Daily Rainfall Variability at Point and Areal Scales: Evaluating Simulations of Present and Future Climate

Carol Frances McSweeney

A thesis submitted for the degree of Doctor of Philosophy at the University of East Anglia, Norwich.

April 2007

Climatic Research Unit School of Environmental Sciences University of East Anglia Norwich NR4 7TJ

 \odot This copy of the thesis has been supplied on condition that anyone who consults is understood that its copyright rests with the author and no quotation from this thesis, nor any information derived therefrom, may be published without the author's prior, written consent.

Abstract

The daily variability in point observations of rainfall is not comparable to that found in grid-box average rainfall simulated by climate models due to the temporal smoothing effect of spatial averaging. This creates problems for (a) the comparisons of rainfall observations to climate model simulations that are necessary for the quantitative evaluation of daily variability in model-simulated rainfall, and (b) the application of climate model simulations at spatial scales that are smaller than the grid resolution, for climate impact assessment.

This thesis describes the development of statistical relationships between the characteristics of point and areal daily rainfall variability using measures of spatial correlation. These relationships allow estimates of 'true' areal average precipitation to be made, using a limited number of available stations, with an assessment of the uncertainty surrounding those estimates. Relationships are developed between the dry-day probabilities of point and areal-mean rainfall, and for the parameters of the gamma distribution of wet-day amounts for point and areal rainfall, using daily station data from the UK, Zimbabwe and China.

The application of these relationships to climate model evaluation is demonstrated using three General Circulation Models (HadCM3, CGCM3 and PCM). Estimates are made of 'true' grid-box average values of dry-day probability, mean wet-day amount (mean daily intensity), the gamma distribution parameters for wet-day amounts and the 95th percentile values of wet-day amounts for grid boxes from the three GCMs over the UK and South Africa.

The relationships can also be used to make estimates of the daily variability in point rainfall from an areal average series simulated by a climate model if the values of spatial variability are known. For future climate, it may not be valid to assume that spatial correlation will be stationary, because there is evidence that suggests that rainfall in a warmer climate may become more convective, and thus potentially become more localised. Investigation using rainfall simulations for Europe from the Regional Climate Model (RCM) HadRM3H found that these simulations do indicate a shift towards a greater proportion of convective rainfall in future climate (2070-2100) under SRES scenario A2. Investigation of the level of spatial correlation between RCM grid boxes, however, indicated an increase in sub-GCM-grid-scale spatial correlation, rather than the decrease that might be expected. An alteration to the spatial correlation of rainfall under warmer conditions cannot be ruled out, however, because the model's spatial resolution might limit its ability to represent the spatial characteristics of convective rainfall realistically.

A spatial analogue approach is used to make an estimate of the spatial correlation that might be experienced under future climate. A region is selected (The Netherlands) that, according to the RCM simulations, experiences a similar proportion of convective rainfall in its recent climate as is projected for the south-east UK in summer in 2070-2100 under SRES scenario A2. The values of spatial correlation for stations from this region are used as an estimate of the future levels of spatial correlation that might accompany the changed proportion of convective rainfall for the south-east UK. Observed UK spatial correlation values, and the possible future values estimated via this spatial analogue are both applied to the summer GCM grid-box precipitation simulated for this future period to estimate the characteristics of rainfall at points within that grid box. Even when spatial correlation is unchanged in future climate, the changes in dry-day probability, meanwet day amount (mean daily intensity), the parameters of the gamma distribution and the 95th percentile values of wet-day amounts change by different factors depending on whether the areal or estimated point values are considered. For the mean intensity, even the direction of change differs. Applying the changes in spatial correlation causes the magnitude of the changes to be greater still, demonstrating that failure to take into account potential decreases in spatial correlation (even if those decreases are relatively small) when downscaling or disaggregating from grid-box projections could lead to an under-estimation of the temporal variability at points within the grid box.

Acknowledgements

There are many people to be thanked who have contributed to this thesis through their assistance, expertise, provision of data and funding, support and helping to preserve my sanity.

