Chapter 5: Creating the Empirical Model

5.1. Linking atmospheric variability with rainfall

The previous chapters of this thesis have cntained a description d the aedion d a
set of variables for use in an empiricd model. Chapter 3 (and sedion 4.2.3 detail ed
the production o six rainfall regions to be predicted, and Chapter 4 described the
cregion d thirty-seven threedimensional atmospheric predictor variables. This
chapter will recourt the search for a suitable form of model to link the two sets of
variables, and will describe the aeation, exeaution and interpretation d that model.

One of the simplest, yet most powerful, methods of statisticd analysis is linea
regresson; for a full description, see for example von Storch and Zwiers (1999,
p150168). Simple linea regresson relates a resporse variable to a single predictor
variable by calculating the 'line of best fit' between the two variables. The best fit is
that which minimises the sum of squared errors. An extension, knavn as multiple

linea regresson (MLR), allows for multi ple predictor variables.

Briefly, suppcse we ae given avariable Y that we wish to model. This variable has
been olserved a total of n times. We can consider each observation, y;, as the
redisation d the arrespondng randam variable, Y;. We dso have aset of p
predictor variables, X1, Xp, ..., X, with the ith observation d the jth predictor
variable being x;. The model takes the form:

Yi = 0o + 0%+ + 8%, +¢ (5.9

where fo, f1, ..., Bp, ae wefficients estimated by leest-squares (see the &ove
reference), and ¢ is the modelling error, knowvn as the residua error, in the ith
observation. We can consider that ¢ is the redlisation o a randam variable E;. The
model demands that each E; (for i = 1, ... p) isnormally distributed with mean zero

and with a common variance . Furthermore, each E; must be independent.

Determining the Ss invalves inverting the matrix X' X, where X, known as the

design matrix, is defined as:
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1 Xy X oo le

x=|, e (5.2

1 Xg Xo 0 Xy
Note that the first column of X is represents a dummy variable equal to ore for all

observations, and produces the intercept coefficient So. In the case where no intercept

isrequired, this column in omitted.

If two of the predictor variables, and hence two columns of X, are highly correlated,
then X' X is nearly uninvertible. As a result, the outputted coefficients are grealy
affected by small changes in the measurements of the X;, and are therefore highly
unstable. This problem, often referred to as multicollineaity, leads to large

uncertainty in the estimation d the gs.

The problem is usually solved by omitting one or more of the predictor variables.
However, an dternative gpproad isto use ridge regresson (von Storch and Zwiers,
1999 pl165166). Ridge regresson adds restraints to the model, which reduces the
influence of the off-diagona elements of X' X, increasing its invertabili ty. Thus the
parameters can be estimated with less uncertainty, bu at the @st of unhiased
estimation.

Unfortunately, as noted abowve, the linear regresson family of analyses all demand
that the residual errors are independent, namally distributed and share acommon
variance. This makes the procedure unsuitable for variables with highly skewed
distributions, such as daily rainfall. However, MLR is a speda case of a modelling
strategy known as the Generalised Linear Model (GLM), which alows for a wider

range of distributions.



5.2. Generalised Linear Models (GLMs)

5.2.1. The formulation of GLMs

Sedion 5.1lintroduced the ideaof attempting to model Y, the distribution d some
resporse variable for an ith olservation, kased ona set of p predictor variables, using
a multiple linea regresson model. The Generalised Linea Model is based on
asuming that al the Y; come from some common dstribution type from the
exporential family. For example, we @uld make the aumption that each
distribution is binomial. Many other choices exist, the most common including the

Normal, Gamma or Poisson dstributions.

Let 1 represent the expeded value of Y; given the predictor variable values X1, Xiz,
..., Xip- Given these predictors, we aume ead Y; is independent. Sometimes we
must assuume they share a common 'dispersion’ parameter, ¢, which is typicdly
related to the shape of the distribution. The GLM model then takes the form:

where g (*) is a monotonic, differentiable function known as the link function. The
right hand side of the eguation is known as the linea predictor, and, as sown, is
often represented by the symbadl #;, (McCullagh and Nelder, 1989.

The MLR model of equation (5.1) is a spedal case of (5.3), where Y; is normally
distributed with mean x; and some variance o, which in this case is the dispersion
parameter ¢ that we must assume is constant for all observations. The link function g
istheidentity function (Fahrmeir and Tutz, 2007).

Note that models of form (5.3) do nd try to predict avalue of Y;; rather they attempt
to model the distribution d Y. The expeded value of Y, 4, is often used as a
predicted value, bu it also alows us to make probabili stic models. For example, if
welety; = 0if day i isdry, and 1if it is wet, then we can modd Y; with a binomial
distribution, and crede a model that predicts the chance of rain given a set of
predictor variables.
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GLMs can be solved, like MLR, by mean likelihoodestimation. However, for GLMs
the likelihood equations produced are nonlinear, and have to be solved iteratively,
seeFahrmeir and Tutz, (2001, p42 for detail s and passble solution schemes.

The doice of link function is left to the analyst, provided it is monaonic and
differentiable, as noted above. However, each dstribution is associated with a
particular function, knavn as the canoricd or natural link, chosen for mathematica
elegance. Sometimes it is useful to use an aternative function. For example, when
modelli ng strictly positive distributions, it is common to chocse alink that forces all

posshble values of Y to be positive dso, seesedion 5.3for an example.

Fuller introductions to GLMs are provided by Dobson (2002 and McCullagh and
Nelder (1989), which give adescription d the form of exporentia distributions
allowed. Furthermore, for each dstribution, they describe the nature of the
dispersion parameter (which must be assumed constant), and describe the function

providing the canonicd link.

