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Chapter 3 

 

The Land Data 
 

 

SUMMARY 

 

The construction of the land data component of HadCRUH constitutes the largest part 

of this project. Unlike the marine data, the land component originates from a new and 

previously unstudied raw data source chosen for its spatial and temporal coverage and 

regular updates. Humidity data are extracted from a cumbersome database and 

developed from scratch to create the gridded product. This Chapter discusses: the data 

source; the creation and implementation of a set of humidity-specific quality control 

(QC) tests; data homogenisation; and analysis of the gridded product. 

 

3.1 THE ORIGIN OF THE LAND DATA 

 

3.1.1 The ISH Database 

 

The version 2 ISH (Integrated Surface Hourly) dataset, supplied by NCDC (National 

Climatic Data Center), is the sole basis of the land data for HadCRUH (Lott et al., 

2001). The data comprise approximately 20 000 surface weather stations globally, 

reporting from 1900 to present. These originate from NCDC and the US Navy (ID code 

TD3280) and Air Force Combat Climatology Center (AFCCC) Datsav 3 (ID code 

TD9956) surface hourly data with 380 and ~10 000 stations presently active from each 

set respectively. 

 

The ISH database reports observed surface T and Tdw, which for HadCRUH are 

converted to e, q and RH (Chapter 2). Initially, it was intended to produce HadCRUH in 

e, q and RH and so much of the quality control process takes place in e. However, it has 

become apparent that q and RH are of most use and relevance to the scientific 

community and so it is decided to focus only on these two variables in terms of analysis. 
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Humidity observations vary widely in instrument type, variable type and conversion 

algorithm. Unfortunately there are no comprehensive metadata providing instrument or 

measurement type information with the ISH data. Thus, for the purpose of HadCRUH, 

the assumption is made that all station measurements are sufficiently similar to be 

incorporated into a global dataset and that quality control procedures will eliminate the 

‘bad’ data. 

 

Observation frequencies range from sub-hourly (better than hourly) to daily. The sub-

hourly data are averaged to hourly for computational convenience. All data 29 or less 

minutes previous to the hour or 30 minutes or less after the hour are averaged and then 

assigned to that hour. 

 

All stations are identified by a five digit World Meteorological Organisation (WMO) 

number where the first two digits refer to country and region respectively and the 

following three are the station number. This is always followed by a sixth digit, usually 

a zero, which if non-zero often indicates a new period of reporting from a station in a 

new location. US run stations also have five digit US Weather Bureau Army Navy 

(WBAN) identification numbers. These are kept to allow easier identification with 

99999 as the default number for those stations without WBANs. WMO country 

numbers have remained largely consistent over time although some modifications have 

taken place (Jones & Moberg, 2003). However, there is no comprehensive list available 

of such changes. 

 

Each hourly observation is recorded with a longitude, latitude and elevation. For most 

stations (95 %) these are inconsistent within the station record, non-existent or in 

disagreement with the location and station identification list provided with the ISH 

database. However, these are nearly all due to small changes in recording precision 

rather than actual station moves. For example, stations reporting at six hourly periods to 

the GTS (Global Telecommunications System - http://www.wmo.ch/web/www/TEM/ 

gts.html) may have different precision requirements than would otherwise be recorded. 

For HadCRUH, small inconsistencies (within 0.1 
o
 longitude or latitude) are ignored 

and where possible, missing location information is filled in with WMO record 

information. In cases of disagreement, the locations supplied simultaneously with the 

data are used in preference. Notes are made of the dates of any large changes for future 

reference. These problems have been communicated to NCDC.  
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The ISH database has a good breadth of coverage both spatially and temporally (Fig. 

3.1). A large proportion of the data comes from Europe, the former USSR and North 

America. Temporally the dataset is far from consistent with a relatively small amount of 

data pre-1972, a decrease in 1972 and a significant increase thereafter. The drop in 1972 

is thought to be linked to the digitisation process (Vose, R pers. comm.) such that data 

exist but have not been digitised yet. Due to the much poorer data coverage pre-1973, 

HadCRUH begins in 1973, and for the purpose of this project, ends in 2003. However, 

since ISH is updated yearly there is scope for updating HadCRUH in near real-time in 

the future.  

 

Notably, the ISH stations are not continuous in their reporting throughout 1973 to 2003. 

Other datasets have been built combining non-continuous sources regardless of length 

of record (Dai, 2006) and this approach is by necessity used in the marine component. 

However, given the large number of stations available for the land component and the 

desire to ensure high quality within HadCRUH it is decided to use only stations with 

record lengths sufficient to create a 30-year climatology. 

 

3.1.2 The Climatology Period: 1974 to 2003 

 

A 30-year climatology period is considered sufficient to provide a reference period with 

which to anomalise (Box 3.1) the data as a recognised method of interpolating over a 

gridded field (Jones, 1994). This practice is consistent with numerous other datasets 

(HadCRUT3 – Brohan et al., 2006; global nighttime MAT dataset MOHMAT43N – 

Parker et al., 1995; Rayner et al., 2003; global sea level pressure dataset HadSLP2 – 

Allan & Ansell, 2006), which use the standard reference period of 1961-1990. However, 

for HadCRUH land data, using the standard reference period considerably reduces both 

station density and spatial coverage (Fig. 3.2). While a 1973 to 2002 climatology 

maximises station density, 1974 to 2003 is preferable in terms of spatial coverage (also 

shown in Fig. 3.2) giving much better representation over Sweden and Canada. Hence 

the climatology period for HadCRUH is 1974 to 2003.  

 

Any selection criteria as to the minimum amount of data required to create a station 

climatology will have a degree of arbitrariness. The criteria used for HadCRUH are 

loosely based on Jones & Moberg (2003). Minimum criteria for ‘sufficient reporting’ 

are as follows: 
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• 4 reporting hours with data per day covering both halves of the diurnal cycle 

(midnight to midday, midday to midnight) (Box 3.2 - sampling frequency) 

• 75 % of days with data per month 

• 2 months with data per season 

• 3 seasons with data per year 

• 5 years with data per decade 

• 2 decades with data 

• 15 years within the climatology period 

 

Coverage of stations with a 1974 to 2003 climatology (Fig. 3.3) is very good over 

Europe and South East Asia but poor over central Africa, Amazonia, parts of the Middle 

East and Antarctica. Surprisingly, coverage is poor over the United States. This 

information has been communicated to NCDC. On further investigation, there are large 

amounts of US data in ISH but this is mostly from short station records insufficient to 

create a 1974 to 2003 climatology. There is future scope for additional data sources in 

many of these regions to augment coverage. 

 

3.1.3 Duplicate Stations: Finding, Combining and Deleting 

 

There are a number of duplicate stations found within ISH. These are identified by: an 

identical WMO number and different WBAN number; an identical WBAN number and 

different WMO number; or a station location match. Stations may change ID numbers 

for many reasons: 

• Reporting requirements  - GTS stations may report 6 hourly as one  

     station ID and hourly under another. 

• Station/instrument move    

• Station closure / re-opening 

• Official WMO number changes 

 

All ‘duplicates’ are double checked by ensuring the longitudes and latitudes are within 

0.1 
o
 and 20 m elevation. This distance represents approximately up to 11.1 km in 

longitudinal and latitudinal distance which is considered a small region in which to have 

more than one weather station reporting. Efforts are made to link up stations reporting 

during different periods of record under different station IDs and to remove exact 
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duplicate stations. In total, 346 combined records of duplicate stations are created, 

improving coverage over Sweden, eastern North America, Romania and Siberia (Fig. 

3.3). 

 

 

Box 3.1: Pentad and Monthly Mean Anomalies 

For climate analyses, anomalies are preferable to absolute values because they largely 

remove station specific variability (Jones & Briffa, 1992) (due to elevation, observation 

times, annual cycle etc.) which represents noise clouding any climate change signal. This 

approach is employed in the vast majority of climate datasets at the surface (e.g. Dai, 2006; 

HadCRUT3 - Brohan et al., 2006; HadSLP2 - Allan & Ansell, 2006; MOHMAT43N – 

Rayner et al., 2003).  

 

A pentad is a five-day mean. There are 73 pentads in a year with six per month except 

August which has seven. The 12
th
 pentad has the 29

th
 February added in every leap year. 

They are a useful intermediate unit between hourly/daily and monthly means and are 

commonly used at the Hadley Centre (Met Office, UK) for marine observational data. 

Relative to raw data, running QC and homogenisation processes on pentads reduces 

programming time, essential for large datasets. Also, the signal to noise ratio is reduced but 

not over damped to the extent that erroneous data are hidden as may be the case with 

monthly means. 

 

Pentad mean anomalies (PMA) are created by first creating hourly pentad climatologies. 

For example, all observations at 00 hours between the 1st and 5th of January from 1974 to 

2003 are averaged. Hourly anomalies are created for each observation by subtracting the 

corresponding hourly pentad climatology. This removes the diurnal cycle. All hourly 

anomalies within each pentad of each year are averaged to give a PMA value. To create a 

pentad there must be at least three days (section 3.1.2) of data. Pentad mean climatologies 

are made by averaging over each hourly pentad climatology. Absolute pentads are created 

by adding back the corresponding pentad mean climatology to the PMA.                                             

 

Monthly mean anomalies are made by averaging over the six (seven for August) PMAs for 

each month, where at least three PMAs must be present. This gives slightly larger monthly 

mean anomalies than if they were calculated directly (Rayner et al., 2006; Taylor et al., 

2000), but maintains consistency with the marine data (Chapter 4) and provides the benefits 
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Box 3.2: Observation Sampling Frequency 

The mean diurnal range in humidity averaged over the entire timeseries for each case study 

station is 25.2 %, 0.87 g kg
-1

 and 1.33 hPa for RH, q, and e respectively. This represents a 

wide range of latitudes and all seasons, and so diurnal cycles for any given location can be 

larger. Bias may stem from systematic uneven sampling of the diurnal cycle, especially if 

sampling times systematically change over time (a source of inhomogeneity). Ideally, to 

fully capture daily means, data should be hourly. This is not always possible and so the 

effect of less than hourly data on monthly means is studied at a range of latitudes. 

