

method for determing the most significant number of principal components (Peres-Neto 

et al., 2005; Al-Kandari et al., 2005). Because of the size and complexities of the 

datasets, a PCA graphical tool called the Scree Test is used in this thesis. The component 

numbers are the abscissa in the plot and their corresponding eigenvalues the ordinates. 

The plot is seen as a mountain in which the slope is formed by the "true number" of 

factors containing most of the variance, and the foot by the random components. 

Therefore, the foot of the mountain or scree straightens closely matching a line at the end 

of the plot. The aim is to find the last evident break before the variance between 

components becomes negligible (Cattell, 1966). The low-order PCs before this point of 

inflexion are then considered as the most relevant and meaningful for the study.  

 

The determination of the number of PCs and therefore of climatic regions in Mexico has 

also required a careful classification, i.e., to assign each one of the stations to only one of 

the resulting regions. To comply with this requirement a strict rule was set of only 

accepting absolute loadings greater than 0.4. (White et al., 1991). So, according to this, 

the largest value in the loadings (or primary pattern) matrix clearly defines its 

corresponding component and consequently the region to which the station belongs. With 
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the same classification purpose in mind, the ‘eigenvalue one’ criterion was applied 

(Mather, 1976), i.e. only eigenvalues greater than 1.0 were considered for the extraction. 

The reason behind this is that, when is normalised each variable has a intrinsic variance 

equal to unity, every eigenvalue less than one should then be discriminated, and not 

worthy to be considered in the analysis. Finally, recalling that the missing values total 

was restricted to less than ten per cent for every station in the network and replaced with 

the long-term mean, the election of pairwise or listwise deletion has no influence on the 

final results. 

 

All methods of rotation overcome the disadvantages of unrotated solutions. Among the 

drawbacks of these non-rotated solutions we can list the following: 

 

Geographically dependent results. It is a well known phenomenon that sometimes 

topography has a strong influence on the delineation of contours. For some 

meteorological variables like precipitation, altitude exerts a linear response. This 

characteristic is frequently observed in the loading patterns of the PCs across an area 

using unrotated solutions. 

 

No stability. In order to prove the consistency of the results, sometimes the data are 

divided into subdomains of the original variables. For example, a group of stations could 

be classified geographically taking into account their coordinates, in which a latitudinal 

or longitudinal line could represent a boundary. Regardless of any subdivisions, PCA 

patterns should be in accordance to the results when the whole domain is considered 

(Comrie and Glenn, 1998). 

 

Closed Eigenvalues. When extracted eigenvalues are so closely spaced, most of the time, 

unrotated methods are unable to precisely separate PCs. Even worse, sometimes this 

problem becomes so difficult that eigenvalues could be mixed among them.  

 

Artificial Results. Unrotated solutions could produce patterns that don’t have a physical 

basis, i.e. Buell patterns. This is particularly true when from a previous insight to the data 
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a well known configuration is expected. Richman and Lamb (1985) shows an example in 

which PCs two to 10 are not completely in accordance with the observed patterns before 

the analysis. 

 

Regardless of orthogonal or oblique solution ease of interpretability classifies the degrees 

of simple structure as strong, moderate or weak. The amount of simple structure is best 

explored through pairwise plots of the resulting coefficients. In theory a strong simple 

structure unveils a hidden order in the data.  

 

Among the applications of  PCA that can be mentioned are: 

 

• Identification of groups of variables that vary coherently in a dataset. 

 

• Reduction of the original dimension of the dataset, resulting in a smaller and 

independent set. 

 

• PCA is able to eliminate redundancy in the original variables. 

 

• It could be considered as a preliminary step of cluster analysis. PCA clarifies the 

clustering by eliminating the eigenvectors with the lowest-valued eigenvalues. 

 

• PCA is an alternative to the construction of a set of linear functions of the original 

variables; as opposed to a process based solely on a priori judgements. 

 

• The possibility to spot a new group of individuals varying coherently, that other 

method cannot successfully achieve. 

 

• Principal Component Analysis could help to easily identify “outliers”, i.e. 

individuals that are behaving clearly different to the other variables in a group. 
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• PCA could be considered as a preliminary tool to multiple regression analysis. 