GLMs have not been used extensively in the field of climatology. However, the
examples that exist demonstrate their power in modelling non-normally distributed
variables, such as daily maximum wind speed (Yan et a., 2003 and dhily rainfall
(Coe and Stern, 1982 Stern and Coe, 1984 Chander and Wheder, 2003.

5.2.2 Generalised Linear Model Output

The basic output of a GLM s the set of parameters estimated, namely the fitted
model coefficients, fo, f1, ..., fp, and, where gopliceble, the estimated dspersion
parameter, ¢. However, as with a linear regresson, dher output is avail able which
measures the quality and validity of the fitted model. Firstly, statistics measuring the

goodressof fit are considered.

Most software packages output the deviance of the fitted model as an indicaion o
goodress of fit. Deviance is a measure of the discrepancy between the model in
guestion and the 'full modd": the 'perfed’ model in which each predicted mean is
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equal to the observation in question (see McCullagh and Nelder, 1989, p33for
further detail s). The deviance, D, is defined as:

D=2%(InL; —InL) (5.4

where Lg is the likelihood d the full model, and L is the likelihood d the model in
guestion. Deviance formulas for each o the mgor distributions can be calculated
implicitly; seeMcCull agh and Nelder, (1989, p3) for afull li st.

For GLMs based onthe Normal distribution, the deviance is equa to the residual
sum of squares. In ather GLMs, it serves a similar purpose. Indeed, analysis of
variance procedures caried ou in linea regresson can be extended to analysis of
deviancefor GLMs (McCull agh and Nelder, 1989, p35%

Deviance is a particularly useful statistic when comparing two 'nested’ models,
where the predictors in one model are asubset of the predictors in a second. If the
larger model has p factors, and the smaller has g, then the difference in deviance
between the two models can be modelled approximately with the ¥ distribution with
(p-q) degrees of freedom (see Dobson, 2002, p8E31).

Another available measure of fit is the generalised Pearson X? statistic, usually
simply cdl ed the Pearson statistic, defined by McCullagh and Nelder (1989, p34 as.

XZZZH:M (5.9

where var (1) is the variance function o the assumed dstribution which, by the
definition d an exporentia distribution, is a function d the mean. As one might
exped by the name, this datistic is an extension o the original Peason X° statistic,
and inded is equal to it for GLMs based on bnomial or Poison dstributions. For
GLMs based onthe Normal distribution, X? is equal to the residual sum of squares,
and hence dso equal to the deviance.

Unfortunately, the deviance and Pearson statistics are nat directly interpretable
metrics. Chandler and Wheater (1998) define a measure "anaogous to the R® of
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standard regresson, which measures the propation d variability explained by the
model". Thismeasure is defined as:
A Mean square prediction error

R =1-—— — : (5.6)
Varianceof original observations

Aspointed ou in the dted reference the numerator in the definition haesto be dtered
from the variance of residua errors in the origina definition d R?, becaise in a
GLM the mean o the residuals need na be zero. This dtered R® is easily
interpretable, bu can be misleading, as unlike for linear regresson models, it is not
maximised for GLMs.

Another useful output of regresson models is the residual errors, which allow for the
identificaion d outliers, and validation d the fitted model. For example, if a fitted
linea regresson model is valid, then the residuals will be normally distributed. Any

systematic eror in the residuals indicates that the assumptions made aeinvalid.

Severa different forms of residuals are output for GLMs, and are introduced here.

All produceone residual for each o the n observations.

Raw Residuals;
riR =Y i (5.7)

The raw residual is the standard residual defined in linear regressons, and probably
the least useful of the residuals, as it takes no acourt of the modelled dstribution.

Deviance Residuals:
riD:Sign<yi_ui)\/d7i (5.9

where d; is the @ntribution d the given observation to the total deviance D, defined
such that £ di = D. The ead formula for d; is dependent on the modelled
distribution, bu is easily derived; seeFahrmeir and Tutz (2001, p153
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The deviance residual measures the ontribution d the individual observation to the
total deviance and hence can be used to identify any outliers that have alarge dfed
onthefitted modd.

Pear son Residuals:

(P = Yi — (5.9
Var(ﬂi)

The Pearson residual measures the mntribution d the individual observation to the
Peason statistic. Furthermore, Chander and Wheaer (2002 nate that the Peason
residuals can be used to chedk that systematic structure has been captured by the
model. They note that if afitted model is valid, then all the Pearson residuals sioud
have mean 0, and variance 1. Furthermore, any subset of residuals sioud have a
mean close to 0, and roat mean square dose to 1. Chander and Wheaer ched the
model for unexplained structure by examining carefully selected subsets of residuals,
for example those of a given year, or from a given month. A systematic trend in

residuals can suggest possble improvements to the model.

Anscombe Residuals:

The residuals above can be highly skewed for certain dstributions. Anscombe
residuals are spedficaly defined to be & normally distributed as possble, and are
defined separately for each distribution (see McCullagh and Nelder, 1989, p38for
further details). For example, for a gamma-distributed predictand, the Anscombe
residuals are defined by:

S5 -n)

A= Y (5.10

Note that Yan et a. (2002 and Chander and Wheder (20@2) use a simpler

formulation:
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(5.11)

which provides identicd results, save for a scaling fador. However, the studies
presented here use residuals calculated by the software package used, MATLAB,

using formula (5.10.

Whichever formulais used, if the assumption that the predictand can be modelled by
a cetain dstribution is corred, then the Anscombe residuals soud be normally
distributed.