 

Less than hourly data adds little variance to mid and high latitude stations. However, at low 

latitudes (likely warmer and wetter), variance is considerable, of the order of 0.5 standard 

deviations (Fig. 3i and Table 3i). Hence, calculating monthly means from less than hourly 

data can increase variance which may bias certain data. To maintain good data coverage 

while keeping data quality, a compromise is made. HadCRUH will incorporate six hourly (or 

more frequent) data as long as there are at least four observations per day with at least one 

observation in each half of the diurnal cycle (midnight to midday, midday to midnight). 

Observing Frequency Minimum Median Median Median Maximum Median 

3 hourly -0.2 0.0 0.1 

6 hourly -0.3 0.0 0.2 

12 hourly (00, 12) -0.4 0.0 0.4 

12 hourly (06, 18) -0.5 0.0 0.3 

Daily -0.9 0.05 1.5 

Table 3i: Median differences (normalised units) between monthly mean e from hourly 

data and from other sampling frequencies for all case study stations. 
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Figure 3i: Differences between monthly mean e from hourly data and other sampling 

frequencies. Units are normalised to each station. Monthly means are created from 3 hourly 

(pink), 6 hourly (blue), 12 hourly (00, 12 hrs) (orange), 12 hourly (06, 18 hrs) (green) and 

daily (grey) data. a) High latitude station 042020 (Thule, Greenland). b) Mid-latitude station 

108660 (Munich, Germany). c) Low latitude station 404160 (Dhahran, Saudi Arabia).  

a) 

b) 

c) 
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3.1.4 Comparing ISH with Other Data Sources 

 

As a primary quality check, the raw ISH humidity data are compared with two other 

sources: the Hahn and Warren (HAHN) dataset reporting from 1971 to 1996 (Hahn & 

Warren, 1999) and the New (NEW) dataset reporting from 1945 to 2003 (New et al., 

2000). Both provide monthly mean e data.  

 

Thirty three case study stations are selected for closer investigation (discussed further in 

section 3.2). There is good general agreement at monthly mean resolution (Box 3.1 for 

method) between ISH and the other sources in all case study stations. Seven randomly 

selected examples are shown in Fig. 3.4. Of note is station 718160 (Goose Bat, Canada) 

where the HAHN dataset gives consistently higher values. However, the ISH data are 

consistent with the NEW data, implying the problem lies with the HAHN data in this 

case. 

 

For the purpose of this thesis, only the ISH database will be used in order to fully 

investigate the potential of ISH as a data source. Ultimately, future versions of 

HadCRUH would likely benefit from the inclusion of more data both from ISH and 

other sources. 

 

3.2 REMOVAL OF POOR QUALITY DATA 

 

3.2.1 Creating a Set of Quality Control Tests for Humidity Data 

 

Quality control is a common procedure among dataset builders to eliminate the ‘bad’ 

data before undertaking homogenisation (Brohan et al., 2006; Rayner et al., 2006; 

Thorne et al., 2005b). A substantial but not exhaustive two phase quality control has 

already been undertaken by NCDC (Lott et al., 2001). Phase one checked coincident 

data originating from different sources to ensure identical location and time before 

merging, where for each day at least 70 % of the data must be within certain physical 

thresholds (i.e. 1 
o
C for simultaneous T observations). A complete inventory of all input 

and output data was kept in addition to thorough checking of the software and output 

database for any problems. Phase two applied fifty-seven quality control algorithms 

(fully automated) to the data consisting of: validity checks; extreme value checks; 
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internal (within observation) consistency checks and external (versus other observations 

from the same station) consistency checks. Only two example tests are described in the 

ISH accompanying literature (Lott et al., 2001). The first test removed ‘spikes’ of data 

where T values were changed to ‘missing’ when the difference from the previous and 

subsequent hour’s value was greater than 8 
o
C. The original value was saved in a 

separate section of the data record for future use. The second example test compared 

present weather with T to ensure consistency. Test data were created and verified to 

check each algorithm for problems. The NCDC quality control did not include any 

attempt to homogenise the data with spatial comparisons. Each element of each data 

record is accompanied by a corresponding flag referring to whether it is ‘good’, 

‘suspect’, ‘erroneous’, ‘missing’ or not checked for quality. Only data flagged ‘good’ 

continue through to HadCRUH. 

 

For HadCRUH, further quality control testing more finely tuned to the issues 

surrounding humidity measurement is necessary prior to homogenisation (section 3.3). 

The case study stations are used to develop robust quality control criteria. These stations 

are chosen for geographical coverage (Fig. 3.5) and because they have long records and 

report with high frequency. Station details are listed in Table 3.1. In total eight 

hypothesised potential issues of ‘quality’ are investigated.  

 

 ISSUE 1) Physical Constraints on Meteorological Variables: Bad Values QC 

 

Rationale: 

 

Temperature and humidity are constrained by physical limits such that ‘bad’ (physically 

unreasonable) values can be easily identified and removed. These erroneous values may 

be due to malfunctioning instruments, poor observing practices or transmission errors.  

 

Test and Results: 

 

A simple check list for ‘bad’ values for each variable is employed. Full results are 

shown in Table 3.2. In total 0.003 % of case study station humidity data fail these tests. 

H0: All data are physically plausible within the realms of the climate system and 

observing practices. 
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There is no geographically coherent pattern to these results implying that a one-size fits 

all approach is valid.  

 

Implications: 

 

Although only a small amount of data is identified by these checks, the null hypothesis 

is rejected, and this test must, therefore, be part of the quality control process. It is 

possible that in very extreme conditions some of these criteria may be breached, in 

particular the 100 % RH boundary. However, very few instruments, especially those 

employed in operational observing stations are capable of measuring such extremes 

with any accuracy (Makkonen & Laakso, 2005).  

 

ISSUE 2) Strings of Repeated Values: Repeats QC 

 

 

Rationale: 

 

Input or instrumental error can lead to sustained periods of identical values, especially at 

unmanned stations. Given the diurnal cycle and synoptic variability, it is highly unlikely 

that T would remain constant (at 0.5 
o
C accuracy) for long periods of time in the vast 

majority of locations.  Therefore it is reasonable to conclude that such occurrences are 

more likely due to error. One exception is that Tdw can remain fairly consistent over time 

(Ahrens, 2000), certainly within reporting accuracy, and so is not as useful for such a 

test. 

 

Test and Results: 

 

Each station T record is searched for continuous strings (> 12 hours) of identical values. 

In total 0.37 % of case study data are part of a 12+ hour repeated T string (Fig. 3.6). 

High (>100) frequencies of occurrences are found for all latitudes. Eighteen case study 

stations have over 50 occurrences identified and three stations (788060, 108660 and 

042020) have more than 1 % of data removed by this test. 

 

H0: Repeated T values are not a problem within the ISH data. 
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The Polar North has the highest frequency of occurrences, especially in the seasons of 

JJA (1.47 %) and SON (September, October and November) (1.15 %). It is possible that 

this is a real physical signal given the damping of the diurnal cycle during 24 hour 

daylight. However, further investigations yield no similar pattern in Polar South. On 

closer inspection of station 042020 (Thule, Greenland, Polar North), string repeats are 

concentrated in pre-1990 data suggesting instrument or observing practice issues rather 

than seasonal causes. Therefore it is concluded that the majority of such strings are 

unlikely to be real events. 

 

Implications: 

 

There are sufficient occurrences of repeated T strings to reject the null hypothesis and 

warrant including this test within the quality control process. The first value of each 

string repeat is kept in the quality controlled data, but the rest are removed.  

 

ISSUE 3) Events of Continuous Zero Dewpoint Depression: Zero DPD QC 

 

Rationale: 

 

The vast majority of humidity data originate from wet-bulb thermometer measurements. 

There are however, a suite of problems associated with such instruments as described in 

section 1.3. Screen freezing and wick drying due to reservoir freezing or evaporation 

leads to continuous periods of precisely 100 % RH, which are thought unlikely to occur 

naturally in the majority of cases and therefore represent, at least in most cases, 

erroneous data. 

  

Test and Results:  

 

Each station record is searched for events of continuous strings of (>12 hours) 0 
o
C 

dewpoint depression (DPD) (T – Tdw). In total, 0.54 % of the case study humidity data 

are identified by this test (Fig. 3.7) and 16 case study stations have over 50 events. This 

is a problem over all latitudes without any particular bias towards regions where 

sustained rainfall is typical such as the Tropics. This suggests that this test is sufficient 

H0: Wick-drying or screen freezing is not a problem within the data. 
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to pick out drying or freezing events without biasing the data towards dry conditions by 

erroneously removing wet condition data. Station 837460 (Galeao, Brazil, Extra-tropical 

South) has a relatively high frequency of events (544), totalling 3.57 % of the data. 

These are relatively evenly spread through the timeseries. Seasonally, for Galeao, events 

are most common during SON and least during MAM (March, April and May), 

affecting 4.31 % and 2.65 % of the seasonal data respectively. Generally the climate of 

Galeao lies around 20 
o
-30 

o
C and never drops below zero. The RH does frequently 

become as low as 20 %, thus wick drying is likely a real problem.  

 

Stations reporting with less than hourly frequency make such an event more difficult to 

detect. Indeed, this is demonstrated by the fewer occurrences at these stations (stations 

denoted with an S in Fig. 3.7). This is an argument for only using stations that observe 

with a high frequency (Box 3.2). 

 

Implications:  

 

Frequent occurrences of > 12 hour strings of 0 
o
C DPD events are found in most of the 

case study stations and thus the null hypothesis is rejected. All 0 
o
C DPD strings of 12 

hours or more will be removed from the dataset. In future versions it may prove 

beneficial to remove entire stations where event frequency exceeds a certain threshold. 

However, for the first version of HadCRUH, these will be kept to preserve station 

coverage. As a final check on this, a geographical analysis of data removal due to this 

test from all stations will be undertaken (section 3.2.2).  