For funding, I thank the Natural Environmental Research Council (NERC), and also the Centre for Ecology and Hydrology, Wallingford, (CEH). The data I have used comes from a number of sources; The British Atmospheric Data Centre (UK station data), Zimbabwean Meteorological Service (Zimbabwean station data), Oak Ridge National Laboratory in the United States (Chinese station data), The South African Weather Bureau (South African station data, via David Foxall), RCM data made available by the PRUDENCE Project at the Danish Meteorological Institute, and GCM data made available by the Program for Climate Model Diagnosis and Inter-comparison for the IPCC.

I am very grateful to my supervisory committee Tim Osborn, Phil Jones, Nick Reynard and Kevin Hiscock for their guidance and support. Thanks go to Tim particularly who, as my primary supervisor, has guided me through every stage of my PhD research with great expertise, patience and good humour.

I'd also like to thank everyone in CRU for their help, encouragement and friendship which have made working in the unit so enjoyable. Particular thanks go to Marie Ekström for her help and advice, and also to Mike Salmon for providing top-rate IT support.

The last few months spent finishing my thesis have been made considerably easier thanks to the flexibility that my new employer, Mark New, has allowed me in my work for Oxford University. I am very grateful to Mark for his support and generosity in this.

Finally, thanks go to all the people who have provided the encouragement, reassurance and much needed distractions; Fellow PhD students who have helped me to consume the vast majority of Columbia's coffee exports over the last three-and-a-half years: Kate, Oli, Jade, Matt, Charlotte, Sian and David; former CRU PhD students Mark, Stephen and Craig; My family; and Paul.

Contents

1	Inti	roduction and Overview	. 1
	Conte	ents	. 1
	1.1	Rainfall Variability and Extremes: Why the Concern?	. 1
	1.2	Simulation of Daily Rainfall Variability and Extremes Using Climate Models	. 2
	1.3	Temporal Variability of Daily Rainfall at Different Spatial Scales	. 4
	1.4	Evaluation of Daily Rainfall Simulated by Climate Models	6
	1.5	Daily Rainfall Simulations of Future Climate for Impacts Studies	. 7
	1.6	Aims and Objectives and Structure of the Thesis	8

2. Litera	ture Review
Contents	
2.1. In	troduction12
2.1.1.	A note on convective and synoptic precipitation events
2.2. Da	aily Precipitation Variability in a Warmer Climate14
2.2.1.	Theoretical Changes to the Hydrological Cycle and their Influence on Precipitation
Variab	ility
2.2.2.	Changes to Precipitation Variability in Model Simulations
2.2.3.	Observed Changes to Daily Precipitation Characteristics
2.2.4.	Summary
2.3. Ev	valuating Characteristics of Daily Precipitation in Climate Simulations
2.3.1.	Climate Models and Precipitation
2.3.2.	Previous Evaluations of Variability and Extremes in Climate Model Experiments 31
2.3.3.	Evaluation of Variability and Extremes in Climate Model Experiments: Model
Inter-c	omparison and General Results
2.3.4.	Other Studies Addressing the Spatial Scaling Properties of Rainfall Variability and
Extrem	1es
2.3.5.	Summary
2.4. R	epresenting Sub-grid-scale Precipitation Variability in Climate Change
Scenario	s

2.4.1.	Areal Rainfall Projections: Problems for Regional Hydrological Impact Assessment
2.4.2.	Downscaling Techniques
2.4.3.	The Relevance of Scaling Relationships Under Future Climate Conditions
2.4.4.	Summary
2.5. Su	mmary of Literature Review and Research Objectives

3. Estima	ating Dry-Day Probability for Areal Rainfall51
Contents	s
3.1. In	ntroduction
3.2. St	tudy Regions and Station Data 54
3.3. D	evelopment of Methodology 60
3.3.1.	Selection of Wet-Day/Dry-Day Threshold60
3.3.2.	Dry-Day Probability in an <i>n</i> -Station-Mean Series and the Effective Number of
Indepe	endent Stations (n')
3.3.3.	Spatial Dependence Between Dry-Day Occurrences
3.4. A	pplication to Data
3.4.1.	Estimating Dry-Day Probability in an Average of <i>n</i> Stations
3.4.2.	Uncertainty in Estimates of Dry-Day Probability for an <i>n</i> -Station Average
3.5. A	pplication of Methodology to the Estimation of Dry-Day Probability in a 'True'
Grid-Bo	x Mean
3.5.1.	Extension of Methodology to Estimation of Dry-Day Probability in the 'True' Grid-
Box M	Iean (N stations)
3.5.2.	Uncertainty in Estimates of Dry-Day Probability for a 'True' Areal Mean
3.6. D	iscussion and Conclusions

