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Chapter 5: Creating the Empirical Model

5.1. Linking atmospheric variability with rainfall

The previous chapters of this thesis have contained a description of the creation of a

set of variables for use in an empirical model. Chapter 3 (and section 4.2.3) detailed

the production of six rainfall regions to be predicted, and Chapter 4 described the

creation of thirty-seven three-dimensional atmospheric predictor variables. This

chapter will recount the search for a suitable form of model to link the two sets of

variables, and will describe the creation, execution and interpretation of that model.

One of the simplest, yet most powerful, methods of statistical analysis is linear

regression; for a full description, see for example von Storch and Zwiers (1999,

p150-168). Simple linear regression relates a response variable to a single predictor

variable by calculating the 'line of best fit' between the two variables. The best fit is

that which minimises the sum of squared errors. An extension, known as multiple

linear regression (MLR), allows for multiple predictor variables.

Briefly, suppose we are given a variable Y that we wish to model. This variable has

been observed a total of n times. We can consider each observation, yi, as the

realisation of the corresponding random variable, Yi. We also have a set of p

predictor variables, X1, X2, …, Xp, with the ith observation of the jth predictor

variable being xij. The model takes the form:

0 1 1i i p ip iy x xC C C F� � � � �" (5.1)

where �0, �1, …, �p, are coeff icients estimated by least-squares (see the above

reference), and 0i is the modelli ng error, known as the residual error, in the ith

observation. We can consider that 0i is the realisation of a random variable Ei. The

model demands that each Ei (for i = 1, … p) is normally distributed with mean zero

DQG�ZLWK�D�FRPPRQ�YDULDQFH�12. Furthermore, each Ei must be independent.

Determining the �s involves inverting the matrix XT X, where X, known as the

design matrix, is defined as:
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(5.2)

Note that the first column of X is represents a dummy variable equal to one for all

observations, and produces the intercept coeff icient �0. In the case where no intercept

is required, this column in omitted.

If two of the predictor variables, and hence two columns of X, are highly correlated,

then XT X is nearly uninvertible. As a result, the outputted coeff icients are greatly

affected by small changes in the measurements of the xij, and are therefore highly

unstable. This problem, often referred to as multicolli nearity, leads to large

uncertainty in the estimation of the �s.

The problem is usually solved by omitting one or more of the predictor variables.

However, an alternative approach is to use ridge regression (von Storch and Zwiers,

1999, p165-166). Ridge regression adds restraints to the model, which reduces the

influence of the off-diagonal elements of XT X, increasing its invertabili ty. Thus the

parameters can be estimated with less uncertainty, but at the cost of unbiased

estimation.

Unfortunately, as noted above, the linear regression family of analyses all demand

that the residual errors are independent, normally distributed and share a common

variance. This makes the procedure unsuitable for variables with highly skewed

distributions, such as daily rainfall . However, MLR is a special case of a modelli ng

strategy known as the Generalised Linear Model (GLM), which allows for a wider

range of distributions.
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5.2. Generalised Linear Models (GLMs)

5.2.1. The formulation of GLMs

Section 5.1 introduced the idea of attempting to model Yi, the distribution of some

response variable for an ith observation, based on a set of p predictor variables, using

a multiple linear regression model. The Generalised Linear Model is based on

assuming that all the Yi come from some common distribution type from the

exponential family. For example, we could make the assumption that each

distribution is binomial. Many other choices exist, the most common including the

Normal, Gamma or Poisson distributions.

Let �i represent the expected value of Yi given the predictor variable values xi1, xi2,

…, xip. Given these predictors, we assume each Yi is independent. Sometimes we

must assume they share a common 'dispersion' parameter, 3, which is typically

related to the shape of the distribution. The GLM model then takes the form:

	 
 	 
0 1 1i i p ip ig x xN C C C I� � � � �" (5.3)

where g (Ü�� LV�D�PRQRWRQLF��GLIIHUHQWLDEOH�IXQFWLRQ�NQRZQ�DV� WKH� OLQN�IXQFWLRQ��7KH
right hand side of the equation is known as the linear predictor, and, as shown, is

often represented by the symbol �i, (McCullagh and Nelder, 1989).

The MLR model of equation (5.1) is a special case of (5.3), where Yi is normally

distributed with mean �i and some variance 1, which in this case is the dispersion

parameter 3 that we must assume is constant for all observations. The link function g

is the identity function (Fahrmeir and Tutz, 2001).

Note that models of form (5.3) do not try to predict a value of Yi; rather they attempt

to model the distribution of Yi. The expected value of Yi, �i, is often used as a

predicted value, but it also allows us to make probabili stic models. For example, if

we let yi = 0 if day i is dry, and 1 if it is wet, then we can model Yi with a binomial

distribution, and create a model that predicts the chance of rain given a set of

predictor variables.
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GLMs can be solved, li ke MLR, by mean likelihood estimation. However, for GLMs

the likelihood equations produced are nonlinear, and have to be solved iteratively,

see Fahrmeir and Tutz, (2001, p42) for details and possible solution schemes.

The choice of link function is left to the analyst, provided it is monotonic and

differentiable, as noted above. However, each distribution is associated with a

particular function, known as the canonical or natural li nk, chosen for mathematical

elegance. Sometimes it is useful to use an alternative function. For example, when

modelli ng strictly positive distributions, it is common to choose a link that forces all

possible values of Y to be positive also, see section 5.3 for an example.

Fuller introductions to GLMs are provided by Dobson (2002) and McCullagh and

Nelder (1989), which give a description of the form of exponential distributions

allowed. Furthermore, for each distribution, they describe the nature of the

dispersion parameter (which must be assumed constant), and describe the function

providing the canonical li nk.