 

ISSUE 4) Recording Problems in Temperature Extremes: Cutoffs QC 

 

 

Rationale: 

 

It has been common practice for some countries to record extreme values as either a set 

limit or missing. For instance, in the US radiosonde record (until 1993), Tdw was not 

recorded when T fell below -40 
o
C. In addition, in the US and surrounding countries, 

when RH fell below 20 % a standard dewpoint depression of 30 
o
C was reported (Ross 

H0: There are no noticeable problems with data recording in extreme 

temperatures. 
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& Elliott, 1996; Elliott, 1995). Conversion to e, q and RH requires simultaneous 

recording of T and Tdw. Therefore a practice of not reporting Tdw or artificially setting 

Tdw values in extreme temperatures will introduce bias into the humidity data.  

 

Test and Results: 

 

Frequency distributions of T and Tdw are scrutinised for all case study stations. No 

evidence is found for Tdw values being reported as a set value in extreme temperatures. 

However, station 702220 (Galena, Alaska, USA) is potentially an example of humidity 

data not being recorded at low temperatures. Below -37 
o
C the distribution of all T 

values differs to the distribution of T values with simultaneously measured Tdw (Figs. 

3.8 a and b). This does not occur in all years. Station 042020 (Thule, Greenland) also 

shows similar ‘cutoffs’ at low temperatures in some years. For comparison, decadally 

averaged T distributions from nearby US and Greenland stations are scrutinised and 

comments listed in Table 3.3. Cutoffs appear in these other stations and commonly at a 

T of ~ -37 
o
C although not consistently across the timeseries. Failure to record 

simultaneous Tdw with T may be a problem at other latitudes and temperatures possibly 

due to episodes of wick drying or instrumental limitations. 

 

To test for cutoffs only, each year of each case study station is checked for the 

percentage of T data with simultaneously observed Tdw by 10 
o
C bins. The entire year is 

considered unusable if for any one 10 
o
C bin, less than 90 % of T observations have a 

simultaneous Tdw value. Bins containing less than 10 observations are not tested.  

 

The problem is found to be widespread, affecting 12 of the case study stations (Table 

3.4). Although cutoffs are mostly at low temperatures, it is not exclusively so and they 

affect data at all latitudes. This test results in the exclusion of station 702220 from 

HadCRUH because there are insufficient problem free years with which to create a 

climatology. Stations 042020 and 783970 are also greatly affected. 

 

Implications: 

 

Inconsistent recording of Tdw observations is evident in the data and so the null 

hypothesis is rejected and this test is part of the quality control.  
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ISSUE 5) Reporting Timezones: Timezones QC 

 

 

Rationale: 

 

It is assumed that all data contributing to HadCRUH have accurate reporting times such 

that the diurnal cycle remains consistent throughout each station record. Also, according 

to Lott et al. (2001) all stations have been converted to Greenwich Mean Time (GMT). 

Humidity, although to a lesser extent than T and not in all stations, exhibits some degree 

of diurnal cycle (Robinson, 1998) (Box 3.2). Incorrect or inconsistent reporting times 

will likely affect the accuracy and homogeneity of the data, especially where the diurnal 

cycle is strong.  

 

Test and Results: 

 

A mean e diurnal cycle is calculated for each year for each case study station where data 

are six hourly or more frequent. Each annual mean diurnal cycle is normalised to give a 

curve with 24 (or less depending on observing frequency of the station) points between -

1 and 1. A sine curve is used to give 24 (or less) values describing an ideal diurnal cycle 

with the maxima at hour zero. The two vectors are then correlated to give an r 

(correlation coefficient) value. The sine curve is then shifted along by one hour at a time 

and re-correlated resulting in 24 (or less) r values. This is then plotted as r versus time 

shift. The peak in the maximum r identifies the annual average maximum of the diurnal 

cycle at GMT where each time shift form 0 to 23 corresponds to the 24 hour clock. For 

example, station 037720 (Heathrow, London) is at GMT and the maximum r occurs 

around the 15
th

 time shift (3pm). Station 723710 (Page, Arizona, USA) is approximately 

7.5 hours behind GMT in terms of longitudinal distance (officially at US Mountain 

Standard time which is 7 hours behind) and so the maximum r occurs at the 22
nd

 time 

shift (10pm). From these plots it is possible to tell if the station has been converted to 

GMT and if all years are within good agreement. 

 

Scrutiny of these plots shows that all stations have been converted to GMT. Only two 

stations (895710 and 284400) show no perceivable common diurnal cycle. However, 29 

H0: All data are converted to GMT and are correctly sampling the diurnal 

cycle. 
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case study stations have a strong and consistent diurnal cycle with minimal inconsistent 

years. An attempt is made to create an objective and automated test to detect annual 

differences in the diurnal cycle using five criteria and then attribute those changes to a 

period of data within that year. These are as follows: 

 

Test 1:   Each annual mean set of r values is subtracted from the station   

  mean set of r values. If more than 50% of difference values are  

  less than 0.4 or greater than -0.4 the test is failed.  

Test 2:   If the difference between the maximum and minimum r value for  

    each annual mean set (measured in time shifts (hours)) is less  

    than 9 or greater than 15 then the test is failed.  

Test 3:  If the absolute difference (in time shifts) between each annual  

    mean maximum r value and the station mean maximum r value is  

    greater than 3 then the test is failed.  

Test 4:   If the absolute difference (in time shifts) between each annual  

    mean minimum r value and the station mean minimum r value is  

    greater than 3 then the test is failed.  

σ Test:   The standard deviations (σ) of the r values for each annual mean   

  at each time shift are calculated. If any σ exceeds 0.5 then the test  

  is failed.  

 

Nine case study stations have at least one year failing at least one criterion (Table 3.5).  

Figure 3.9 shows station 702220 as an example of a station where all but two years 

show accurate GMT conversion and strong agreement. On further analysis, the data in 

station 702220 become significantly moister (~4 σ from the mean) and more erratic 

from December 2000 to February 2002. Ideally, each failed year would then be further 

tested to identify the period or cause of the problem in an automated way. 

Unfortunately, it has not been possible to create a test that performs satisfactorily in the 

timeframe available. Notably, the problem with years 2000 to 2002 at station 702220, 

and others like it, should be picked up during the homogenisation process. 

 

Implications: 

 

The first part of the null hypothesis is accepted as all case study stations are converted 

to GMT. However, the diurnal cycle is not always consistent and so the second part of 
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the null hypothesis is rejected. While this test proves unsuccessful in applying 

improvements, the σ Test will be used to list suspect stations for further scrutiny in later 

versions of HadCRUH. The later homogenisation process should account for any major 

discontinuities caused by changes to diurnal cycle sampling or representation, and use 

of gridded monthly mean anomalies should minimise any effects on the end product. 

 

ISSUE 6) Wind Speed: Wind QC 

 

Rationale: 

 

All wet-bulb thermometers and some other hygrometers such as the Dewcel depend on 

adequate aeration to enable evaporation. Non-artificially aerated wet-bulbs depend on 

good location and sufficient natural air flow through the Screen, known as the 

ventilation rate (v) which is in ms
-1

. Figure 3.10 shows the linear relationship between 

mean wind speed (U) in ms
-1

 and the ventilation rate in ms
-1 

in the Screen which is 

described by the following equation (Folland, 1977): 

Uv 15.008.0 +−=  Eq.3.1 

The accepted mean ventilation rate is 1.25 ms
-1

, which would require a mean wind 

speed of ~9 ms
-1 

(Folland, 1977). For stations that observe wet- and dry-bulb 

temperatures a psychrometer coefficient is required to convert T – Tw to other humidity 

variables. This value is commonly 0.8x10
-3

 K
-1

 which is suitable for a ventilation rate of 

1 to 1.5 ms
-1

 (mean wind speed of 7.2 -10.5 ms
-1

). At some stations the psychrometer 

coefficient is increased for low ventilation rates and decreased for higher ones, thus 

accounting for the inhibited evaporation due to near stationary air within the Screen at 

low wind speeds and over-ventilation at high wind speeds. To complicate things further, 

the actual psychrometer coefficient differs with instrument type. For example, at v = 

1.25 ms
-1

 the psychrometer coefficients for the Mercury-in-glass and Resistance 

thermometers were found to be 0.87x10
-3

 K
-1

 and 0.70x10
-3

 K
-1

 respectively (Folland, 

1977). Humidity values derived from the common psychrometer coefficient and the 

Mercury-in-glass thermometer Tw were always overestimated. Those derived from the 

Resistance thermometer Tw were overestimated when v < 0.3 ms
-1

 (U = ~2.5 ms
-1

) and 

underestimated when v > 0.3 ms
-1

. Table 3.6 lists the approximate error in each variable 

H0: Poor ventilation at low wind speeds does not have a significant effect on 

humidity. 
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for both instruments assuming that RH = 75 % and T + Tw = 18 
o
C based on findings 

from Folland (1977). Error increases with decreasing RH but the relationships are non-

linear preventing simple linear extrapolation over the values shown in Table 3.6. 

 

As the proportion of stations using naturally aerated wet-bulb thermometers is not 

known, there can be no assumption about the potential scale of this problem. Compiling 

information on instrument type and psychrometer coefficient where used for an entire 

global dataset is a task beyond the scope of this thesis and likely to prove near-

impossible for all land stations. Thus detecting problems that result in errors of either 

sign (therefore effecting no systematic bias when considering grid-box monthly mean 

anomalies), such as: using an inaccurate psychrometer coefficient for actual wind speed 

at the time; using a psychrometer coefficient that differs from that of the instrument 

employed; or over-ventilation, is considered unfeasible at least for version 1 of 

HadCRUH. Detecting under-ventilation (U < 2.5 ms
-1

) which always results in a 

positive bias, may be easier. 