4.	Esti	imating the Distribution of Wet-Day Amounts for Areal Rainfall Using the Gamma	ł
Dist	tribu	tion ٤	9
C	Conte	nts	9
4	.1.	Introduction	0

4.2.	The	e Gamma Distribution and Point and Areal Rainfall.	. 91
4.2	2.1.	Introduction to the Gamma Distribution	. 91
4.2	.2.	Fitting the Gamma Distribution to Daily Rainfall Data	. 93
4.2	.3.	Testing Goodness-of-Fit of the Gamma Distribution for Point and Areal Rainf	all
			95
4.3.	Dev	elopment of Methodology	105
4.3	.1.	Spatial Dependence Between Wet-Day Values	106
4.3	.2.	Empirical Relationships Between Single-Station and <i>n</i> -Station Timeseries	108
4.3	.3.	Estimation of <i>n</i> -Station-Mean Scale Parameter (β_n)	111
4.3	.4.	Estimation of <i>n</i> -Station-Mean Shape Parameter (α_n)	114
4.3	.5.	Summary	123
4.4.	Арр	plication of Methodology to the Estimation of Gamma Parameters of 'True'	
Area	l Mea	n Precipitation	124
4.4	.1.	Extension of Methodology to the Estimation of Gamma Parameters of the 'Tru	ue'
Are	eal M	ean	124
4.4	.2.	Estimated Gamma Parameters for 'True' Areal Mean	130
4.4	.3.	Additional Uncertainty in Estimates of α_N and β_N for Small Values of <i>n</i>	133
4.5.	Esti	imating Distribution Extremes Using the Gamma Parameters	137
4.5	.1.	Assessment of Goodness-of-Fit at Distribution Tails	137
4.5	.2.	Estimating Percentile Values from the Gamma Distribution	139
4.6.	Dise	cussion and Summary	142

5. Evaluating Climate Model Simulations of Daily Rainfall Using Estimated Areal-

Rainfall Parameters		
5.2.	Model Details	
5.3.	Method	
5.4.	Model Evaluation over the UK	
5.4	4.1. HadCM3	
5.4	4.2. CCC CGCM3	
5.4	4.3. PCM	

5.5. M	odel Evaluation over South Africa	
5.5.1.	South African Data and Methods	
5.5.2.	HadCM3	
5.5.3.	CCC CGCM3	179
5.5.4.	NCAR PCM	
5.6. Di	scussion and Summary	186
5.6.1.	Discussion of Model Performance	
5.6.2.	Discussion of Model Evaluation Method	

6.	. Changes to the Spatial Variability of Daily Rainfall in Scenarios of Future Climate 189			
	Conte	ents		189
	6.1.	Int	troduction	190
	6.2.	Da	ta and Methods	193
	6.3.	M	ean Daily Rainfall in Recent and Future Climate	195
	6.4.	Sy	noptic and Convective Rainfall in Recent and Future Climate	198
	6.4.	.1.	Synoptic Rainfall	198
	6.4.	.2.	Convective Rainfall	202
	6.4.	.3.	Proportional Contribution of Convective Rainfall to the Total Rainfall .	205
	6.4.	.4.	Summary	209
	6.5.	Sp	atial Correlation in Recent and Future Climate	210
	6.5.	.1.	Recent Climate	
	6.5.	.2.	Future Climate	215
	6.5.	.3.	Discussion	
	6.6.	Co	nclusions	218

7. Us	sing	Climate Analogues to Estimate Spatial Correlation in Future Climate	219
Cont	tents		. 219
7.1.	In	troduction	. 220
7.2.	Μ	ethod	. 221
7.2	2.1.	Selection of an Analogue Region	222
7.2	2.2.	Calculation of Spatial Correlation over the Analogue Region	224
7.2	2.3.	Estimation of Point-scale Daily Precipitation Characteristics using Estimates of	
Ch	nange	es in Spatial Correlation for the Future	226
7.3.	Re	esults	. 227
7.4.	Su	mmary	. 232