5.2.3 Model Selection

So far, methods of selecting a suitable set of covariates have nat been mentioned.
Often a large number of possble mvariates are avail able, for example in this gudy
37 fadors have been identified. Whilst we wuld buld a model incorporating all
these factors, it is usually inadvisable. The problem of multicollineaity was
mentioned at the start of this chapter in the mntext of linea regresson, bu it aso
affects GLMs. Therefore, it is prudent to avoid seleding highly correlated predictors.
Furthermore, selecting a large number of predictors can result in owerfitting. Idedly
the set of predictors $oud be parsmonious, that is, the seleded set shoud be &
simple and small as possble, yet explain a substantial propation o total variationin
the model. Furthermore, all covariates in the model shoud have asignificant effed
onthe predicted variable.

The ided approad is to consider all possble combinations of available mvariates,
known as the 'al -subsets' method (Fahrmeir and Tutz, 2001, p142 A mode isfitted
to eat subset, and some statistic, Q, is cdculated that measures the trade off
between quality of fit and simplicity of the model. Atkinson (1981 nates that most
variations of choice of Q are based onminimising the formula:

Q=D+apy (5.12
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where D is the deviance of the modd, ¢ is the estimated dspersion parameter, p is
the size of the cvariate subset in the given model, and « is either a constant or a
function d the number of observations. One of the most common choices, Akaike's
Information Criteria (or the AIC) uses a = 2 (McCullagh and Nelder, 1989, p9).

Hence apenalty is added to the deviance which increases with model size.

Unfortunately, an all-subsets search is not always possble. For example, in the cae
of this dudy with 37 paential covariates, there ae 2%’ possble models, which is
approximately equal to 10". Obviously, it is computationally infeasible to consider
all of these models.

Other posshilities are methods based on stepwise regresson, dten used in a
multiple linea regresson (von Storch and Zwiers, 1999, p1667). One variety, a

forward stepwise goproad, is based onthe foll owing simple procedure:
1. Begin with an empty model, that isthe model with orly an intercept term.

2. Forward Step: Seach for the fador not in the model which, when added,
causes the largest decrease in deviance (and thus improves the fit most). Test
to seeif the decrease in deviance is sgnificant. If so, add the fador to the
mode.

3. Badkward Step: Search for the fador in the model which, when removed,
causes the smallest increase in deviance (the least important fador in the
model). Test to seeif the increase in deviance is sgnificant. If not, remove

the fador from the model.

4. If steps 2-3 have dtered the model, return to step 2. If nat, finish the
procedure, and wse the aurrent model.

A badkward stepwise dgorithm also exists, which begins with the full model: the
model with all possble mvariates included. The procedure is the same & for the
forward approad, bu with the order of steps 2 and 3 reversed. Unfortunately, the
procedures used to calculate the maximum-likelihood estimates for GLMs are
particularly prone to na conwverging when using large numbers of covariates
(Fahrmeir and Tutz, 2001, p140& 143). If the full model canna be fitted, the
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algorithm bre&ks down at the first stage. Furthermore, the time taken to fit the
smaller models of a forward-stepping algorithm is typically much shorter than that
taken to fit the large models in the badkward method.

Therefore, the forward stepwise method seems most appropriate for this gudy. Note
that the seleded model canna be @nsidered optimal, but is merely a comparatively
goodchoice However, the optimal model may only be amargina improvement, and
the time taken to find it exorbitant.

5.3. Fitting the model to daily Sahelian rainfall

The previous sctions have demonstrated that Generalised Linear Models provide a
suitable framework for the modelling of dailly Sahelian rainfall. This sdion will
provide adescription d how the model was fitted, and what steps were taken to

ensure the modd isvalid.

The am isto fit a GLM to daily rainfall in the six regions created in Sedion 4.2.3,
illustrated in Figure 5.1. The predictor variables used will be the 37 leaing
comporents of atmospheric variability in the NCEP reanalysis in the region 0- 20
°N, 30 W — 60 E, extraded using a rotated PCA, as described in Chapter 4. These
predictor variables will be dlowed to lead the modell ed rainfall by upto five days, to
allow for the study of atmospheric condtions prior to rainfall events.

;%r East

50 W 0.0 50 E 10.0'E

16.0° N

140°N Central N

12.0°N

10.0°N

Figure 5.1. The six rainfall regions to be modelled using GLMs. For details of the

creation d theregions esedion 42.3.
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This model will only be fitted to the period o interest: the four-month wet season
from June to September. Furthermore, due to the @ncerns abou data quality
expressed in Sedion 4.1, oty datafor 1968to 1997will be used.

5.3.1. Details of the model

GLMs have been shown to be useful in the modelling of daily rainfal (Coe and
Stern, 1982 Stern and Coe, 1984 Chander and Whedaer, 2002 Buishand et al.,
2004 Abuarrea and Asin, 2005. These studies use atwo-step approach. Firstly,
logistic regresson is used to determine whether a day is wet or dry. Secwondy,
gamma distributions are fitted to determine the amourt of rain falling on wet days.
The two-step approad is necessary as the gamma distribution is not defined for zero

(or negative) values, and hence atemptsto fit to data with zero valuesfail.

Fortunately, the processes of gridding and regionalising Sahelian rainfall described
in Chapter 3 and Sedion 4.2.3 lave removed the neeal for the first step in this gudy.
The model will be based onthe 3660days of June to September, 19681997.During
this period, the four central regions ead had lessthan five days with zero rainfall
(recall that the regional rainfall is given in unts of standard deviations). The two
extreme regions registered more zeros, probably due to the smaler number of
stations avail able in the regions, with the Far West region recording 14 zeros, and the
Far East recording 44.

Therefore, the chosen model was a simple one-step GLM based on the gamma
distribution. On the very few dry days, rainfal in the regions was reset at a trace
value (defined as 0.0001standard deviations) to ensure amodel could be fitted.