The resulting components could be used as an approach of a set of regressor 

variables. 

 

 

3.3.3. REGIONAL AVERAGES. 

 

In performing PCA across the network, the objective was to find different groups of 

stations that are varying coherently across time. The amplitude of a particular PC will 

incorporate all the stations. Here we want to calculate a regional average, based on PCA, 

but just with the stations in a region. When calculating regional averages we want the 

dominant time-series features of the sites to remain. Also, we are trying to avoid local 

factors like topography. We use the approach suggested by Jones and Hulme (1996) to 

compute regional averages. Among the different indices proposed, the Standardised 

Anomaly Index (SAI) has been selected, to be consistent with the extracted ENSO 

indices (See section 3.2.3). Standardised anomalies are first calculated for each station as: 
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where ikP̂∆  is the standardised anomaly for year k at station i from a group of N stations, 

in accordance with the resulting regions of PCA (section 4.3.1). iP  and iσ  are mean and 

standard deviation of the station i respectively (based on a common period which is the 

total length of the time-series). 
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In this equation kP̂∆ is the regional standardised anomaly for year (month) k. The 
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weights are obtained as the long-term ratio of the local ( iP ) to regional 〈 P 〉 means: 
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In order to test the stability of the regional values a different weight was utilised 
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is the sum of the precipitations of all the stations in a region, for a given year (month) k.  

 

The two different results were compared year by year, finding very similar results. 

Therefore, the first approach was used in the subsequent analyses. 

 

It is important to notice here that, for the regional averages the same seasonal definitions 
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established in section 2.2.1 were applied here, i.e. total annual precipitation, wet (May-

Oct) and dry (Nov-Apr) seasons. These time series would also be used in our ENSO-

related research. But monthly time-series are also available, especially for lag correlation 

analyses. 

 

 

3.3.4. EXTREME WEATHER ANALYSIS. 

 

During the 2005 hurricane season in Mexico, tropical cyclone Stan struck the           

south-eastern part of Chiapas State, and later Hurricane Wilma hit the Mexican Atlantic 

coast around the tourist city of Cancún. There was a perception with the public, 

influenced by the media that extraordinary events were occurring. The question for the 

scientific community, however, is: Are the intensity and frequency of extreme events 

increasing and if so is this related to anthropogenic influences on the climate system? To 

scientifically evaluate these sorts of climatic questions is very difficult. What is important 

first is to be sure that the climatic series are of good quality.  

 

Average climatic conditions and their variability have been extensively explored recently; 

this is especially true in the case of anthropogenic climate change (Easterling et al., 

1999). Mean conditions of the climate do not give a complete picture; they just tell us 

part of the history of the changing regional climates of the world. Other aspects of these 

meteorological parameters need to be explored if we are to understand the underlying 

processes of the climate system. Amongst the important characteristics that can be 

assessed are the weather extremes, because they are a good measure of the rapid change 

of climate, and also they generally have a great impact on society in general. Greater 

trends in extremes compared to the mean temperature trends were found in an analysis 

applied to long time series from Europe and China (Yan et al., 2002). Unfortunately, 

studies on climate extremes using daily data are still relatively scarce, but improvements 

and extension into unanalysed areas are gradually being made. 

 

Time series of monthly data are sufficient to explain changes in the climatological 

normals and their variability on similar or longer time scales (Jones et al., 1999). These 
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databases are satisfactory for documenting the climatic history of the recent warming at 

hemispheric and global scales. But, as recent years have shown in different regions of the 

world, there appear to be more extremes occurring (Alexander et al., 2006). Nevertheless, 

unequivocal proofs of these fluctuations in weather extremes are necessary to support the 

accumulating evidence.  

 

Even in developed countries with potential for large climatic databases like the USA and 

Canada, there is still a deficiency of homogeneous climatological time-series to evaluate 

the recent secular behaviour of the extremes in this region (Easterling et al., 1999). 