 

Test and Results:  

 

An ideal test would be to compare stations that use naturally aerated wet-bulb 

thermometers with neighbouring stations employing a different instrument type. Due to 

paucity in readily available metadata, this is not possible. Given the results from the two 

common wet-bulb thermometers shown in Table 3.6, a bias in e due to under-ventilation 

should be less than 1 hPa. However, the range of e values calculated at low wind speeds 

(<2.5 ms
-1

) is too large in all case study stations, even when analysed seasonally, for 

such a small error to be detected. Station 042020 (Thule, Greenland), which has the 

smallest seasonal range, but this still exceeds 5 hPa – an order of magnitude larger than 

any likely effect. As a further example (Fig. 3.11) , station 404160 (Dhahran, Saudi 

Arabia) exhibits a relatively large range when compared to the other case study stations 

which is smallest in DJF (~20 hPa) and largest in JJA (~45 hPa). All stations are 

scrutinised in this manner but no effects of spurious moistening in low wind speeds are 

visible to the eye. This is, however, expected considering the likely magnitude of the 

effect. 
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Implications: 

 

It has not been possible to either identify any stations where measurement errors due to 

low wind speed are apparent or to quantify the extent of this problem within the land 

data. The effect of these relatively small errors in hourly station data should be greatly 

reduced by using grid-box monthly mean anomalies. Furthermore, if it is assumed that 

mean wind speed remains largely constant over time at any one station then errors will 

be consistent over time, and so although having some small effect on the climatology, 

they should not affect any analysis on changes in humidity such as trend fitting. Finally, 

simultaneous wind speed observations do not always accompany the ISH humidity data 

and ISH wind data quality is as yet unknown and would likely require its own set of 

quality control tests. Therefore it is deemed that: further investigation; ensuring the 

quality of the ISH wind data; and the creation of automated detection tests suitable to be 

applied to 3000+ stations are beyond the focus of this project but may be desirable for 

future versions. 

 

ISSUE 7) Problems with Station Elevation 

 

Rationale: 

 

The effect of elevation on spatial continuity in humidity is complex and relatively 

unstudied.  A single 5 
o
 by 5 

o
 grid-box may incorporate a number of stations at a wide 

spectrum of elevations. If the large scale variance in station timeseries is very different, 

at different altitudes, resulting in poor correlation of station timeseries, the homogeneity 

of the grid-box could be compromised. This has previously been considered a problem 

for T resulting in stations above 2500 m being excluded from previous versions of 

HadCRUT3. Such stations are now however included (Brohan et al., 2006). 

 

Test and Results: 

 

Four pairs of neighbouring high/low elevation stations are analysed (Fig. 3.12, Table 

3.7). Both the statistical mean and variance are smaller at the higher elevation stations. 

H0: The homogeneity of a grid-box will not be compromised by containing both 

high and low elevation stations. 
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Using simple linear Pearson regression, the timeseries for each pair are correlated. An 

assumption is made that an r of less than 1/e (0.37) shows poor correlation that would 

compromise the homogeneity of a grid-box if both stations are included. This criterion 

is based on that used by Briffa & Jones (1993) to define ‘spatial correlation decay 

lengths’ for meteorological variables.  

 

 

The European pair correlate well, despite their large horizontal distance (greater than 

that of a 5 
o
 by 5 

o
 grid-box), with an r value of 0.81. However, they are within 500 m 

vertically. The Japanese pair have a large vertical distance (1286 m) but are horizontally 

close and correlate well with an r
 
value of 0.87. The USA pair also have a large vertical 

distance and are further apart horizontally than the European pair yet still correlate with 

a low but sufficient r value of 0.38. The Colombian pair have the greatest vertical 

distance but are relatively close (within a 5
 o

 by 5
 o

 grid-box). They have a poor 

correlation with an r value of 0.24. However, these stations are on different sides of the 

Cordillera Mountain Range with Cali on the moister seaward side and Bogota on the 

more arid landward side.  

 

These correlations compare well with the globally averaged correlation decay distances 

(CDDs) calculated by New et al. (2000) using the same 1/e threshold as Briffa & Jones 

(1993). This was the distance over which any given station can be expected to bear 

some climatic relation to its neighbours. For precipitation, diurnal temperature range 

and mean T these distances were 450 km, 750 km and 1200 km respectively. Two 

points can be drawn from this analysis. Humidity can have a strong spatial consistency 

horizontally, in agreement with predefined CDDs for precipitation, diurnal temperature 

range and mean T, despite possibly large vertical ranges. However, this can be strongly 

influenced by features of topography other than just elevation (e.g. slope aspect, 

prevailing wind direction etc.). 

 

Fig. 3.13 maps the stations meeting the climatology criteria (section 3.1.2) colour coded 

by elevation. It is necessary to retain stations over 1000 m to maintain good coverage. 

Although very high elevation stations (>2500 m) make up a very small amount of the 

data, excluding these will leave large gaps over the Himalaya and Tibetan Plateau which 

is undesirable. 
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Implications: 

 

High and low elevation stations can correlate sufficiently. However, there is a degree of 

ambiguity depending on aspect and other topographical features within each grid-box 

and so the null hypothesis is rejected. Very high elevation stations have added problems 

with pressure conversion algorithms performing less well. This is particularly important 

for humidity as conversions for e and q use pressure converted from sea level to actual 

level using the given station elevation.  

 

As there is no clear or simple way of dealing with this problem all stations will be kept 

regardless of their elevation for now. Homogenisation will take account of elevation 

difference as only those stations within 1000 m vertical distance and correlating 

sufficiently will be considered as ‘neighbours’. Furthermore, ultimately only those with 

at least five neighbours will be considered in the homogenisation and hence be used in 

HadCRUH (section 3.3). Ultimately, the first version of HadCRUH will allow a more 

detailed study of humidity at high elevations enabling later versions to employ a more 

robust and sensitive approach. 

 

ISSUE 8) Outlier Removal: Outliers QC 

 

Rationale: 

 

An ‘outlier’ check is a common and valuable quality control test for timeseries data to 

avoid bias caused by a few erroneous observations (Parker et al., 1995; Rayner et al., 

2006; Brohan et al., 2006; Dai, 2006). The removal of outlying values, that are most 

likely inaccurate, prevents skewing of mean values towards these ‘extremes’. These 

outliers may be individual or clusters of observations. They can occur for a number of 

reasons: 

• Measurement unit:  T may have been recorded as Fahrenheit or Kelvin rather  

    than Celsius. 

• Input error:   Values may have been input with the incorrect decimal  

    place or just incorrectly. 

Ho: All data are within a reasonable measure of the climatology and have no 

unrealistic jumps in the timeseries. 
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• Digitisation and transmission errors 

• Instrumental errors:  Malfunctioning instruments may give random values and  

    go unnoticed for short periods of time. 

 

Test and results: 

 

This test is undertaken in e at the pentad (five-day mean – Box 3.1) resolution. To avoid 

removing gradual and more likely real deviations from the climatology a pentad mean 

anomaly first difference (t – t-1) and standard deviation (σ) timeseries are created for 

each station. Four tests are applied to identify pentads to remove from the dataset: 

1. Individual/group outliers: Pentad mean anomalies greater than 3 σ from the  

     mean and with a first difference series value  

     greater than 2 σ are removed. The next pentad  

     (and so on) is also removed if it too is greater than  

     3 σ from the mean. 

2. Sudden spikes:  Pentads with two adjacent first difference series  

     values greater than 3 σ are removed.  

3. Post-gap outliers:   Pentad mean anomalies greater than 3 σ and  

     preceded by missing data are removed. The next  

      pentad (and so on) is also removed if it too is  

     greater than 3 σ from the mean. 

4. Sandwich outliers:  If both pentad t-2 and pentad t0 are removed then  

     pentad t-1 will be removed too because the whole  

     period is suspect. 

 

As e is approximately proportional to q (Peixoto & Oort, 1996; Barry & Chorley, 1998; 

McCarthy & Willett, 2006), an outlier test in both variables is unnecessary. In the 

marine data (section 4.2) the removal of data by the Outlier QC test using RH is 

proportionally much less (< 50 %) than for the Outlier QC tests using e and q. Given 

this information and that RH is derived from the same humidity value, a separate Outlier 

QC in RH land data is not deemed necessary either. Furthermore, RH is characterised by 

large ranges over relatively short temporal periods, especially in dry regions. For 

example, in the Canadian prairies, summer RH can range from 40 % in the afternoon to 

over 80 % at night (van Wijngaarden & Vincent, 2005). As a result, a three σ outlier 
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threshold could potentially be very large thus reducing both the effectiveness and value 

of an RH specific outlier test. 

 

Station 843770 (Iquitos, Peru) is shown as a representative sample of the case study 

stations with a relatively large amount of data removal (Fig. 3.14a). All identified 

pentads are considered appropriate for removal. This has the effect of dampening of 

high resolution variance in the timeseries (Fig. 3.14b) which is as expected. Overall, the 

case study station data removal is 0.2 %, 0.07 %, 0.005 % and 0.05 % for tests 1 to 4 

respectively. There are no previous assessments of how much data should be removed 

by these types of tests with which to compare.  

 

On investigation of each of the case study station timeseries alongside pentads identified 

by this test for removal, the Outlier QC is found to be satisfactory in identifying and 

removing suspect data. No seasonal patterns of removal are apparent. As a second test, 

each station distribution (of hourly e values) is scrutinised before and after data 

removal. The majority of stations have data removals from the middle or whole 

spectrum of the range of e values. As this test is conducted at a pentad resolution it is 

quite possible that a pentad is skewed high or low due to only a proportion of hourly 

values within it such that hourly values from well within the normal distribution are 

removed too. In addition to removing data some distance from the mean this test also 

looks for sudden spikes or clusters of data that differ considerably from rest of the data 

for that period. For example, if a station timeseries has a period where humidity is 

slightly higher than the mean and then one (or a group) of pentads drops sharply back 

down to the mean or below and then returns to this higher level, this small period may 

be removed even though it is perhaps close to the mean because such a sudden and large 

deviation from the surrounding data is physically unlikely.  

 

Data removal appears to be randomly spread across all latitudes (Fig. 3.15). Removal is 

high in station 702220 (Galena, Alaska, USA) largely due to the highly suspect period 

between 2000 and 2002 discussed earlier in issue 5 (this section). Harsh weather 

conditions, Screen and wick icing and reservoir freezing associated with Polar latitude 

stations may be responsible for the relatively high data removal apparent in these 

stations. Comparatively high data removals also occur in some stations in the Tropics 

which adds support to this test because no bias is shown towards larger removals from 

certain regions.  
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Implications: 

 

Most stations incur data removals due to this test so the null hypothesis is rejected and 

this test included in the quality control. There are no systematic patterns emerging from 

data removal by this test and for the case study stations data removals are considered 

valid. Consequently, this test will be used for the whole dataset. A further outlier check 

will be run during homogenisation incorporating neighbour comparison (section 3.3). 