The other component of the model to be defined was the link function. The previous
studies listed above dl use the natural logarithm as a link function, athough the
canonicd link for the gamma distribution is the reaprocal function. Hence the two

obvious options were models defined by:

loglink: Ing = B+ 8%+ + B, %, (5.13
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reciprocd link: izﬁo+ﬁl>§1+---+ﬁp>§p (5.19

which can be rearranged to give mean rainfall in terms of the linea predictor (the
right hand side of 5.13and 5.14 as.

Fo+B X1+ 8pXp

loglink: 1, =¢€ — ghehn g (5.15

reciprocd link: p, = 1 (5.1

50 +51)§1+'“+6p)gp

Using the log link rather than the redprocd gives two benefits. Firstly, nae that
values for 1 using a log link are by definition paitive, which is obviously useful
when modelling rainfall. Secondy, nae that as the linea predictor approaches zero,
U tends to ore for the log link, bu tends to infinity for the reciprocal link (or
negative infinity if approaching from the negative side). Hence, a very small li nea
predictor with a redprocd link will lead to a very large predicted mean.
Consequently, modelling with a reciprocal link can give some surprisingly large

prediction errors for afew observations.

For these reasons, the model seleded was a gammea-distributed GLM with alog link
function. Note that the expansion d the exporential functionin equation 5.15reveds

that the model is now multiplicéive.

5.3.2. Is the gamma model valid?

Before the model was fitted, a few tests needed to be caried ou, to ensure that it
would be vaid. Firstly, the regional rainfall needed to be shown to be gproximately
gamma distributed. Secondy, sedion 5.2.1lintroduced the dispersion parameter ¢,
which is assumed constant for all i. In the cae of the gamma distribution, ¢ is the
variance divided by the square of the mean (McCullagh and Nelder, 1989, p3) The
validity of this assumption was tested by calculating the @rrespondng value of ¢
from the data for each day of the year. If the assumption hdds true, the value shoud

be equal for each day of the wet season. However, some degree of variability is
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inevitable with orly thirty yeas of data. Results of the two tests are displayed in
Figure5.2.

The plots suggest that the gamma distribution approximates rainfall in ead region
well, except for some extremely high values. Estimated dspersion parameters vary
considerably at the start and the end of the year (partly due to the high number of
zeros), but appear nearly constant in most of the wet season. Problems may occur at
the start and end d the season, as the plots indicae the dispersion parameter may be

dlightly higher, particularly for the Far West and Far East plots.
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Dispersion Parameter

Regional Rainfall Quantiles

Far West
35 T T T
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Gamma distribution parameters (0.553,1.45)
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Figure 5.2(a). Validation plots for the Far West region. The top gdot shows the
estimated dspersion paameter for each calendar day, with the shaded region
indicating the wet season to be modelled. The bottom plot shows a quantile-quantile
plot comparing the distribution o regiond rainfall with the best fitting gamma
distribution. The different shades of circles indicate dedles of data (i.e. each shade
represents 10% of total data), ill ustrating the dustering o data near the origin.
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Figure 5.2(b). Validation plots for the Central West region. See Figure 5.2(a) for

explanation.
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Dispersion Parameter

Regional Rainfall Quantiles
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Figure 5.2(c). Validation gdots for the Central North region. See Figure 5.2(a) for

explanation.
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Central South

Dispersion Parameter
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Figure 5.2(d). Validation plots for the Central Souh region. See Figure 5.2(a) for

explanation.
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Dispersion Parameter
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Figure 5.2(e). Validation dots for the Central East region. See Figure 5.2(a) for
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Far East
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Figure 5.2(f). Validation dots for the Far East region. See Figure 5.2(a) for

explanation.

A final assumption made is that each Y is independent. Hence, we ae assuming that
rain today is not dependent on rain yesterday, probably not a safe assumption.
However, this can be redified using the strategy of Chandler and Whedaer (2002,
who wse the anourt of rainfall on a previous day as a predictor (see Chapter 6 of
Fahrmeir and Tutz, 2001,for a justification d this procedure). Note that the initial
model (described in the next sedion) did na include this modification.
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5.3.3. The Initial "Full" Model

Initial attempts involved fitting separate gamma-distributed GLMs with a log link
function to ead of the six rainfal regions. The 37 predictor variables were dlowed
to lea rainfall by upto five days, giving atotal of 37 x 6 = 222 pasble predictors.
At this dage, the possble inconsistencies in the NCEP dataset prior to 1968were not
known, so the analysis was based on 19581997. Furthermore, the model did na

include any previous values of rainfall as a predictor.

The predictors used were dhosen using a forward stepwise procedure, with a 5%
level of significance required to add a remove an element from the model. The
procedure was caried ou using MATLAB. Due to the large number of possble

models, a ammpleted procedure for ead region took severa hous.

Table 5.1 dsplays the number of factors in the model fitted for ead region, and its
goodress of fit as measured by the deviance and the aljusted R? of Chander and
Wheaer (1999. Note that as the resporse variable is modelled by the gamma
distribution, the devianceis given by (McCull agh and Nelder, 1989, p3):

n

2.

i=1

Y
1

—In +u

1

(5.17

Eadh o the six fitted models contained at least 23 fadors, with the two oulying
regions requiring over 40. Such large models cause a number of problems. First, the
models are dmost certainly overfitted; they provide a good fit to the particular
sample of datataken, bu not necessarily to the underlying popuation. Secmnd, even
if the model were valid, amodd of that size would be very hard to interpret.