Ironically the analysis of extremes can also help to highlight that monthly-based 

homogeneity analyses are inadequate (Yan et al., 2002). Fewer studies exist dealing with 

extreme weather in developing countries. This situation is being rectified and a recent 

study by Alexander et al. (2006) analyses extensive datasets. This work stems from 

developed datasets in specific regions: Africa (New et al., 2006), South America 

(Haylock et al., 2006), South East Asia and the South Pacific (Manton et al., 2001), 

Central America and northern South America (Aguilar et al., 2005), and Central and 

South Asia (Klein Tank et al., 2006).  

 

As a country, Mexico is not not well represented or definitively absent in the climatic 

extreme analyses. The very few assessments of the changing climate in the country were 

made as part of a global evaluation or the North American region (e.g. Alexander et al., 

2006; Vose et al., 2005; Easterling et al., 1999). When dealing with climatological 

monthly data as well as for evaluating extremes, part of the problem is the geographical 

sparsity of the set of stations with suitable long-term time-series of daily data. In Mexico, 

the Servicio Meteorológico Nacional (Mexican Meteorological Service) maintain a 

network that has remained unchanged assuring relatively long records with minor 

variations (Easterling et al., 1999); but these data have only generally been kept in 

manuscript form. A key factor that contributed to the development in this field of science 

was the needs of the Intergovernmental Panel on Climate Change (IPCC) to monitor 

firstly the mean climatic state of the world and secondly to evaluate the trends in extreme 

weather at national, regional and global scales.  
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There still is not a single way to define an extreme in climate. Up to today climatologists 

continue dealing with the problem of isolating changes due to sampling, station location, 

and indisputable changes in extremes (Frich et al., 2002). For these reasons, several 

attempts have been made to build a scientific consensus in the analysis of weather 

extremes. Unfortunately, it is very frequent that these extraordinary events also have 

socio-economic impacts, deeply affecting the way they are perceived. Therefore, not only 

scientific but sometimes socio-economic considerations have played an important role in 

the process of defining climatic extremes. 

 

The lack of climate extremes definitions has gradually been overcome. For studying 

weather extremes across the USA, Karl et al. (1996) defined an index which was termed 

the Climate Extremes Index based not only on the exceedence of thresholds for 

meteorological variables (such as temperature or precipitation), but also the percentage of 

the country affected by severe drought. Following on from this, Beniston and Stephenson 

(2004) developed a set of characteristics (not mutually exclusive) that can measure 

extremes. These are listed in there study as follows: 

• how rare they are, which involves notions of frequency of occurrence; 

• how intense they are, which involves notions of threshold exceedence; and 

• the impacts they exert on environmental or economic sectors in terms of costs or 

damages. 

They also point out the way in which weather extremes have been defined in the Third 

Assessment Report of the IPCC (2001) in terms of frequency, as several meteorological 

variables (precipitation, wind velocity or temperature) exceed the 10% or 90% quantiles 

of their distribution. But it really was when the IPCC 2nd Assessment report identified 

the deficiency of studies on trends of daily data and climate extremes that these efforts 

significantly increased in scale: locally, regionally and globally (Alexander et al., 2006; 

New et al., 2006; Haylock et al., 2006). Since then a group of climatologists, The Expert 

Team (ET) on Climate Change Detection and Indices (ETCCDI) have been conducting 

an international effort to develop, calculate and analyse a set of indices to standardise and 

compare the results globally (http://cccma.seos.uvic.ca/ETCCDMI/index.shtml). Data  