Chapter 8	233
8. Conclusions and Recommendations for Further Work	233
Contents	
8.1. Summary and Main Conclusions	233
8.1.1. Developments and Findings Relating to Research Objective 1	234
8.1.2. Developments and Findings Relating to Research Objective 2	235
8.2. Recommendations for Further Work	237
References	239
Index of Equations	253
Glossary of Mathematical Terms	256

Figure 1-1: Precipitation simulation problems imposed by restricted climate model resolution.... 3

Chapter 2

Figure 2-1: Schematic outline of the sequence of processes involved in climate change and
moisture content of the atmosphere (after Trenberth, 1998) 14
Figure 2-2: Schematic outline of sequence of processes involved in climate change and how the
increasing moisture content of the atmosphere alters rainfall rates (after Trenberth, 1998,
1999)
Figure 2-3: Regionally averaged changes in 20-yr return period values of extreme precipitation,
and corresponding changes in annual means expressed by percentage, simulated by CGCM2
in 2090 compared to 2000. Changes in extremes are indicated by darker colours, changes in
means in lighter colours (Kharin and Zwiers, 2005) 19
Figure 2-4: Latitudinal profiles of the simulated zonal mean changes in the annual mean rates of
precipitation (dotted line) and evaporation (solid line) by 2035-2065 under scenario IS92a
using a coupled GCM (Wetherald and Manabe, 2002)
Figure 2-5: Annual cycle of (a) monthly mean convective precipitation and (b) the ratio of
convective to total precipitation (%) over North America simulated using RCM MM5. Solid
bars are for present-day climate (1990-1999) and non-filled bars are for future climate
(2090-2099) under 2xCO ₂ (Chen <i>et al.</i> , 2005)

Chapter 3

Table 3-1: Hypothetical correlative properties of station pairs for different daily rainfall	
measurements, when different measures of correlation are used	67
Table 3-2: 'True' grid box mean $r(w/d)$ and N' for an example UK grid box. The same values	
calculated, and given in brackets, directly from the n available stations for comparison	80

Figure 3-1: Locations of stations in UK dataset (170 stations)	. 55
Figure 3-2: Locations of stations in Chinese dataset (180 stations)	. 56
Figure 3-3: Locations of stations in Zimbabwean dataset (51 stations)	. 56
Figure 3-4: Number of stations with 70% or more complete data for the three regions, UK (blu	ıe),
China (red) and Zimbabwe (green).	. 57
Figure 3-5: Mean daily rainfall and dry-day probability averaged over available stations for the	e 3
datasets (UK, China and Zimbabwe)	. 58
Figure 3-6: Contour map of mean annual precipitation over China, 1951-1998 (Ye et al., 2004)) 58
Figure 3-7: Locations of Chinese precipitation stations, A and B	. 59
Figure 3-8: Mean daily rainfall and dry-day probability at Chinese stations A and B	. 59
Figure 3-9: Comparison of r with $r(w/d)$ for randomly selected station pairs from the UK data s	set.
	. 67
Figure 3-10: Comparison of r with $r(w/d)$ for randomly selected station pairs from the Chinese	,
data set	. 68
Figure 3-11: Comparison of r with r(w/d) for randomly selected station pairs from the	
Zimbabwean data set	. 68
Figure 3-12: Estimated $P(d)_n$ versus Actual $P(d)_n$ for random n-station mean series from UK	
(Blue), Zimbabwe (Green) and Chinese (Red) station data.	. 70
Figure 3-13: Estimated P(d) versus Actual P(d) for random n-station mean series from UK (Bl	ue),
Zimbabwe (Green) and Chinese (Red) station data with 95% confidence limits	. 72
Figure 3-14: Example UK grid box: 3.75 x 2.5 degree, selected to give maximum station	
coverage	. 73
Figure 3-15: Correlation $(r(w/d))$ decay curves for 4 example stations (Batheaston, Cardington	•
Oxford and Stansted, for JJA (left) and DJF (right).	. 78
Figure 3-16: The distribution of separation distances between randomly selected pairs of point	ts
in a grid box (based on 10000 station pairs)	. 79
Figure 3-17: Variations in grid-box mean $r(w/d)$ when based on random samples of <i>n</i> stations of	out
of the available 58	. 81
Figure 3-18: Variations in grid-box mean point $P(d)$ when based on random samples of <i>n</i> stations	ons
out of the available 58.	. 82
Figure 3-20: Seasonal dry-day probability for an example UK grid box calculated by 3 different	nt
methods: a) mean $P(d)$ of 58 available stations in the region (yellow), (b) $P(d)$ in areal	