Figure 5.3 shows the evolution d the two goodressof fit parameters for the Central
West region duing the forward stepwise variable seledion procedure. Note that for
this particular model, no factors were removed from the model during badkward
steps. Thisis an exceptional case; for all the other models between four and seven
fadors were removed. Hence, for the Central West region deviance deaeases at each
step of the procedure.
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Region Fadorsin Model R? Deviance

Far East 43 0.218 6766
Central East 29 0.203 5298
Central West 25 0.256 3614
Central North 31 0.209 5304
Central South 23 0.180 3888
Far West 45 0.160 7118

Table 5.1. Sze of model and gadnessof fit statistics for the initial six models.

4100 . T . . 0.26
4000 - 0.24
3900 0.22
(0]
2
g Nﬂ:
[0
o
3800 - 0.2
3700 - 0.18
3600 : . ' ' 0.16
0 5 10 15 20 25
Model Size

Figure 5.3. Evolution of the deviance and R? goodress of fit diagnastics during the
stepwise \ariable selection procedure for the initial GLM fitted to the Central West
region.

The decay of the deviance is approximately exporential, so the margina benefit
from adding each successve fador decreases. The same is largely true for the R,
athowgh nae that occasionaly R? deaeases when a fador is added. This

demonstrates that minimising deviance does nat maximise R?, and hence R? is not a
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perfect indicator of fit for ggmma-based GLMs. The margina benefit in adding extra
fadors hasto be balanced against the increase in complexity of the model, added risk
of overfitting, and the considerable rise in time required to fit larger models.

The acusation d overfitting was investigated by bodstrapping the results of the
final fitted model. Bootstrapping alows the investigation d stability of fitted
parameters withou making assumptions about their distributions, and is performed
by the resampling of data caes with replacement (see Davison and Hinkley, 1997
Chapters 6 & 7).

The boastrapping procedure was carried out as foll ows (adapted from Davison and
Hinkley, 1997, p28):

Forr=1, ..., 1000

« Samplei,...,i", randamly from{1, 2, ..., n}

« forj=1,...,nk=1,...,p,set X =X,y =Y.
« Fit aGLM to ( X11, X12, ..., X1p, Y 1), Qiving estimated for model
coefficients and dagnastics (e.g. deviance and R?)

where j represents the index relating to olservation, and k the index relating to
predictor variable.

Figure 5.4 shows the boastrapped coefficients for the spedfic humidity variablesin
the GLM fitted to the Far East region. Note that many predictors appea at multiple
lags. Also nae the wide range in estimated coefficients, particularly in the 'shuml’
variable. Thisinstability isatypicd indicator of colli nearity, and suggests overfitting
has occurred, particularly as there seans no physicd reason why a large fluctuation
in 'shuml' (humidity at low and mid-levels over the Gulf of Guineg over three days
shoud be asciated with increased rainfall i n western Niger.
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Figure 5.4. Bootstrapped coefficients of the spedfic humidity variables in the original
GLM fitted to the Far East region. The width of bars indicate the proportion d the
1000 bodstraps fitting coefficients of that value. Blue bars indicate a 9% confidence
interval for the true wefficient, red bas indicate values outside the interval. Grey
circles indicate the value of the coefficient in the original GLM. Predictor names are
represented by the first letter of the variable, number of the PC, and the lag d the
predictor. Hence 's4+2' represents the fourth spedfic humidity component leading
rainfall by two days.

Any theoreticd problems with the initial models are moat, to a certain extent, as the
large size of the model make them almost uninterpretable. Later models reduced
model size by considering predictors at eadt lag separately, and increasing the level
of significancerequired to change the model during the stepwise procedure.

5.3.4. Improving the model

The improved model was fitted considering each lag separately. Models were based
on datafrom 19681997,ignoring the pre-1968period when NCEP atmospheric data
is problematic. In order to reduce model size, the level of significance required to

add a remove afador was increased to 1%. The isue of autocorrelation in the
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rainfall time series was accourted for by adding the rainfall onthe previous day as a
predictor in the baseline model. Finally, models were dso fitted to June-July data
only, and to August-September data only, recaling the two-stage monsoon theory
suggested, amongst others, by Nicholson and Palao (1993 and Lebel et a. (2003.

The wefficients, fit statistics and model size of the fitted models are displayed in
Appendix B, figures B.1-42. Note that model sizes are now considerably smaller,
containing between two and thirteen atmospheric factors. Most models explain
between ten and twenty percent of regiona rainfal. Deviance suggests that the
models for the four central regions are the best fitting, despite typicdly containing
fewer atmospheric predictors. Note deviance in the two-month models is rougHy
half the deviance in the four-month models. This is a predictable result: deviance is

an equivalent measure to the residual sum of squaresin alinea regresson.

Of particular nate is the goparent failure of the model to predict rainfall in the Far
West regionin June/ July. Negative scores are recorded for R?, suggesting the fitted
gamma distribution mean for each day is a worse predictor than the overall mean of
the rainfall series. This failure will be investigated later, but note that the previous
day's rainfall ('Priorl’) is a cnsiderably more important in the Far West than in any

other region.

Some cae must be taken when comparing the value of coefficients in dfferent
models. Recdl that al predictors (including prior rainfall) were standardised before
being used, hence within a model the most influential fador will have the largest
absolute mefficient. However, coefficients in a small model will tend to be larger
than those in model with many fadors. Also, nde that if afactor isnat included in a
modd (indicated by a value of 0 in the figures), it does not mean it has no effed on
rainfal, bu that any effed it does have can be better explained by other fadors.

An initial scan o results ows that some factors are dealy more important than
others. Air temperature and geopdential height components appear in very few
models; indeed the second geopatential height comporent (‘gph2’) does not appear in
any model. However, there ae some cmponents, particularly those representing

wind speeads, which occur in many of the models.