Later versions of HadCRUH may require a more sensitive test, possibly more specific to 

latitude. 

 

3.2.2 Running the Quality Control Process: From Raw Hourly Data to 

Pentad Mean Anomalies 

 

The final quality control process compiles the six issues discussed above that were 

found to be important and successfully tested for (see flow diagram in Fig. 3.16). All 

stations with a sufficient record length (section 3.1.2) and sampling frequency (Box 3.2) 

that pass through the first quality control (Bad Values, Repeats, Zero DPD and Cutoffs 

QC tests) are then averaged up to pentad climatologies and pentad mean anomalies 

(Box 3.1). There is then a second quality control (Outlier and Timezones QC tests) 

followed by recalculation of pentad climatologies and pentad mean anomalies. 

 

In total 7.68 % of case study station data are removed by the quality control (Fig. 3.17). 

This is dominated by Cutoff QC removals (6.62 %). Station 702220 is completely 

removed by this test. Four stations (042020, 404160, 726650 and 783970) are analysed 

in greater detail (Fig. 3.18) with 19.0 %, 0.3 %, 10.5 % and 32.7 % of data removed 

respectively. These data removals have the effect of slightly lowering the mean in 

stations 042020 and 726650 making the timeseries appear dryer. Conversely, station 

783970 displays a more positive mean giving a moistening effect of quality control data 

removals. Although undoubtedly there are occasions where the quality control removes 

‘good’ data, this is inevitable and outweighed by the benefit of removing ‘bad’ data.  

 

The quality control process as described is applied to run through all 4760 stations. 

Removals are similar in scale and magnitude to that of the case study stations with the 

Cutoff QC responsible for the largest data removal (Fig. 3.17). Overall, the percentage 
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removals from all data confirm the case study stations as being a broadly representative 

sample set of stations. In total the quality control procedure removes 5.74 % of the raw 

data. In addition to this, those stations passing through to a pentad dataset must contain 

sufficient remaining data to meet the sampling thresholds listed in section 3.1.2. This 

leaves 3514 ‘good’ stations.  

 

As mentioned earlier, there is a possibility of bias resulting from the erroneous removal 

of truly 100 % RH data due to the Zero DPD QC. If this is the case then it might be 

expected that proportionally more data are removed from typically wet regions such as 

the Tropics and monsoonal regions and fog prone regions. No such pattern is apparent 

for the Tropics and monsoonal regions (Fig. 3.19). However, on comparison of Figure 

3.19 with the annual mean (over the period 1971 to 1996) percentage of sky obscured 

by fog for the global land area (Hahn & Warren, 2006) there may well be some 

correlation with fog prone regions. Over Europe especially, a region where sky 

obscuring due to fog is relatively higher, stations with > 1 % data removal are common. 

The large removal of Romanian data, however, is likely due to poor data quality 

because Romanian stations incur high data removals from the other quality control tests.  

 

The decision to include this test is justified based on findings from the case study 

stations and overall data removal is not large (1.25 %) when compared to the 13 % of 

data removed due to wick drying events in the 2003-2004 GCOS plastic screen trial at 

three British stations (Elms & Hatton, 2005)). Some real 100 % RH events are 

undoubtedly removed and there is a risk, although likely small in effect (due to the 

small amount of data removed), of underestimating the climatology and any moistening 

trends. Further refinement of this test is necessary for any future versions of HadCRUH.  

 

Coverage of stations passing the quality control is good in most land areas excluding 

high latitudes (>70 
o
 N and >60 

o 
S), South America, North and Central Africa, Saudi 

Arabia and the Middle East (Fig. 3.20 a and b). The US is fairly sparsely covered for 

reasons discussed in section 3.1.2. The majority of the data removals clustered in 

Austria, Romania and Japan are due to either the station length being too short or 

reporting frequency less than six hourly. 
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3.3 HOMOGENISATION OF THE LAND DATA 

 

3.3.1 Why Homogenise? 

 

If variability within an observational timeseries is attributable solely to weather and 

climate, then that timeseries can be considered ‘homogenous’ (Conrad & Pollack, 1962, 

in: Jones et al., 1999). Inhomogeneities may be abrupt or gradual discontinuities within 

the timeseries (Easterling & Peterson, 1995). Abrupt discontinuities to humidity are 

regarded as highly unlikely as real signals of global climate change. They can be caused 

by a number of factors, identical to those affecting T (Jones et al., 1985): 

• INSTRUMENTS:   Changes in type or exposure. 

• RECORDING PRACTICES: Changes in precision, measurement  

      technique and switches to automation. 

• STATION:   Change of instrument location. 

• CONVERSION ALGORITHM:  Changes in the method for converting  

                                                      the measured humidity variable to the  

      desired reported variable or temporal  

      resolution (Elliott & Gaffen, 1993). 

 

As examples of the above, Canadian conversion algorithms, in the form of 

psychrometric tables, were refined in the 1960s and the metric system was adopted in 

1977. In addition, from the early 1970s psychrometers were replaced by the Dewcel 

leading to a decreasing shift in RH at a number of stations (van Wijngaarden & Vincent, 

2005). Other factors can directly affect the local climate. For example, at the 

microscale, the growth of a nearby tree may affect the local climate through shade and 

evapo-transpiration. Furthermore, changes to the hydrology of an area such as the 

introduction or cessation of irrigation practices or the construction or draining of a local 

reservoir (Elliott, 1995) can effect real changes in humidity. The latter of these is an 

example of a gradual discontinuity which is much harder to detect.  

 

Where possible, it is desirable to remove these inhomogeneities of non-climatic origin 

to enhance signal detection in climatic analyses (Easterling & Peterson, 1995; Jones et 

al., 1999; Vincent et al., 2002). Although little work has been done on homogenising 

humidity data (Vincent et al., 2002), the principal ideas are the same and so methods of 



______________________________________________________Ch.3 The Land Data 

___________________________________________________________________ 99 

homogenisation should be largely transferable.  

 

Of the many methods of homogenisation (see Peterson et al., 1998 for full review), a 

modified version of the reference station method (Easterling & Peterson, 1995; Jones et 

al., 1999; Potter, 1981; Alexandersson, 1986; Young, 1993; Peterson et al., 1998) has 

been chosen for use with the land data. This is a reasonably common method of 

detection where the candidate station is compared with a quasi-consistent independent 

background field, assumed largely free of inhomogeneities. A discontinuity appearing in 

the candidate station series but not the background field is treated as a breakpoint. The 

series before the breakpoint can then be adjusted appropriately. 

 

There are four major caveats with this technique:  

• an abrupt discontinuity may appear in both the candidate station and background 

field and thus go undetected;  

• gradual discontinuities will not be well detected;  

• homogenisation may introduce errors itself (structural uncertainty – Thorne et 

al., 2005a); and 

• it is a subjective and non-replicable test.  

The first may occur if, for example, a change to instrument, algorithm or recording 

practice is implemented simultaneously at large number of stations. Despite these 

caveats, the benefits of homogenisation in terms of improving the stationarity of the 

dataset for climate studies, are recognised across the scientific community (Peterson et 

al., 1998; Thorne et al., 2005b; Brohan et al., 2006; Vincent et al., 2002; Jones et al., 

1985; Jones et al., 1986).  

 

3.3.2 Homogenisation of Specific Humidity 

 

The size of the land dataset after the quality control (3514 stations) requires a largely 

automated approach to homogenisation but with some manual input necessary for 

breakpoint identification. The technique is modified from that used in the creation of the 

radiosonde temperature dataset HadAT (Thorne et al., 2005b). Homogenisation takes 

place at the pentad mean anomaly (Box 3.1) resolution. This avoids very high resolution 

noise and enables a second outlier test. A flow diagram of the process is presented in 

Fig. 3.21.  
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Neighbour composites are used as a consistent but independent background field. For 

the q data 3391 stations are able to have a neighbour composite and difference series 

(candidate station – neighbour composite) created. The methodology is described in 

Box 3.3. The data series are then passed through the homogenisation process as 

described in Fig. 3.21. As humidity is generally spatially consistent over 100s of km 

(section 3.2.1), any real spikes in humidity seen at one station can be expected to appear 

in a sufficiently correlating but independent background field. Thus the creation of 

independent background fields for homogenisation provides an opportunity for further 

and more sensitive outlier checking. This is done simultaneously with the 

homogenisation. Any pentad in the difference series greater than four standard 

deviations from the mean is removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Box 3.3: Creating Neighbour Composites 

 

Breakpoints are identified using a Kolmogorov-Smirnov (K-S) test on two years of 

difference series data before and after each pentad where at least one third of data are 

present. The two year subsections are matched for temporal coverage to avoid the effect 

of differential sampling across the seasons. This test is chosen because it is non-

Neighbour composites are created using a similar convention to that of Briffa & Jones 

(1993) and Thorne et al., (2005b). Each station is assigned a 1 o by 1 o grid-box. All stations 

within a potential correlation region of 50 
o
 longitude and 10 

o
 latitude on either side of 

the candidate station are potential neighbours.  

 

NCEP reanalysis data of monthly mean (q and RH) anomalies for 1973-2003 (Kalnay et al., 

1996) are used to create an actual correlation region for each station. This consists of all 

grid-boxes (1 
o
 by 1 

o
) within the potential correlation region that correlate with the 

candidate station grid-box timeseries with an r value greater than 1/e. All stations within 

those grid-boxes and within 1000 m elevation of the candidate station become actual 

neighbour stations and are given the grid-box r value as a weighting coefficient. The 

elevation requirement accounts for the poorer spatial continuity of humidity vertically than 

horizontally and the possibility that NCEP reanalyses may not represent this accurately. 

 

A neighbour composite is made by creating a weighted average over all actual neighbours 

with a caveat that there must be at least 5 neighbours to avoid spurious breakpoint 

assignment as much as possible. A difference series is also created of the candidate station 

minus neighbour composite. 
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parametric, more liberal than a t-test (tried and found to be unsuitable) and does not 

assume a normalised distribution. Pentads where the K-S test gives at least 0.01 % 

significance and that remain significant at this level for at least six months (37 pentads) 

thereafter, are labelled as potential breakpoints. This period of six months sustained 

significance is used to avoid over-identification of breakpoints which was a problem 

with the other methods tried.  