Chapter 4

Table 4-1: 'True' grid box mean r(wet) and N' for an example UK grid box. The same values are calculated, given in brackets, directly from the *n* available (58) stations for comparison. . 127

Figure 4-1: Gamma distribution frequency distributions for a different values of the shape
parameter, α when scale parameter, β , is kept constant at 1 (left) and for values of the scale
parameter , β , when shape parameter α is kept constant at 2 (right)
Figure 4-2: Example of the Gamma distribution fitted to (left) wet day values, and (right) to wet-
day values-0.25
Figure 4-3: PP plots, with D _n values, and Lillefors test results, for two stations based on original
data to 1 decimal place (left) and the for same stations but with uniform randomly selected
additional decimal places (right)
Figure 4-4: Goodness of fit test plots gamma distribution to JJA and DJF wet-day rainfall
amounts for an example station in UK. From left to right: Histogram, Q-Q plot (with 90 th ,
95 th and 99 th percentile values marked), and P-P plot
Figure 4-5: Goodness of fit test plots gamma distribution to JJA and DJF wet-day rainfall
amounts for an example station in China. From left to right: Histogram, Q-Q plot (with 90 th ,
95 th and 99 th percentile values marked), and P-P plot
95 th and 99 th percentile values marked), and P-P plot
95 th and 99 th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot
 95th and 99th percentile values marked), and P-P plot

Figure 4-10: Comparison of 'r' with ' $r(wet)$ ' for randomly selected station pairs from the UK data
set
Figure 4-11 Comparison of 'r' with ' $r(wet)$ ' for randomly selected station pairs from the
Zimbabwean data set
Figure 4-12 Comparison of 'r' with ' $r(wet)$ ' for randomly selected station pairs from the Chinese
data set
Figure 4-13: Ratio of <i>n</i> -station to mean single-station β vs effective <i>n</i> (<i>n</i> ') for randomly selected
sample clusters of n stations from the UK (Blue), Zimbabwean (Green) and Chinese (Red)
station data sets. Plot symbols indicate different seasons: \diamond = MAM, \Box =JJA, Δ =SON,
x=DJF
Figure 4-14: Ratio of <i>n</i> -station to mean single-station α vs effective <i>n</i> (<i>n</i> ') for randomly selected
clusters of n stations from the UK (Blue), Zimbabwean (Green) and Chinese (Red) station
data sets. Plot symbols indicate different seasons: \diamond = MAM, \Box =JJA, Δ =SON, x=DJF 108
Figure 4-15: Ratio of n-station to mean single-station β vs effective n (<i>n</i> ') for randomly selected
clusters of n stations from the UK (Blue), Zimbabwean (Green) and Chinese (Red) station
data sets, fitted with a negative exponential function. Plot symbols indicate different seasons:
$\diamond = MAM, \Box = JJA, \Delta = SON, x = DJF.$ 110
Figure 4-16: Estimated β_n compared with actual β_n for randomly selected clusters of <i>n</i> stations
from the UK (Blue), China (Red) and Zimbabwe (Green), with 95% confidence intervals.
Plot symbols indicate different seasons: \diamond = MAM, \Box =JJA, Δ =SON, x=DJF 111
Figure 4-17: Estimated α_n compared with actual α_n for randomly selected clusters of n stations
from the UK (Blue), China (Red) and Zimbabwe (Green). Plot symbols indicate different
seasons: $\diamond =$ MAM, $\Box =$ JJA, $\Delta =$ SON, x=DJF
Figure 4-18: Estimated α_n compared with actual α_n for randomly selected clusters of n stations
from the UK (Blue), Zimbabwe (Green) and China (Red). Plot symbols indicate different
seasons: \diamond = MAM, \Box =JJA, Δ =SON, x=DJF
Figure 4-19: Estimated α_n compared with actual α_n for randomly selected clusters of n stations
from the UK (Blue), Zimbabwe (Green) and China (Red), when estimated α_n values are
based on actual β_n and P(d) _n . Plot symbols indicate different seasons: $\diamond = MAM$, $\Box = JJA$,
Δ=SON, x=DJF
Figure 4-20: Error in estimates of α_n when based on actual values of β_n and P(d) _n compared with
mean daily rainfall (mm) for randomly selected clusters of n stations from the UK (Blue),