15¢



Spedfic humidity also provides some important comporents, in particular ‘'shuml’,
for which a positive value represents enhanced humidity over equatorial Africa and
the Gulf of Guinea, particularly at lower levels. 'shuml’ appears in 77 d the 108
models, with a strong pasitive loading in al cases. This importance is unsurprising.
The average daily time series of the fador (shown in Figure A.18) is smilar to the
typicd daily rainfal cycle, and the fador represents humidity in roughly the right
areg athough dlightly to the south of the Sahel.

Zona wind also plays a aitical role, particularly in August and September. The
appeaance of positive loadings for ‘'uwind4' at short lag times suggest enhanced low-
level westerlies over the Gulf of Guinea ae linked to increase rainfall, hence the
fador seems to represent the monsoon flow. Interestingly, 'uwind4', westerly flow
over the oceanic Gulf of Guinea, is €leded in preferenceto 'uwind3', westerly flow
over the continental Guinea Coast and Sahel. Thus, Sahel rainfall has a stronger link
to off shore monsoonflow.

At longer leal times rainfal is associated with negative loadings of 'uwinds'
(representing strengthened low and mid-level easterly flow centred over Northern
Sudan) and 'uwindl' (easterlies at 200 HPa and ower the Gulf of Guinea & 600 HPa
contrasted by westerlies elsewhere, particularly over East Africa and the wasta
Indian Ocean). This suggests that at higher lags, zonal flow east of the Sahel is more
important. However, the zone of interest is further east than the aeawhere eaterly

waves originate, so the link to rainfall isnot obvious.

The meridional wind comporents provide some extremely interesting results. Two
comporents, ‘'vwind5 and ‘'vwindé', are particularly notable. ‘'vwindé' seems
particularly important in the first half of the wet season. At no lag, and lags of one
day, pasitive scores are asciated with decreased rainfall i n the western regions (and
vice versa). However, at a lag of one day, pasitive scores are dso associated with
incressed rainfal in the eat. Positive scores are dso associated with increased
rainfal in the centra regions at two days, and at the western regions at three days.
Hence the pasitive link appeas to 'drift' acossthe Sahel. 'vwinds' shows a simil ar,

but reversed pattern, with negative loadings drifting acrossthe Sahel.
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These drifting motions from the eat to west are rather reminiscent of the movement
of easterly waves aaossthe Sahel. Furthermore, bah pattern loadings $how a band
of northerlies just to the west of a band d southerlies in the lower and mid
tropasphere, passhbly suggesting a wave motion. The drift takes abou four days to
travel the width of the whole region (approximately 3000 kn). This equates to a
speal o 8.5 ms?, comparable to the wave speal of 8 ms* quded in Red et al.
(1977. Furthermore, the gap between the positive and regative ceitres in the
patterns is approximately 1500 km, suggesting a wavelength of 3000 kn. Estimated
wavelengths for African waves range from 2000 — 400km (Carlson, 1969 Burpee
1972.

Prior rainfall proves to be a relatively unimportant (but significant) fador in all
models, except those fitted to the Far West region. Investigations were crried out as
to whether using rainfal two and three days prior to the day in question improved
the model, fadors referred to as 'Prior2' and 'Prior3'. The efficients relating to
atmospheric predictors changed littl e when these fadors were included, hence they
are nat shown here, andthis suggests that using only 'Priorl' is sufficient.

The 'Priorl’ predictor is particularly important in the Far West region. Thisis aresult
of the much higher autocorrelation than in ather region, with alag 1 correlation o
0.41for June-August, compared to a maximum of 0.23in the other regions. 'Priorl’
also indiredly results in the poa performance of the Far West model in June and
July, when measured by the R? statistic. However, analysis siggests this may be due
to a failure of the R? statistic to represent variability, rather than a failure in the
mode itself.

Models withou the 'Priorl’ predictor had been fitted to al regions. Table 5.2 shows
the statistics for the two models fitted to the Far West region for June-July using
predictors at alag of five days; the right column uses 'Priorl’, the left does not. The
seleded models and fitted coefficients (not shown) are similar; only three factors
appea in exadly one of the models. The R? statistic suggests that the model without
a previous rainfall predictor is reasonable, and the model with the predictor is
abysmal. Note, hovever, that the deviance is lower for the model using Priorl'.
Comparing deviances of non-nested models $ioud be dore with caution, bu this
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does suggest that the quality of the two models is nowhere near as distant as the R?
stati stic suggests.

Statistic Model without ‘Priorl’ | Model with ‘Priorl'
Atmospheric Fadorsin model | 6 7

Deviance 4469 4305

R® 0.10 -2.14

Table 5.2. Fit statistics for two models fitted to the Far West region for June-July using
atmospheric predictors at a lag d five days. One model uses the 'Priorl' predictor

(rainfall onthe previous day); the other does not.

Figure 5.5 shows three histograms. The first represents the variable to be predicted,
regiona rainfall in the Far West region for June-July 19681997 units are in
standard deviations. The second and third histograms represent the predicted rainfall
for the models withou and with 'Priorl' respedively. As can be seen, variability of
the 'observed' rainfal is much higher than for either of the predicted models.
However, recdl that the predicted rainfall values are the mean o a distribution, the
mean of the fitted dstribution being the best prediction. If a dired comparison o
distributions was required, then randam vaues from gamma distributions using the
fitted parameters shoud be creaed.

The top hstogram indicates that an extreme outlier exists in the rainfal series, a
value of 8.85, which occurred on the 29" July 1975. The extreme outlier on the
predicted series using Priorl’, with an astonishingly high value of 50.79, @curs for
the 30" July 1975,when the ac¢ual rainfall was 2.67.