 63 

For Precipitation 

PRCPTOT Wet-day precipitation Annual total precipitation from wet days mm 

SDII Simple daily intensity index Average precipitation on wet days mm/day 

CDD Consecutive dry days Maximum number of consecutive dry days days 

CWD Consecutive wet days Maximum number of consecutive wet days days 

R10mm Heavy precipitation days Annual count of days when RR>=10mm  days 

R20mm Very heavy precipitation days Annual count of days when RR>=20mm  days 

R95p Very day wet precipitation  Annual total precipitation when RR>=95th 

percentile of 1961-1990 

mm 

R99p Extremely wet day precipitation  Annual total precipitation when RR>=99th 

percentile of 1961-1990 

mm 

RX1day Max 1-day precipitation Annual maximum 1-day precipitation mm 

RX5day Max 5-day precipitation Annual maximum 5-day precipitation mm 

For Temperature 

FD Frost days Annual count when TN(daily minimum)<0 ۫ C days 

SU Hot days Annual count when TX(daily maximum)>25۫ C days 

ID Cold days Annual count when TX(daily maximum)< 0 ۫ C days 

TR20 Warm nights Annual count when TN(daily minimum)> 20 ۫ C days 

GSL Growing season length Annual count between first span of at least        

6 days with TG>5 ۫ C after winter and first span 

after summer of 6 days with TG<5 ۫ C 

days 

TXx Hottest day Monthly highest TX ۫ C 

TNx Hottest night Monthly highest TN ۫ C 

TXn Coolest day Monthly lowest TX ۫ C 

TNn Coolest night Monthly lowest TN ۫ C 

TN10p Cool night frequency Percentage of days when TN<10th percentile of 

1961-1990 

% 

TX10p Cool day frequency Percentage of days when TX<10th percentile of 

1961-1990 

% 

TN90p Hot night frequency Percentage of days when TN>90th percentile of 

1961-1990 

% 

TX90p Hot day frequency Percentage of days when TX>90th percentile of 

1961-1990 

% 

WSDI Warm spell day index Annual count of days with at least 6 consecutive 

days when TX>90th percentile of 1961-1990 

days 

CSDI Cold spell day index Annual count of days with at least 6 consecutive 

days when TN<10th percentile of 1961-1990 

days  

DTR Diurnal temperature range Monthly mean difference between TX and TN ۫ C 

 

Table. 3.3. Weather Extreme Indices as defined by the Expert Team (ET) on Climate 

Detection and Indices (ETCCDI) and tabulated in New et al. (2006). 
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quality and calculations can be performed using the free statistical package “R” 

(http://www.r-project.org) through a graphical-interfaced program called “RClimDex”. 

The current core indices - as defined by the ET and tabulated in New et al. (2006) - are: 

 

REFINING THE DATA SELECTION FOR EXTREME ANALYSIS 

 
Although the selection of stations nearly replicates the process of the Data Extraction (see 

section 3.2.); a few additional characteristics needed to be introduced in order to comply 

with the slightly more particular conditions necessary for the analysis of weather 

extremes. As mentioned, meteorological daily records are practically indispensable in the 

analysis of extremes. Originally, daily temporal resolution was targeted for the data 

extraction. However, during the process of reviewing and choosing the suitable stations 

to be analysed many of them were incomplete with some missing data. These data were 

filled with their corresponding monthly averages of the same stations whenever it was 

available (see section 3.3.2). This means that only a relatively small number of time-

series are free of unfilled data.  

 

Daily data with low percentages of unfilled data were preferred when selecting the 

stations to calculate the extreme indices. Given that good spatial coverage was obtained 

for the Principal Component Analysis (PCA) (section 4.1) for the network of monthly 

precipitation, rainfall was used as the reference database for the determination of both: 

the best daily records of temperature and precipitation. In order to compare the extreme 

analysis with the PCA results, at least one station was desirable to be selected per 

(precipitation) region. A contrasting assessment could then be made between regional and 

local scales. The main objective is to obtain for daily data the same database as that set of 

monthly rainfall data used in the analysis of PC. A comparison will then be possible 

between the regional time series –constructed from the results of PCA- and the single 

station data, and hopefully find inconsistencies or differences between their climatic 

patterns. The resulting set of stations for both meteorological variables is listed in Table 

3.2. 
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station name longitude° W latitude° N precip temp altitude* pop+