 

All potential breakpoints are then scrutinised manually alongside its neighbour 

composite, difference series, K-S test results and potential breakpoints. The panel for 

candidate station 747320 (Holloman, New Mexico, USA) is shown with decisions and 

reasoning annotated (Fig. 3.22). Decisions are based on the K-S test value, approximate 

means (as guessed by eye) of the sections either side of the breakpoint and whether the 

discontinuity genuinely appears to originate from the candidate and not the neighbour 

series. Only obvious breakpoints are accepted. All accepted breakpoints are adjusted for 

by adding to all pre-breakpoint data the difference in medians of the difference series 

before and after the breakpoint (described in Fig. 3.21). When all adjustments have been 

made each station anomaly timeseries climatology is recalculated and the anomaly 

series adjusted accordingly (later referred to as re-normalising). Inevitably, there are 

both erroneously accepted and rejected breakpoints. However, in the case study stations 

at least (Fig. 3.23), adjustments effectively moderate or in many cases entirely remove 

discontinuities in the q record without completely removing trends implying that the 

method works sufficiently well.  

 

Before commencing actual homogenisation, a test run through all stations is conducted 

in an effort to standardise manual decision making. The homogenisation process is 

reiterated and each anomaly, neighbour and difference timeseries recalculated each time 

until the number of adjustments made is less than 25 % of that made in the first 

iteration.   

 

As all station timeseries are scrutinised manually, the opportunity is taken to delete 

stations that look unsatisfactory. Although unavoidably subjective, this is a useful extra 

quality control. These removed stations are then scrutinised in more detail in regions of 

poor data coverage and added back to the dataset if deemed possible. Final deletions are 

clustered in the Chita Oblast (a federal subject of Russia, eastern Siberia), the east coast 

of China, Croatia and Romania (Figs. 3.24 a and b). 
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After the second iteration, the number of adjustments is less than 25 % compared to that 

in the first iteration, and hence no further iterations are deemed necessary. The results 

for q are summarised in Table 3.8. In theory, adjustments should be fairly evenly 

distributed both over time and around zero, but perhaps with peaks in specific regions at 

times of broad scale instrument change. A geographical analysis of adjustment timing 

and sign demonstrates this to be true, especially in regions with larger numbers of 

adjustments (Figs. 3.25, 3.26, - second iteration results are similar and therefore not 

shown). There is a peak in US first iteration adjustments in 1985. Here, the US National 

Weather Service introduced a new Tdw sensor in the mid- to late 1980s in addition to 

moving over to the Automated Surface Observing System from 1987 onwards (Gaffen 

& Ross, 1999). This link is not conclusive. Overall, there is no pattern or peak in the 

adjustments sufficient to give doubt to the value of the homogenisation process.  

 

3.3.3 Homogenisation of Relative Humidity 

 

Ideally, a full homogenisation would be undertaken on RH independently. However, as 

RH is considered of secondary importance relative to q in terms of this project output 

and analysis, a faster fully automated, semi-independent approach is used. Correlation 

regions, neighbour composites and adjustment quantities are derived from RH directly 

and the outlier checking is conducted on RH directly. Breakpoint locations are taken 

from those accepted in q for each iteration respectively. 

 

This is preferable to direct conversions from q adjustments because deriving humidity 

away from point source values introduces small errors due to the non-linear relationship 

between T and humidity and between humidity variables themselves (McCarthy & 

Willett, 2006). The chosen method has two issues: non-discontinuities may be adjusted 

for; and discontinuities may go un-adjusted. In the first case, introduced errors should 

be minimal because if no discontinuity exists then the difference series medians either 

side of the breakpoint should be very similar thus effecting very little adjustment. The 

second case is more serious. Although, breakpoints in humidity alone (in Tdw – the 

common source variable for q and RH) should occur simultaneously in both q and RH, 

RH is also dependent on T and would be affected by T inhomogeneities. It is assumed 

for the purpose of this homogenisation that T and Tdw have identical breakpoints. This 

assumption is highly unlikely to hold in all cases.  
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There are slightly fewer stations with RH neighbour composites than for q due to 

typically smaller correlation decay distances (section 3.2.1 issue 7). However, results 

(summarised in Table 3.8) are similar to q in that adjustments are generally normally 

distributed around zero (Fig. 3.27). There are no outliers found in the RH stations. This 

implies that either RH has a lower variability relative to q or that first order variability is 

higher such that four standard deviations is a very large quantity and therefore never 

exceeded. As for q, in the case study stations at least (Fig. 3.28), adjustments effectively 

moderate or in many cases entirely remove apparent discontinuities in the record. This 

supports the assumption of generally identical T and Tdw breakpoint locations to a point. 

Interestingly, adjustments in RH tend to be more conspicuous (i.e. 1996 in station 

837460 (Galeao, Brazil)). All breakpoint locations originate from identification in the q 

timeseries and so it could be concluded that discontinuities in humidity affect RH more 

than q. 

 

3.4 AN ANALYSIS OF SURFACE HUMIDITY OVER LAND 

 

3.4.1 The Climatology of Surface Humidity over Land  

 

The land data are converted to monthly mean anomalies (Box 3.1) and gridded to 5 
o
 by 

5 
o
 grids using simple (non-weighted) averaging over each grid-box. Many grid-boxes 

consist of two or more stations. Outside the Northern Hemisphere mid-latitudes 

however, coverage is sparse (Fig. 3.29).  

 

Monthly climatology grids are created by averaging the station pentad climatologies 

over each month and then averaging all station monthly mean climatologies for each 

grid-box (Figs. 3.30 and 3.31 for q and RH respectively). Globally, q ranges from ~0 to 

20 g kg
-1

 and has strong zonal continuity. The moistest q values are in the Tropics 

followed by the Summer Hemisphere. These decrease meridionally towards each Pole. 

The structure of RH is much more region specific (zonally discontinuous) with the 

lowest values in desert regions and highest values in the Northern Hemisphere in winter 

months and a global range of ~10 - 90 %. 
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3.4.2 Recent Changes in Surface Humidity over Land 

 

For trend and timeseries analysis the data are regionally averaged at the monthly mean 

and seasonal mean anomaly resolution for four regions: the Globe (70 
o
S - 70 

o
N), the 

Northern Hemisphere (20 
o
N - 70 

o
N), the Southern Hemisphere (70 

o
S - 20 

o
S) and the 

Tropics (20 
o
S - 20 

o
N). This is done by weighting each monthly/seasonal grid-box 

value by the cosine of its latitude and then calculating the weighted mean for each 

month / season over the whole region. Trend fitting methods are described in Box 3.4. 

 

The q timeseries shows peak positive anomalies in the Tropics for 1982/83, 1987/88 and 

1997/98 in common with the dates of recent large El Niño events (WMO, 1999). The 

1998 peak is also apparent in all regions (Fig. 3.32). These features are not so clear in 

the RH timeseries and negative in the Southern Hemisphere and Tropics (Fig. 3.33). For 

q, all trends are positive and highly significant (at 1 %), except for the Southern 

Hemisphere, with a Global trend of 0.11 g kg
-1

 10yr
-1

. The strongest trend is found over 

the Tropics at 0.16 g kg
-1

 10yr
-1

. This follows the Clausius-Clapeyron relation under the 

assumption of near-constant RH (section 1.2), where changes in absolute humidity are 

expected to be largest in regions of higher ambient T and where surface water sources 

are effectively unlimited. It is commonly assumed that RH stays largely constant over 

time and this is apparent in climate models (Allen & Ingram, 2002). The observed RH 

trends demonstrate this to some extent because the Global trend is very small (-0.03 % 

10yr
-1

) and not significant. However, the Southern Hemisphere trend is considerable    (-

0.34 % 10yr
-1

), and significant at the 5 % level.  

 

Seasonal trends are largely similar (Table 3.9). Of interest is the occurrence of the 

largest q trends in the Summer season for both the Northern (highly significant at 1 %) 

and Southern Hemisphere, when, for the Northern Hemisphere, trends are larger than in 

the Tropics. As discussed earlier, trends are expected to be larger in regions of higher 

ambient T if water is not limiting. Seasonal trends in RH differ widely in both 

magnitude and sign across the seasons. The largest RH trends for each region are all 

significant (at the 5 % level) implying that RH cannot always be assumed to remain 

constant over smaller temporal scales. 
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Box 3.4: Three Methods of Trend Fitting 

Trends are used to compare apparent changes in HadCRUH over time, between regions and 

with other datasets. This construct of a linear change is hypothetical and not an ideal model 

of the climate system. Therefore trend ‘significance’ is relative to timeseries variability 

rather than a physical truth and has no implications for cause and effect. Significance at 1 % 

and 5 % levels are referred to as highly significant and significant in the text respectively. 

 

Trends for large-scale regions are fitted using a Restricted Maximum Likelihood estimation 

(henceforth referred to as REML) (Diggle et al., 1996), method in common use at the 

Hadley Centre (Met Office, UK) (Parker, D pers. comm.) and employed in IPCC Chapter 2 

(Folland et al., 2001b). The data are first pre-whitened assuming good representation by an 

AR1 noise process. There is no dependence on the number of elements within the 

timeseries, nor heavy influence from end points. The user supplies estimated ranges for the 

autocorrelation and variance of the residuals. These ranges are chosen by guess work and 

experience from previous tests. If the output autocorrelation and variance of the residuals 

are close to either end of the estimated ranges input by the user then the program is re-run 

with new ranges until output values lies near the mid-point of the estimated ranges. A trend 

is estimated and likelihood calculated for 121 different sets of values within the given 

ranges to find the most likely trend, and significance levels calculated. 

 

The REML method employed here is computationally demanding and seasonal and regional 

(Chapter 5) trends are calculated and significance tested using a faster but slightly less 

robust least squares regression (henceforth referred to as LSR) method. The data are also 

first pre-whitened assuming good representation by an AR1 noise process thereby allowing 

for autocorrelation (Cochrane & Orcutt, 1949; Wei, 1990). Estimates for the autocorrelation 

and variance of the residuals are created within the program. When cross-compared with 

trends fitted by the REML method, the LSR performs identically for most timeseries but 

tends to give more weight to the end points of the timeseries causing problems with some 

trends, especially in the Tropics.  