In the second model, the coefficient correspondng to the previous day's rainfall is

0.40.Hence the ontribution d 'Priorl’ to the multi pli cative model is given by e @

X885 = 34.47.As a mmparison, the next highest value of rainfall, 5.50,would orly
contribute 9.03. Hence the extreme rainfal on 29" July 1975 caused an even more
extreme predicted rainfall for 30" July 1975.0bviously, the model not using Priorl’

asapredictor did na suffer from this problem.
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Regional Rainfall

Rainfall, standard deviations

Figure 5.5. Histograms of actual and fitted regional rainfall for the Far West region.
The bottom two plots use predicted data formed from the GLM using amospheric
predictors leading rainfall by five days, with the lower plot also using the previous
day's rainfall as a predictor. The bin width of each ba on the xaxis is 0.2. Note the

different scale onthe y-axisin the top dot.
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Note that even ignoring this extreme, the tall of the 'Priorl' model is much longer
than the model without. It is likely that these outliers heavily influencethe R? for the
'Priorl' modd. This is a further indicaion d the caition that shoud be used in
interpreting the R? statistic. Note that the deviance residual for the 30" July 1975for
the 'Priorl’ model is —2.0. This ®ans rather small, for comparison see Figure 5.6,
which shows histograms of the deviance residuals for the two fitted models in
guestion. However, the gpearance of fitted rainfal in bah the denominators in



equation 5.17 suppresses the influence of vastly overestimated cases; a desirable
property for distributions as highly skewed as daily rainfall. In terms of deviance, the
secondmodel is better fitting.

Model without Prior1

Occurrences

Model with Prior1
70 T T T T T T

Occurrences

-6 -4 -2 0 2 4 6 8
Deviance Residual

Figure 5.6. Histograms of devance residuds for the two models fitted to the Far West
region wsing amospheric predictors leading rainfall by five days. The lower plot also
using the previous day's rainfall as a predictor. The bin width of each bar on the xaxis
is0.1.

Remember that irrespedive of quality of fit, the model not using Priorl’ as a
predictor shoud be viewed with suspicion, dwe to the aitocorrelation in the rainfall

series.

The validity of the models was cheded by examining the distribution & Anscombe
residuals and the mean of Pearson residuals, in the manner of Chander and Wheder,
(1998. If the asumption that rainfall is gamma-distributed hdds, then Anscombe
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residuals shoud be gproximately normal. Systematic trends in residuals can be
discovered by examining Pearson residuals: any subset shoud have acommon mean
(zero) and variance. Chander and Wheaer indicate that the standard error of any

given subsample of Peasonresidualsis given by:

standard error = 1 (5.18

JoN

where ¢ isthe dispersion parameter and N is the size of the sub-sample.

A typical set of validation dotsis produced in Figure 5.7. The top dot, analysing the
distribution d Anscombe residuals, shows they are dmost normal. Deviation from
the 45° line only occurs at the ends of the distribution, and, in this case, ony
noticedly at the bottom tail. This deviation is typica when modelling rainfall
amounts (see Chander and Wheaer, 2002, and occurs due to the Gamma
distribution being unable to yield negative values, whilst the normal distribution

does.

The bottom plots show the mean of Peason residuals subsets divided in two ways,
onthe left by yea, and onthe right by calendar day. As can be seen, yearly averages
lie well within the mnfidence limits for a zero mean residual. For monthly average,
more points lie outside the limits than may be expeded. However, there is no clea

systematic trend to the outliers.
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Distribution of Anscombe Residuals
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Figure 5.7. Verification dots for the GLM fitted to the Central North region for June-
September, using amospheric predictors at a lag o three days. The top dot is a
quartile-quartile plot of Anscombe residuds against a namal distribution: as in
Figure 5.2, each 10% of data is represented in adifferent colour. The bottom two plots
represent the means of subsets of Pearson separated by two different techniques. The
left plot considers yearly averages; the right plot splits residuds by day of the year.
Dotted lines indicate 95% confidence limits for a zero mean.

Finally, the stabili ty of the fitted coefficients was assessed by bodstrapping the fitted
models, using the method oulined in Sedion 5.3.3.The bodstrapped coefficients for
the model fitted to the Far East are again dsplayed, so results can be directly
compared with Figure 5.4. The results, shown in Figure 5.8, consider the model
fitted using predictors at a lag of five days, and for a four month wet season. In this

case, all fitted coefficients are displayed.
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Figure 5.8. Bootstrapped coefficients of variablesin the modified GLM fitted to the Far
East region, for June-September, using predictors at a lag of five days. As for Figure
5.4, exapt predictor codes are shown in full.

The bodstrapped coefficients sen in Figure 5.8 are dealy more stable than those
shown in Figure 5.4, pesumably as a result of the reduced correlation between the
underlying variables. Hence, the improvements made to the model have had the
desired effect.

5.3.5. Fitting to the gridded rainfall series

The analyses described in the previous sctions have creaed a set of models for
rainfall in the six regions. The next step was to attempt to fit GLMs to the individual
grid baxes. This would enhance spatial resolution in the analysis, which would
increase the propartion d adual rainfall variabili ty avail able to be modelled.

The aiterion for selecting which grid baxes to use was the same & in sedion 4.2.3
only grid baxes with arainfall stations reporting 50% of values for June-September
1958 — 199Avere used. Models were again fitted to 1968 — 1997and for the three
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different yearly periods (June/duly only, August/September only, and June-
September). The anourt of rainfall occurring on the previous day was included as a
predictor. Atmospheric predictors were again seleded using a stepwise method.
However, air temperature and geopatential height comporents were not considered,
due to their apparent ladk of importance in the regional GLMs. This decision
significantly reduced the time required to fit the models.