Zimbabwe (Green) and China (Red). Plot symbols indicate different seasons: $\Diamond = MAM$, Figure 4-21: Estimated α_n compared with actual α_n for randomly selected clusters of n stations from the UK (Blue), China (Red) and Zimbabwe (Green), excluding cases where mean daily rainfall is less than 0.3mm and with 95% confidence intervals +0.18 and -0.09. Plot symbols Figure 4-22: Estimated α_n compared with actual α_n for randomly selected clusters of n stations from the UK (Blue), China (Red) and Zimbabwe (Green), excluding cases where mean daily rainfall is less than 0.3mm. Plot symbols indicate different seasons: $\diamond = MAM$, $\Box = JJA$, Figure 4-23: Example Correlation decay curves from four stations (Batheaston, Cardington, Oxford and Stansted) from within the example UK grid box for JJA (left) and DJF (right). Figure 4-24: Grid-box average correlation decay curve (red) with those for each individual station Figure 4-25: Seasonal gamma parameters for the distribution of wet-day rainfall amounts an example UK grid box calculated by three different methods: a) mean α and β of 58 available stations in the region (yellow), (b) α and β of areal average series constructed using the arithmetic mean of 58 stations (green), and (c) 'best guess' estimates of α and β of the 'true' areal mean (blue) and the 95% confidence limits...... 128 Figure 4-26: Probability distributions for wet-day rainfall amounts based on the gamma shape and scale parameters, α and β , for an example UK grid box calculated by three different methods: a) mean α and β of 58 available stations in the region (yellow), (b) α and β of the average series constructed using the arithmetic mean of 58 stations (green), and (c) 'best Figure 4-27: As for Figure 4-26 but the distributions are scaled according to their corresponding Figure 4-28: Variations in estimated gamma scale parameter, β , of the 'true' areal mean rainfall Figure 4-29: Variations in estimated gamma scale parameter, β , of the 'true' areal mean rainfall Figure 4-30: Variations in estimated grid-box mean inter-station wet-day correlation of rainfall,

Figure 4-31: Variations in estimated grid-box mean single-station gamma scale parameter, $\overline{\beta_{n=1}}$,
based on random sub-samples of <i>n</i> stations out of the available 58
Figure 4-32: Percentile threshold values from the fitted distribution compared with those
calculated directly from data for 90 th , 95 th and 99 th percentiles, for <i>n</i> -station average series'
from UK (blue), China (red), and Zimbabwe (green) 136
Figure 4-33: Estimated vs Observed values of P95n, when the Observed value is determined by
(a) the fitted distribution and (b) directly from the data
Figure 4-34: Relationship between the estimation error of <i>P95n</i> and the number of values on
which the distribution is fitted (<i>nwet</i>)
Figure 4-35: 95% confidence limits for estimation of $P95_n$