1 PABELLON DE ARTEAGA AGUASCALIENTES -102.33 22.18 X 1920 34.296

2 PRESA RODRIGUEZ BAJA CALIFORNIA -116.9 32.45 X X 100 1210.82

3 COMONDú BAJA CALIFORNIA SUR -111.85 26.08 X 260 63.864

4 EL PASO DE IRITU BAJA CALIFORNIA SUR -111.12 24.77 X 140 196.907

5 LA PURíSIMA BAJA CALIFORNIA SUR -112.08 26.18 X 95 11.812

6 SAN BARTOLO BAJA CALIFORNIA SUR -109.85 23.73 X 395

7 SAN JOSE DEL CABO BAJA CALIFORNIA SUR -109.67 23.05 X 7 105.469

8 SANTA GERTRUDIS BAJA CALIFORNIA SUR -110.1 23.48 X 350

9 SANTIAGO BAJA CALIFORNIA SUR -109.73 23.47 X 125

10 CHAMPOTON CAMPECHE -90.72 19.35 X 2 70.554

11 OJINAGA CHIHUAHUA -104.42 29.57 X 841 24.307

12 FCO. I MADERO DURANGO -104.30 24.47 X 1960

13 GUANACEVI DURANGO -105.97 25.93 X 2200 10.794

14 EL PALMITO DURANGO -104.78 25.52 X 1630 6.011

15 SANTIAGO PAPASQUIARO DURANGO -105.42 25.05 X 1740 43.517

16 CELAYA GUANAJUATO -100.82 20.53 X 1754 382.958

17 IRAPUATO GUANAJUATO -101.35 20.68 X X 1725 440.134

18 PERICOS GUANAJUATO -101.1 20.52 X 1772 226.654

19 SALAMANCA GUANAJUATO -101.18 20.57 X 1722 226.654

20 APATZINGAN MICHOACAN -102.35 19.08 X 682 117.949

21 CUITZEO DEL PORVENIR MICHOACAN -101.15 19.97 X 1831 26.269

22 HUINGO MICHOACAN -100.83 19.92 X 1832 48.917

23 CIUDAD HIDALGO MICHOACAN -100.57 19.7 X 2000 106.421

24 ZACAPU MICHOACAN -101.78 19.82 X 1986 69.7

25 AHUACATLAN NAYARIT -104.48 21.05 X 990 15.371

26 LAMPAZOS NUEVO LEON -100.52 27.03 X 320 5.305

27 JUCHITAN OAXACA -95.03 16.43 X 46 325.295

28 MATIAS ROMERO OAXACA -95.03 16.88 X 201 75.095

29 SANTO DOMINGO TEHUANTEPEC OAXACA -95.23 16.33 X 95 217.624

30 MATEHUALA SAN LUIS POTOSI -100.63 23.65 X 1575 78.187

31 BADIRAGUATO SINALOA -107.55 25.37 X X 230 37.757

32 YECORA SONORA -108.95 28.37 X 1500 6.069

33 SAN FERNANDO TAMAULIPAS -98.15 24.85 X X 43 57.412

34 ATZALAN VERACRUZ -97.25 19.80 X X 1842 48.179

35 LAS VIGAS VERACRUZ -97.10 19.65 X X 37 14.161  

Table 3.2. Daily data stations for temperature and precipitation for extreme analysis. The 

period of records for all the stations is from 1941 to 2001. * meters above sea level. + 

Population in thousands. 
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Thirty five stations were selected for the extreme analysis: 15 of those time-series have 

daily precipitation and 26 temperature data. Unfortunately for comparison purposes, only 

six climatological stations have good enough data for both meteorological variables. The 

period of the records for the analysis starts in 1941 and ends in 2001. The lengths of 

records for precipitation have been reduced for this study to begin in 1941 instead of 

1931 as for the monthly records. The reason behind this decision is that there should be at 

least one climatic representative station containing daily data per PCA region (see chapter 

4). This is true for all regions except those from region 7 to 11. Climatic regionalisation 

using PCA had clear results for annual rainfall; that is why, a time-series per PCA 

resulting region was computed utilising weighted averages, besides selecting one climatic 

representative station per region. This permits comparison between regional and local 

scales for rainfall. However, no clear results (no clear PCA regions) were obtained for 

temperature; this means no PCA regions could be used. For this reason, the 175 station 

network with monthly precipitation (see section 4.2.1.) was then considered as a 

reference for the extraction of the largest number of temperature stations. Despite the 

limitations, only some north and south-eastern areas of the country were not covered for 

the extreme analysis. The spatial coverage of both networks is displayed in figure 3.6 a) 

for precipitation, and 3.6 b) for temperature. 
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Fig 3.13. Network of a) precipitation and b) temperature stations with daily data for the analysis of extremes (in 