 

The third method uses the median of pairwise slopes (henceforth referred to as MPS) 

(Lanzante, 1996) to fit a trend but without significance. The slopes of all possible pairs of 

points within the timeseries are calculated with the median value as the trend estimate. This 

is employed for looking at grid-box trends as it is quick to apply and can cope with missing 

data (set to a maximum of 50 %) better than the first two methods. It is also used later in 

Chapter 5 for analyses of model output with HadCRUH where trend comparison between 

the two is felt to be more important than the significance of the trend itself.  
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At the grid-box scale, trends in q are mostly positive (87 % of grid-boxes), with 

negative clusters in the western US, western South Africa and southern Australia. 

Trends range from -0.33 to 0.65 g kg
-1

 10yr
-1 

, and for seasonal averages, from -0.70 (in 

MAM) to 1.14 (in DJF) g kg
-1

 10yr
-1

 (Fig. 3.34). Trends in RH are more evenly mixed 

in sign with the majority negative (52 %) and range from -2.46 to 2.34 % 10yr
-1

, and for 

seasonal averages, from -5.82 (in MAM) to 5.32 (in SON) % 10yr
-1

 (Fig. 3.35). There is 

no general consistent spatial pattern between trends in q and in RH. Positive trends in q 

are widespread and spatially coherent whereas RH trends have less spatial coherence. 

 

Seasonal grid-box trends in q, at least for the Northern Hemisphere, are clearly strongest 

and most consistent in the summer months. In all seasons, trends are positive in the 

Tropics. Although mostly consistent, a few regions exhibit trends of opposite sign 

across the seasons such as northern North America, western Russia, parts of Australia, 

Madagascar and Saudi Arabia. For RH, seasonal changes of trend sign are of large 

spatial scale and magnitude, notably over Europe, Saudi Arabia, Asia, parts of the US, 

and west Africa.  

 

 3.5 CONCLUSIONS 

 

The HadCRUH land component is transformed from raw sub-hourly data to a quality 

controlled, homogenised monthly mean anomaly 5 
o
 by 5 

o
 gridded product. This 

process is described in Fig. 3.36. The quality control procedure has been designed using 

a sub-set of case study stations from the ISH data set, specifically for humidity data. 

Key findings are summarised below: 

 

• Climatologically, q varies from ~0 to 20 g kg
-1

 decreasing meridionally from the 

Tropics with strong zonal continuity. The peak in the Tropics shifts polewards 

towards the Summer Hemisphere. RH ranges from ~10 to 90 % with little zonal 

continuity or meridional pattern relative to q but a strong regional structure.  

• In absolute terms, atmospheric surface moisture (q) has increased (highly 

significant at the 1 % level relative to dataset variability) since 1973 when 

averaged over: the Globe (0.11 g.kg
-1

 10yr
-1

); the Northern Hemisphere (0.12 

g.kg
-1

 10yr
-1

); and the Tropics (0.16 g.kg
-1

 10yr
-1

).  



______________________________________________________Ch.3 The Land Data 

___________________________________________________________________ 107 

• Trends in q are largest in the Tropics and Northern Hemisphere Summer, where 

ambient T is high and water is more readily available relative to other 

regions/seasons. Thus, over large scales at least, this is in accordance with the 

Clausius-Clapeyron relation under the assumption of near-constant RH.  

• In relative terms (RH), trends are not significant except when analysed for the 

Southern Hemisphere or seasonally (Global MAM, Northern Hemisphere DJF, 

Tropics and Southern Hemisphere JJA). Hence, the assumption of constant RH 

at least on large spatial and temporal scales holds true.  

 

For version one, spatial and temporal coverage provided by ISH and the data building 

process, are sufficient to provide a near-global surface humidity land dataset from 1973 

to 2003 suitable for climate analyses. There is scope for improvements at all levels in 

future versions of HadCRUH.  
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Test 
Polar 

North 

Polar 

South 

Extra-

Tropical 

North 

Extra-

Tropical 

South 

Tropical 

North 

Tropical 

South 

Tdw > T 0.002 0 0.005 0.0004 0.003 0.001 

Tdw > 60
o
 C 0 0 0.0001 0 0 0 

Tdw < -80
o
 C 0 0.003 0.003 0 0 0 

T > 60
o
 C 0 0 0.00003 0 0 0 

T < -80
o
 C 0 0 0 0 0 0 

RH < 0% 0 0 0 0 0 0 

e < 0 hPa 0 0 0 0 0 0 

Total failing 0.002 0.003 0.005 0.0004 0.003 0.001 

 

Table 3.2: Results of the Bad Values QC for the case study stations. Results show 

the percentage of humidity data failing each test for all thirty three case study stations 

by latitude band where Polar covers from 60 
o
 to 90 

o
, Extra-tropical covers from 20 

o
 to 

60 
o
 and Tropical covers from 0 

o
 to 20 

o
 in each hemisphere.  

 

 

 

 

 

 

 
WMO 

ID 
Station Name Latitude Longitude 

Elevation 

(m) 
Analysis 

042310 Kangerlussuaq 67.017 -50.700 53 
cut offs at -37 oC in 1965-

74 for spring and winter T 

042700 Narsaruaq 61.133 -45.417 5 
cut offs at -37 oC in 1965-

74 for spring and winter T 

702720 Anchorage 61.250 -149.800 59 rarely goes below -30 oC 

703210 Dillingham 59.050 -158.517 29 
Tdw cut off at -37 

o
C in 

1995-2003 winter 

 

Table 3.3: Greenland and Alaskan stations analysed for evidence of ‘cutoffs’ at low 

temperatures. Greenland stations begin with 04 and Alaskan stations begin with 70. 
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Table 3.2 page 1 

(3Table3_2.pdf) 
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Table 3.2 page 2 

(3Table3_2.pdf) 
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WMO ID Year Test 1 Test 2 Test 3 Test 4 σ Test 

284400 1988 X X --- X --- 

284400 1990 X X --- X --- 

284400 1994 X X --- --- --- 

637080 1983 X X --- --- --- 

683680 1974 X X --- --- --- 

683680 1975 X X --- --- --- 

683680 1977 X X --- X --- 

683680 1982 X X --- X --- 

683680 1993 X X --- --- --- 

702220 2000 --- X X X --- 

702220 2001 --- X X X --- 

726650 1979 --- X X X --- 

726650 1997 X X --- --- --- 

879250 1986 X X --- X --- 

879250 1988 X X --- --- --- 

895710 1979 X --- X X X 

916800 1983 X X --- --- --- 

916800 1990 X X --- --- --- 

916800 1991 X X --- X --- 

916800 1992 X X --- X --- 

943260 1977 X X --- --- --- 

943260 1980 --- --- X X --- 

943260 1981 X --- --- X --- 

 
Table 3.5: Timezone QC test criteria and results. All tests check for similarity of the 

annual mean diurnal cycle to the station mean diurnal cycle using annual mean r value 

vectors described in the text. All five tests are described in section 3.2.1 issue 6. X 

denotes a fail. Grey shading separates station year groups. 

 

 

 

 

 
Dewpoint 

Temperature 

(
o
C) 

Vapour 

Pressure  

(hPa) 

Specific 

Humidity      

(g kg
-1

) 

Relative 

Humidity   

(%) 

Ventilation 

Rate       

(ms
-1

) 

Wind 

Speed     

(ms
-1

) 

MIG R MIG R MIG R MIG R 

0.0  0.5 1.0 0.5 0.66 0.33 0.59 0.21 4.8 2.0 

1.0  7.2 0.2 -0.4 0.13 -0.25 0.08 -0.15 1.0 -1.0 

2.0  13.9 0.1 -0.5 0.07 -0.31 0.05 -0.19 0.5 -1.8 

 
Table 3.6: Approximate errors in measuring humidity due to differences in wind 
speed. Measurements are taken from two common wet-bulb thermometers, the 

Mercury-in-glass (MIG) and Resistance (R) thermometers, in comparison to assumed 

high accuracy measurement from a Dewpoint hygrometer at three ventilation rates. 

Results are obtained from Folland (1977). Measurements are observed at 75 % RH 

where T + Tw = 18 
o
C such that Tdw = 5.8 

o
C, e = 9.26 hPa and q = 5.70 g kg

-1
. Errors 

increase with decreasing RH. 
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Station 1 
Elevation 

(m) 
Station 2 

Elevation 

(m) 

Vertical 

Distance 

Horizontal 

Distance 

802590 Cali, 

Colombia 
969 

802220 Bogota, 

Colombia 
2548 1579 ~400km 

726556 

Redwood, US 
312 

726650 Gillette, 

US 
1230 918 ~800km 

064510 Brussels, 

Belgium 
58 

108660 Munich, 

Germany 
529 471 ~600km 

476710 Tokyo, 

Japan 
8 

476900 Nikko, 

Japan 
1294 1286 ~125km 

 

Table 3.7: Station pairs for the Elevation QC. 

 

 

 

 

 

Table 3.8: Results of homogenisation and second outlier check on the land data. 

 

 

 

 

 
q (g kg

-1
 10yr

-1
) 

REGION 
DJF MAM JJA SON 

GLOBAL  (70
o
N-70

o
S) 0.11** 0.09** 0.15** 0.11** 

NORTHERN HEMISPHERE  (20
o
N-70

o
N) 0.09** 0.08** 0.20** 0.11** 

TROPICS  (20
o
S-20

o
N) 0.19** 0.15** 0.13** 0.18** 

SOUTHERN HEMISPHERE  (70
o
S-20

o
S) 0.02 -0.00 -0.02 0.01 

 RH (% 10yr 
-1

) 

GLOBAL 0.09 -0.19* -0.08 -0.03 

NORTHERN HEMISPHERE 0.25* -0.18 0.09 0.12 

TROPICS -0.12 -0.16 -0.22* -0.10 

SOUTHERN HEMISPHERE -0.24 -0.31 -0.59* -0.53 

 
Table 3.9: Regionally averaged trends by season for q and RH. Values of largest 

magnitude for each region and each variable are in bold. Trends are created using the 

LSR method (Box 3.4). Significance at 5 % is shown with a * and at the 1 % with **. 