Table 5-1: Technical details of the 3 GCMs evaluated (Dai et al., 2006, Sun et al., 2006)147
Figure 5-1: HadCM3 UK grid box positions
Figure 5-2: Model Evaluation Results for HadCM3 UK Grid box 1. Red=Model, Blue=Observed
(best estimate of true areal mean, together with 95% confidence intervals). Also shown are
Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'153
Figure 5-3: Model Evaluation Results for HadCM3 UK Grid box 2154
Figure 5-4: Model Evaluation Results for HadCM3 UK Grid box 3
Figure 5-5: Model Evaluation Results for HadCM3 UK Grid box 4155
Figure 5-6: Gamma probability density functions fitted to HadCM3 Box 3 wet-day amounts,
multiplied by box 3 wet-day probability
Figure 5-7: CGCM3 UK grid box positions
Figure 5-8: Model Evaluation Results for CGCM3 UK grid box 1. Red=Model, Blue=Observed
(best estimate of true areal mean, together with 95% confidence intervals). Also shown are
Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'160
Figure 5-9: Model evaluation results for CGCM3 UK grid box 2
Figure 5-10: Model evaluation results for CGCM3 UK grid box 3161
Figure 5.11: Model evaluation results for CCCM3 LIK grid box 4

Figure 5-12: Model evaluation results for CGCM3 UK grid box 5162
Figure 5-13: Gamma probability density functions fitted to CGCM3 grid-box 3 wet-day amounts,
multiplied by Box 3 wet-day probability163
Figure 5-14: PCM UK grid box positions
Figure 5-15: Model evaluation results for PCM UK grid box 1. Red=Model, Blue=Observed (best
estimate of true areal mean, together with 95% confidence intervals). Also shown are
Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'
Figure 5-16: Model evaluation results for PCM UK grid box 2
Figure 5-17: Model evaluation results for PCM UK grid box 3
Figure 5-18: Model evaluation results for PCM UK grid box 4
Figure 5-19: Model evaluation results for PCM UK grid box 5
Figure 5-20: Model evaluation results for PCM UK grid box 6
Figure 5-21: Gamma probability density functions fitted to PCM grid-box 5 wet-day amounts,
multiplied by Box 5 wet-day probability169
Figure 5-22: Examples of correlation decay curves for $r(w/d)$, with curves fitted according to
Equation 5-1172
Figure 5-23: Example of confidence limits for South African dry-day probability and mean wet-
day amount for areal rainfall estimates. Red=Model, Blue=Observed (best estimate of true
areal mean, together with 95% confidence intervals). Also shown are Yellow=average
observed 'point' values, Green=observed 'areal' values as arithmetic mean of available
station series'174
Figure 5-24: Examples of correlation decay curves for $r(wet)$, with curves fitted according to
Equation 5-2
Figure 5-25: HadCM3 South African grid box positions and rain gauge locations176
Figure 5-26: Model Evaluation Results for HadCM3 SA grid box 1. Red=Model, Blue=Observed
(best estimate of true areal mean, together with 95% confidence intervals). Also shown are
Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'
Figure 5-27: Gamma probability density functions fitted to HadCM3 SA grid-box 1 wet-day
amounts, multiplied by box 1 wet-day probability178
Figure 5-28: CGCM3 South African grid box positions and rain-gauge locations179
Figure 5-29: Model Evaluation Results for CGCM3 SA grid box 3. Red=Model, Blue=Observed
(best estimate of true areal mean, together with 95% confidence intervals). Also shown are

Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'180
Figure 5-30: Gamma probability density functions fitted to CGCM3 SA grid-box 3 wet-day
amounts, multiplied by box 3 wet-day probability182
Figure 5-31: PCM South African grid box positions
Figure 5-32: Model Evaluation Results for PCM SA grid box 4. Red=Model, Blue=Observed
(best estimate of true areal mean, together with 95% confidence intervals). Also shown are
Yellow=average observed 'point' values, Green=observed 'areal' values as arithmetic mean
of available station series'184
Figure 5-33: Gamma probability density functions fitted to PCM SA grid-box 4 wet-day amounts,
multiplied by box 4 wet-day probability