Fitted coefficients and model statistics of these 'gridded GLMs are shown in
Appendix B, figures B.43-73. Each pot shows the rainfall regionsin green to allow
comparison with the previous analyses. Results are similar: the best fitting and

simplest models arein the centre of the domain, perticularly in the south.

The large negative values of R? fitted to the western region in June / July are
reflected in the gridded GLMs. Indeed, the greater variabili ty of the gridded rainfall
enhances this problem: for example the worst fitting box (16°N, 16 ‘W) at zero lag
has an R? of —10780,(nate that this is a highly exceptional case; the second worse
case is'only' —11.3. This poa fit also extends to August / September for boxes in
the north o the Far West region. This auggests all fits to the extreme northwest
shoud beignored.

The gridded results permit a more detail ed evaluation d some patterns. For example,
the gridded results for 'shuml' (shown in Figure B.48) suggests that the asciation
between the fador and rainfall also drifts acrossthe Sahel, in a similar manner to the
wave-related meridional wind comporents. So, enhanced humidity along the Gulf of
Guineais assciated with enhanced rainfall in the eat of the region onthe same day,
and enhanced rainfal in the west severa days later. This trend is particularly
apparent in August and September.

Similar August / September drifts occur in some of the zonal wind components. The
importance of ‘'uwindl' (associating rain with westerlies in the lower troposphere
overlaid by easterlies at 200 HPa) drifts in from the eat from alag of 1 day, andis
important for all central and eastern regions for five day lags. The drift of 'uwind4'
(low level Guinea Coast westerlies) is amost an exad reverse;, importance in all

regions but the west at zero lag is diminished to relevance mainly in eastern regions

16¢€



by day 5. Finaly, the negative 'uwinds' pattern (implying rainfall is linked with low
and mid level easterlies over Northern Sudan) seamsto drift slowly to the west.

Whil st zonal wind predictors are principally useful in August and September, several
meridional wind predictors dominate June and July. For example, 'vwind2 appears
in many models throughout the wet season, bu appeas to exert a stronger influence
in the first half. 'vwind2' is mainly represented in the model by negative loadings,
espedaly in the western half of the domain. This factor links increased rainfall
within the next threedays to aband o low-level northerlies over Chad and Sudan, to
aband d southerlies at 600 HPa just to the west, and to a band of surfacesoutherlies
over the Atlantic Ocean.

The drift of the 'vwind5' and 'vwind6' predictors, seemingly indicaors of wave
adivity, is more gparent in the gridded GLMs. They too day an important role
throughout the wet season, bu are particularly influentia in June and July.
Furthermore, nae that the fitted GLM coefficient patterns (Figures B.68 and B.69)
for the two predictors in June and July seem to be 90° ou of phase, with 'vwinds'
lagging behind 'vwind6' by one day. This is consistent with a wave adivity
interpretation; the PC pattern for 'vwind®6 is located to the west of 'vwind5 (Figures
A.38and A.39), thus the wave has travell ed further west.

Other meridional wind petterns sam to have agreder influence in the later part of
the wet season. For example, 'vwind3' suggests increased low-level southerly flow is
asociated with increased rainfall at short lags aaoss Burkina Faso and the segment
of Niger covered in the analysis. This ems a reasonable suppasition; increased
southerly flow would bring extra moisture into the Sahelian region.

Some links between predictors and rainfal are not so essy to explain. 'vwind10'
suggests higher levels of rainfall occur in the east half of the region 25 days after the
ocaurrence of strengthened natherly flow at the top d the troposphere. A physicd
explanation for this association is unclea. Similar difficulty surrounds the link
between a pasitive score for 'vwind4' and deaeased rainfall in the eatern half of the
domain on the same day, followed by increased rainfal four and five days later

aaoss much o the aea The 'vwind4d' PCA pattern links pasitive loadings with an
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areaof increased low and mid level southerlies to the east of the mnsidered region,
at abou 30 E.

One final observation concerns the difference between the two halves of the wet
season. It is naticedle that the processes that sean to daminate in June and July,
(namédly: 'shuml, 'vwind2', 'vwind5 and 'vwind6') also seem to have an influence in
August and September. This suggests that the two halves of the monsoon season are
not controlled by completely different processs: rather, the second relf has sme
additi onal influences.

5.4. Conclusions

This chapter has presented a set of Generalised Linear Models that have linked daily
rainfall acrossthe Sahel to wider atmospheric variability. Valid models have been
fitted for al but the far-western regions of the Sahel, where atempts failed dwe to a

higher level of autocorrelationin the rainfall series.

The loadings of the GLMs suggested that, of the amospheric variables considered,
changes in specific humidity and wind speed are most closely related to rainfall
variability. Many of the factors in the models can be interpreted in terms of feaures
of the West African rainfall cycle that are well known, such as westerly monsoon
flow and easterly waves.

Some results e in these analyses are straightforward. It is hardly surprisingly that
an increase in the 'uwind4' fador, representative of monsoonflow, is linked with an
increase in rainfall. The modelli ng of rainfall i n several different regions, and for two
different periods of the year, has all owed the identification d some subtle cdhangesin
the importance of fadors. For example, the monsoon flow pattern 'uwind4' is more
important in the eat of the region, and in the second half of the wet season.
Furthermore, the production d models for different lags has identified fadors whaose
importance gpeasto 'drift' aaossthe Sahel over several days.

Finally, these models have indicated that winds over East Africa may have an

influence on rainfall in the Sahel, as indicated by 'uwind5' and ‘vwind4. However,
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the complexity of the PCA and GLM patterns for these factors mean that the
medhanism behind this link is not obvious. The most likely explanation is that these
changes in wind somehow affed the genesis of easterly waves.
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