 

 

 q RH 

No. of Stations before Homogenisation 3514 3514 

No. of Stations with ≥ 5 Neighbours 3391 3268 

No. of Adjustments in 1
st
 Iteration 4864 4680 

No. of Adjustments in 2
nd

 Iteration 684 651 

No. of Outliers in 1
st
 Iteration 4737 0 

No. of Outliers in 2
nd

 Iteration 4081 0 

Stations Deleted Due to Poor Data Record Quality 180 --- 

Deleted Stations Revisited to Retain Data Coverage 58 --- 

Deletions Kept after Revisit 32 --- 

No. of Stations after Homogenisation 3243 3128 
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Figure 3.1: Spatial and temporal coverage of all stations reporting humidity in the 

ISH dataset. Regions are listed in order of appearance in the plot from top to bottom.  
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Figure 3.2: ISH stations reporting humidity with sufficient longevity to create 30-
year climatologies by climatology period. Regions are listed in order of appearance in 

the plot from top to bottom.  
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Figure 3.3: Spatial coverage of ISH stations with sufficient humidity data to create 
a 1974 to 2003 climatology. Stations shown in blue are those combined from identical 

stations reporting for shorter periods under different IDs (346 in total).  
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Figure 3.4: ISH monthly mean e compared to other sources for seven case study 
stations. Solid black lines represent the raw ISH data, short dashed red lines represent 

the HAHN data and long dashed blue lines represent the NEW data. Each station is 

identified by its six digit WMO number, the corresponding details of which can be 

found in Table 3.1. 
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Figure 3.5: Station locations and WMO IDs for the thirty three case study stations. 
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Figure 3.6: Occurrences of >12 hours continuous repeated values of T for all case 

study stations from 1973 to 2003. Stations are grouped latitudinally where green 

represents the Tropics (0 
o 

– 20 
o
), orange represents the Extra-Tropics (20 

o 
– 60 

o
) and 

blue represents the Poles (60 
o 

– 90 
o
). Black spots mark the percentage of data removed 

from each station. Stations over 1000m elevation are prefixed with H and stations 

reporting only 6 hourly are prefixed with S.  
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Figure 3.7: Occurrences of >12 hours continuous zero DPD for all case study 

stations from 1973 to 2003. Stations are grouped latitudinally as described in Fig. 3.6. 

Black spots mark percentage of data removed. Stations over 1000m elevation are 

suffixed with H and stations reporting only 6 hourly are suffixed with S.  

 

 

 

 

 

 

a)          b) 

 
 

Figure 3.8: Frequency distribution of T values for case study station 702220 
(Galena, Alaska, US) in 1974. Plot a) shows all T values and plot b) shows only T 

values that have simultaneously recorded Tdw values. 
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Figure 3.9: Example of the Timezones QC test for station (702220, Galena, Alaska, 
USA). Each black line represents an annual mean diurnal cycle as described in the text 

(section 3.2.1 issue 5) where the time shift of the maximum r value corresponds to the 

time of daily maximum when converted to GMT. The red line is the station mean 

diurnal cycle. The green lines show years that have failed one or more of the five tests 

(see section 3.2.1) that detect differences from each annual mean diurnal cycle to the 

station mean diurnal cycle (in this case 2000 and 2001, see Table 3.5). 
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Figure 3.10: Relationship between ventilation rate of a Stevenson Screen and mean 
wind speed (Folland, 1977). The red dashed line shows the commonly used ventilation 

rate of 1.25 ms
-1

 and corresponding wind speed. 

 

 

 

 

 

 

 

 

 
 

Figure 3.11: Seasonal relationship between wind speed and observed e for the 
period 1995 to 2003 at case study station 404160 (Dhahran, Saudi Arabia). The 

colour of dots signifies the number of observations where black, blue, green and yellow 

represent 1, 2-10, 11-100 and >100 respectively. Wind speed is in ms
-1

.  
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a) 

 
b)    

 
c)        

 
d)       

                 
 

Figure 3.12: Comparisons of monthly mean anomaly timeseries between 
neighbouring high and low elevation case study stations. Plots a) to d) show 

Columbia, the USA, Europe and Japan respectively. Upper plots in each pair show high 

minus low elevation difference timeseries. Lower plots show both high and low 

elevation timeseries with the linear Pearson correlation coefficient r value. 



______________________________________________________Ch.3 The Land Data 

___________________________________________________________________ 123 

 
Figure 3.13: Spatial coverage of all stations with sufficient data to create a 1974 to 

2003 climatology coloured by elevation. Red dots represent low elevation stations 

(>1000 m), blue dots represent medium elevation stations (1000-2500 m) and aqua dots 

represent high elevation stations (>2500 m).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Identification and effect of outlier removal on the monthly mean 

anomaly timeseries using case study station 843770 (Iquitos, Peru) as an example. 
Panel a. shows the pentad mean anomaly e timeseries and identified outliers. Crosses 

mark pentads failing tests as described in section 3.2.1 where red crosses are test 1 

(outlying individuals and groups), blue crosses are test 2 (sudden spikes), and yellow 

crosses are test 4 (sandwich outliers). There are no examples of test 3 in this timeseries 

section. Black crosses show gaps in the data. Panel b. shows the monthly mean anomaly 

timeseries before (black) and after (blue) the Outlier QC. 
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Figure 3.15: Percentage of data removed by the Outlier QC for all case study 
stations. Stations are grouped latitudinally as in Fig. 3.6. The proportion of data 

removal due to each of the four tests (section 3.2.1 and Fig. 3.14) is also shown where 

black is test 1, grey (slash) is test 2, grey (chequered) is test 3 and grey (solid) is test 4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Flow diagram of the land quality control process. 
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Figure 3.17: Percentage of data removed by the quality control process for all case 
study stations and all ISH stations. Black bars show percentages for the case study 

stations and grey bars show percentages for all ISH stations.  
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a) 

 
b)  

 
c) 

 
d) 

 
Figure 3.18: Monthly mean anomaly e timeseries before and after the quality 
control for four case study stations. Panels a) to d) show stations 042020 (Thule, 

Greenland – Polar), 404160 (Dhahran, Saudi Arabia – Extra-tropical), 726650 (Gillette, 

USA – Extra-tropical) and 783970 (Kingston, Jamaica – Tropical) respectively. Blue 

and red lines show the raw and quality controlled data respectively.  
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Figure 3.19: Geographical distribution of data removal due to the Zero DPD QC 

test by percentage per station. 
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Figure 3.20: Spatial coverage of the land data after quality control. Panel a) shows 

all stations passing quality control and remaining in pentad dataset (3514). Panel b) 

shows stations that after the quality control have insufficient data to create a 1974 to 

2003 climatology (1246).  
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Figure 3.21: Flow diagram of the homogenisation process for the land data. 
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Figure 3.23: Comparison of monthly mean anomaly q before and after 

homogenisation and with the neighbour composite timeseries for four case study 
stations. The pre-homogenised, post-homogenised and neighbour composite timeseries 

are shown in black, green and pink respectively. Trends are calculated using a least-

squares polynomial fit routine.  
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Figure 3.24: Spatial coverage of stations after homogenisation of q. Panel a) shows 

stations remaining after homogenisation (3243 stations) and panel b) shows stations 

deleted during homogenisation (148 stations).  
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Figure 3.25: Frequency distribution of accepted breakpoints over time for the 1

st
 

iteration q homogenisation by region. 

 

 
Figure 3.26: Frequency distribution of adjustment quantities for the 1

st
 iteration q 

homogenisation by region. 
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a) 

  
b) 

 
 

Figure 3.27: Frequency distribution of adjustment quantities for the 1
st
 and 2

nd
 

iteration RH homogenisation for all stations. Plot a) shows 1
st
 iteration adjustments 

and panel b) shows 2
nd

 iteration adjustments.    
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Figure 3.28: Comparison of monthly mean anomaly RH before and after 

homogenisation and with the neighbour composite timeseries for four case study 
stations. The pre-homogenised, post-homogenised and neighbour composite timeseries 

are shown in black, green and pink respectively. Trends are calculated using a least-

squares polynomial fit routine.  
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Figure 3.29: Average monthly station density per grid-box for the quality 

controlled and homogenised land data 1973 to 2003. 
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Figure 3.30: Monthly climatology for q over the period 1974 to 2003. Units are in g 

kg
-1

.  
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Figure 3.31: Monthly climatology for RH over the period 1974 to 2003. Units are in 

%.  
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Figure 3.32: Regionally averaged monthly mean anomaly q timeseries and trends 
from 1973 to 2003. Trends are fitted and significance tested using the REML method 

(Box 3.4) where ** denotes significance at the 1 % level and * denotes significance at 

the 5 % level. Monthly mean anomaly timeseries are in red and the blue lines are a 21 

point Gaussian weighted filtering for the low frequency component of the timeseries.  
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Figure 3.33: Regionally averaged monthly mean anomaly RH timeseries and 
trends from 1973 to 2003. Trends are fitted and significance tested using the REML 

method (Box 3.4) where ** denotes significance at the 1 % level and * denotes 

significance at the 5 % level. Monthly mean anomaly timeseries are in red and the blue 

lines are a 21 point Gaussian weighted filtering for the low frequency component of the 

timeseries.  
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Figure 3.34: Grid-box trends for q for the period 1973 to 2003 calculated for the 
whole annual cycle and seasonal averages. Units are in g kg

-1
 10yr

-1
. Trends are 

calculated using the MPS method (Box 3.4). At least 50 % of months (seasons) must be 

present to calculate trends for the whole (seasonal) timeseries. As only two months per 

season are required to create seasonal averages a grid-box may have a trend present in 

all seasons but not when trends are calculated over the whole dataset.  
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Figure 3.35: Grid-box trends for RH for the period 1973 to 2003 calculated for the 
whole annual cycle and seasonal averages. Units are in % 10yr

-1
. Trends are 

calculated using the MPS method (Box 3.4). At least 50 % of months (seasons) must be 

present to calculate trends for the whole (seasonal) timeseries. As only two months per 

season are required to create seasonal averages a grid-box may have a trend present in 

all seasons but not when trends are calculated over the whole dataset.  
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Figure 3.36: Flow diagram for building the land component of HadCRUH. 
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