Figure 6-1: Mean daily rainfall (total in mm) simulated by HadRM3H for Europe – Control run
1960-1990
Figure 6-2: Mean daily rainfall (total in mm) simulated by HadRM3H for Europe –2070-2100
under scenario A2
Figure 6-3: Change in mean daily rainfall (total) simulated by HadRM3H for Europe from 1960-
1990 to 2070-2100 under scenario A2 197
Figure 6-4: Seasonal changes in mean daily total rainfall (mm) between 1961-90 (black) and
2070-2099 (red) under scenario A2 for the UK (dotted) and Europe (solid) 197
Figure 6-5: Mean daily synoptic rainfall (mm) simulated by HadRM3H for Europe – Control run
1960-1990
Figure 6-6: Mean daily synoptic rainfall (total in mm) simulated by HadRM3H for Europe –
2070-2100 under scenario A2
Figure 6-7: Change in mean daily synoptic rainfall (mm) simulated by HadRM3H for Europe
from 1960-1990 to 2070-2100 under scenario A2 201
Figure 6-8: Seasonal changes in mean daily synoptic rainfall (mm) between 1961-90 (black) and
2070-2099 (red) under scenario A2 for the UK (dotted) and Europe (solid) 201
Figure 6-9: Mean daily convective rainfall simulated by HadRM3H for Europe – Control run
1960-1990

Figure 6-10: Mean daily convective rainfall simulated by HadRM3H for Europe – 2070-2100
under scenario A2
Figure 6-11: Change in mean daily convective rainfall simulated by HadRM3H from 1960-1990
under scenario A2
Figure 6-12: Seasonal changes in mean daily convective rainfall (mm) between 1961-90 (black)
and 2070-2099 (red) under scenario A2 for the UK (dotted) and Europe (solid) 204
Figure 6-13: Convective fraction of mean daily rainfall over Europe simulated by HadRM3H –
Control run 1960-1990
Figure 6-14: Convective fraction of mean daily rainfall in HadRM3H simulations for Europe
under scenario A2 – 2070-2100
Figure 6-15: Change in convective fraction of mean daily rainfall simulated by HadRM3H from
1960-1990 to 2070-2100 under scenario A2
Figure 6-16: Mean convective fraction of total rainfall over Europe (solid) and UK (dotted) in
control run 1960-1990 (black) and A2 scenario perturbed run 2070-2100 (red) 208
Figure 6-17: Spatial correlation (measured as the mean correlation over distances up to 400km)
over Europe in control run (1960-1990) precipitation simulated by HadRM3H 211
Figure 6-18: Spatial correlation of mean daily rainfall in control run (1960-1990) precipitation
simulated by HadRM3H. Solid = European Average, dotted = UK average
Figure 6-19: Spatial correlation (measured as the area below the correlation decay curve up to a
distance of 400km) in daily rainfall over Europe from control run (1960-1990) synoptic
precipitation simulated by HadRM3H
Figure 6-20: Spatial correlation in daily convective rainfall over Europe in control run (1960-
1990) precipitation simulated by HadRM3H 214
Figure 6-21: Spatial correlation averaged over Europe (solid) and UK (dotted) in the convective
(left) and synoptic (right) components of total daily rainfall
Figure 6-22: Change in spatial correlation (measured as the area below the correlation decay
curve up to a distance of 400km) in total correlation simulated by HadRM3H 215
Figure 6-23: Mean change in average spatial correlation in total rainfall over Europe (solid) and
UK (dotted) in control run 1960-1990 (black) and A2 scenario perturbed run 2070-2100
(red)

Table 7-1: Convective fraction of total rainfall in HadCM3 'South east UK' grid box, simulated
by HadRM3H under scenario A2222
Table 7-2: Average grid-box correlation statistics for grid boxes in UK and the Netherlands225
Table 7-3: Parameters of daily rainfall for the south-east UK simulated using HadCM3, at areal
(grid-box) spatial scale and modified to represent the point spatial scale
Table 7-4: Change factors in parameters of daily rainfall simulated for south-east UK by
HadCM3 at areal (grid-box) spatial scale and modified to represent the point spatial scale.

Figure 7-1: Potential analogue areas with present day convective fraction between 0.692 and	
0.762. the UK grid box and the selected grid box are highlighted	.223
Figure 7-2: Station locations for analogue region, the Netherlands, Germany and Belgium	.224
Figure 7-3: Distribution of wet-day amounts, taking into account wet-day frequency, at grid-be	ox
scale (red) and point scale based on present-day spatial variability (green) and an estimate	e of
possible future spatial variability (purple). Right hand plot is the same but with uses a	
logarithmic y-axis	.230

Chapter 8