accordance with table 3.2). The period of the records is from 1941 to 2001. 
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Three main factors dominated the selection process of the time-series for the extreme 

analysis: daily data, the length of the records and the completeness (low numbers of 

missing values). However additional characteristics considered were the possible 

influence on extremes from: altitude, homogeneity and urbanisation. As discussed in 

section 4.2, even though the altitude effect is explicitly avoided (using the ratio of the 

precipitation of each station to its long-term mean) for the PCA on precipitation, high 

elevation could still exert its force in the atmospheric phenomena. It is interesting to note 

that 6 rainfall and 10 temperature stations exceed the 1000 m.a.s.l. threshold.  

 

 

3.3.5 CORRELATION ANALYSES. 

 

Non-parametric Correlations. 

Frequently, the task of scientists is to establish relationships between two or more 

variables. A correlation measures the linear relationship between variables (Field, 2005). 

The most widely used method (for the complexity of their calculations, non-parametric 

were more complicated than linear correlations, it is not until recently that computers 

have overcome with this limitation) to evaluate linear correlations is the Pearson product-

moment correlation coefficient. Although a linear correlation coefficient can often give 

an approximate idea of the strength of the relation between the variables under study, it 

has a limited resistance and robustness, and also lacks reliability in the determination of 

the level of significance (Haylock, 2005). Rank (or Non-parametric) correlation 

coefficients can overcome these limitations; normally distributed data is also not a 

condition for these techniques. 

 

In contrast to the linear correlation, a non-parametric correlation coefficient measures 

association, i.e. a monotonic relationship between variables. Very well known measures 

of association are the Spearman rank-order and Kendall's tau correlation coefficients. 

Because Kendall's tau deals better (than Spearman's) with small datasets and a large 

number of tied ranks (Haylock, 2005), this is the non-parametric correlation coefficient 

that will be used to test the strength of the relationships and level of significance between 

two variables in this thesis. 
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Kendall’s tau-b (τ) is a non-parametric correlation that measures the association of the 

number of concordant and discordant pairs of observations. A pair of values is said to be 

concordant if the vary together, and discordant if the vary differently. The coefficient 

ranges between -1 (ranks increasing separately) and +1 (ranks increasing together). The 

formula for Kendall’s tau-b is: 
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ti is the number of tied x values in the ith group of tied x values, ui is the number of tied y 

values in the jth group of tied y values, n is the number of observations and sgn(z) is 

defined as: 
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The main advantages of Kendall's tau-b are that the distribution has slightly better 

statistical properties and also being defined in terms of probability of concordant and 

discordant pairs of observation, this non-parametric correlation coefficient leads to a 

direct interpretation of the results (Chrichton, 2001). 
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Lag Correlation. 

Responses in meteorological parameters (e.g. rainfall) to changes in large-scale 

phenomena are not immediate. It sometimes takes a time period the scale of months to 

seasons for an ocean-atmospheric process, like ENSO (El Niño Southern Oscillation), to 

be fully developed. Then, for its scientific understanding, it is crucial to address these 

delayed modulations when evaluating these atmospheric relationships.  

 

The Cross-Correlation function (or lag cross-correlation) is a suitable technique to 

measure the time shifts between the continuum and lag variations (Chatfield, 1991). Its 

main purpose is to find the lag that maximises the coherence (linear correlation) between 

two time series. When this tool is only applied to the same variable is called 

AutoCorrelation Function. Lag Cross-Correlations must be compiled for all lags (positive 

or negative), in such a way that a significant maximum correlation is found for a specific 

time shift (τk). The formula that explains these relations between the variables is: 
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where the lag τk is the size of the time shift: τk=k∆t, k=0,1,…,N-1 and x  y y are the 

means of yi and xi. 

 

This definition implicitly assumes that both time-series are stationary in their means and 

variances in a sample of N pairs of values. A direct dependency expressed in the linear 

correlation between the variables is also expected; nevertheless, this relationship could be 

substituted by a non-parametric correlation (e.g. Spearman’s rho). Although CCF is 

probably not the best estimator (Welsh, 1999), it is mainly utilised because of its 

efficiency and consistency. 
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CCF has among other limitations, the following: 

• It is defined in terms of linear dependency. This restriction is really artificial; a 

non-linear approach could lead to better results. 

• Because of its lack of robustness, non-parametric tests can be more useful than the 

linear correlation technique used in the formula. 

 

 

 

 

3.4. CONCLUSIONS. 

 

Studies on climate change using daily data are scarce in developing countries. The 

research in this area needs reliable information, especially long-term time-series. In 

Mexico there have been several efforts to develop a national digital database of 

climatological data. Unfortunately, those databases still lack sufficient geographical 

coverage and analysis of data quality. Therefore, in order to contribute to the 

understanding of the climatic patterns of Mexico within the context of global warming, it 

was necessary to construct a national high-quality database of rainfall and temperature at 

monthly and daily time-scales. 

 

A network of 175 rainfall and 52 temperature stations with monthly data, with good 

spatial coverage has been prepared to study climate change patterns in Mexico. The 

meteorological time-series have been extracted from six different digital sources, and a 

process of inter-comparison has been applied among them.  Monthly data for 

precipitation has 71 years of information from 1931 to 2001; meanwhile the length of the 

daily data (rainfall and temperature) series is ten years shorter, spanning 1941 to 2001. 

The maximum fraction of missing values was restricted to ten per cent. Climatically 

speaking, in most of the country the precipitation is concentrated during the months of 

May to October, this period was considered as the wet season, while the interval from 

November to April was called the dry season. These definitions and the computing of 

annual figures were also applied to temperature. In addition, basic statistical properties 
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like: mean, standard deviation, maximum and minimum values were calculated to assure 

the reliability of the results of the analyses in this research. 

 

Three different ENSO-related indices of this phenomenon have been selected in order to 

test their relationships with the rainfall and temperature across the country. They are the 

Southern Oscillation Index (SOI),  Niño 3.4 and the Multivariate El Niño index (MEI), 

all of them are expressed in a standardised form in order to avoid external influences. The 

decades of 1980s and 1990s have seen a period of increasing intensity and frequency of 

ENSOs, with accumulating evidence of global warming. Therefore, the extracted ENSO 

indices are expected to be strongly linked to the rainfall and temperature in Mexico at 

regional and local scales. 

 

The meteorological variables extracted are expressed at both monthly and daily time 

scales. These temporal scales have had direct influence in the methods selected and 

applied for this research. For instance, PCA is able to unveil a hidden order among a set 

of variables. Climatically speaking, one of the most important properties is that this 

method can find groups of stations varying coherently. Technically, rotated are more 

efficient than the unrotated solutions, in separating clusters of stations with similar 

climatic patterns. Furthermore, in order to avoid the impact of any other external 

influence like altitude, anomalies were used in the analysis for both temperature and 

rainfall.  

 

Based on the results of PCA (see chapter 4), different methods to calculate seasonal time-

series of weighted regional averages of precipitation were explained. Two versions of 

weights are considered to estimate the regional series to compare the stability of the 

results. Standardised anomalies were also described; they smooth sudden fluctuations, 

while basically preserving the original climatic patterns. 

 

Weather extreme indices are defined using the guidelines of the Expert Team (ET) on 

Climate Change Detection and Indices (ETCCDI). These indices are going to be 

calculated using the long-term and high-quality databases of rainfall and temperature 
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described in section 3.2. The main objective is to increase the understanding of weather 

extremes in Mexico; as the few studies of climate extremes were part of global or 

regional assessments. 

 

Kendall’s tau was selected as an alternative to the usual Pearson correlation coefficient 

due to its possibility of dealing with small datasets and a great number of tied ranks. This 

non-parametric correlation technique has better statistical properties. Because 

meteorological responses to large-atmospheric controls are sometimes delayed, lag cross 

correlations try to find the lag that maximises the coherence between two variables. In 

this thesis lag correlation is a method that is going to be applied to find the optimum 

relationships between regional precipitation averages or weather extreme indices and El 

Niño. This technique is preferred for its efficiency and consistent results, but is also 

sometimes limited to linear correlations so lacking robustness. 

 

 

 

 

 