GLMs have not been used extensively in the field of climatology. However, the

examples that exist demonstrate their power in modelli ng non-normally distributed

variables, such as daily maximum wind speed (Yan et al., 2002) and daily rainfall

(Coe and Stern, 1982; Stern and Coe, 1984; Chandler and Wheater, 2002).

5.2.2 Generalised Linear Model Output

The basic output of a GLM is the set of parameters estimated, namely the fitted

model coeff icients, �0, �1, …, �p, and, where applicable, the estimated dispersion

parameter, 3. However, as with a linear regression, other output is available which

measures the quali ty and validity of the fitted model. Firstly, statistics measuring the

goodness of f it are considered.

Most software packages output the deviance of the fitted model as an indication of

goodness of f it. Deviance is a measure of the discrepancy between the model in

question and the 'full model': the 'perfect' model in which each predicted mean is
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equal to the observation in question (see McCullagh and Nelder, 1989, p33 for

further details). The deviance, D, is defined as:

	 
ˆ2 ln lnFD L LK� � (5.4)

where LF is the likelihood of the full model, and L is the likelihood of the model in

question. Deviance formulas for each of the major distributions can be calculated

implicitly; see McCullagh and Nelder, (1989, p34) for a full li st.

For GLMs based on the Normal distribution, the deviance is equal to the residual

sum of squares. In other GLMs, it serves a similar purpose. Indeed, analysis of

variance procedures carried out in linear regression can be extended to analysis of

deviance for GLMs (McCullagh and Nelder, 1989, p35).

Deviance is a particularly useful statistic when comparing two 'nested' models,

where the predictors in one model are a subset of the predictors in a second. If the

larger model has p factors, and the smaller has q, then the difference in deviance

EHWZHHQ�WKH�WZR�PRGHOV�FDQ�EH�PRGHOOHG�DSSUR[LPDWHO\�ZLWK�WKH�$2 distribution with

(p-q) degrees of freedom (see Dobson, 2002, p80-81).

Another available measure of f it is the generalised Pearson X2 statistic, usually

simply called the Pearson statistic, defined by McCullagh and Nelder (1989, p34) as:
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where var (�) is the variance function of the assumed distribution which, by the

definition of an exponential distribution, is a function of the mean. As one might

expect by the name, this statistic is an extension of the original Pearson X2 statistic,

and indeed is equal to it for GLMs based on binomial or Poisson distributions. For

GLMs based on the Normal distribution, X2 is equal to the residual sum of squares,

and hence also equal to the deviance.

Unfortunately, the deviance and Pearson statistics are not directly interpretable

metrics. Chandler and Wheater (1998) define a measure "analogous to the R2 of
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standard regression, which measures the proportion of variabili ty explained by the

model". This measure is defined as:

2 Mean square prediction errorˆ 1
Variance of original observations

R � � (5.6)

As pointed out in the cited reference, the numerator in the definition has to be altered

from the variance of residual errors in the original definition of R2, because in a

GLM the mean of the residuals need not be zero. This altered R2 is easily

interpretable, but can be misleading, as unlike for linear regression models, it is not

maximised for GLMs.

Another useful output of regression models is the residual errors, which allow for the

identification of outliers, and validation of the fitted model. For example, if a fitted

linear regression model is valid, then the residuals will be normally distributed. Any

systematic error in the residuals indicates that the assumptions made are invalid.

Several different forms of residuals are output for GLMs, and are introduced here.

All produce one residual for each of the n observations.

Raw Residuals:

R
i i ir y N� � (5.7)

The raw residual is the standard residual defined in linear regressions, and probably

the least useful of the residuals, as it takes no account of the modelled distribution.

Deviance Residuals:

	 
signD
i i i ir y dN� � (5.8)

where di is the contribution of the given observation to the total deviance D, defined

VXFK� WKDW� �� di = D. The exact formula for di is dependent on the modelled

distribution, but is easily derived; see Fahrmeir and Tutz (2001, p153).
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The deviance residual measures the contribution of the individual observation to the

total deviance, and hence can be used to identify any outliers that have a large effect

on the fitted model.

Pearson Residuals:

	 
var
P i i

i

i

y
r

N

N

�
� (5.9)

The Pearson residual measures the contribution of the individual observation to the

Pearson statistic. Furthermore, Chandler and Wheater (2002) note that the Pearson

residuals can be used to check that systematic structure has been captured by the

model. They note that if a fitted model is valid, then all the Pearson residuals should

have mean 0, and variance 1. Furthermore, any subset of residuals should have a

mean close to 0, and root mean square close to 1. Chandler and Wheater check the

model for unexplained structure by examining carefully selected subsets of residuals,

for example those of a given year, or from a given month. A systematic trend in

residuals can suggest possible improvements to the model.

Anscombe Residuals:

The residuals above can be highly skewed for certain distributions. Anscombe

residuals are specifically defined to be as normally distributed as possible, and are

defined separately for each distribution (see McCullagh and Nelder, 1989, p38 for

further details). For example, for a gamma-distributed predictand, the Anscombe

residuals are defined by:
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Note that Yan et al. (2002) and Chandler and Wheater (2002) use a simpler

formulation:
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which provides identical results, save for a scaling factor. However, the studies

presented here use residuals calculated by the software package used, MATLAB,

using formula (5.10).

Whichever formula is used, if the assumption that the predictand can be modelled by

a certain distribution is correct, then the Anscombe residuals should be normally

distributed.

5.2.3 Model Selection

So far, methods of selecting a suitable set of covariates have not been mentioned.

Often a large number of possible covariates are available, for example in this study

37 factors have been identified. Whilst we could build a model incorporating all

these factors, it is usually inadvisable. The problem of multicolli nearity was

mentioned at the start of this chapter in the context of linear regression, but it also

affects GLMs. Therefore, it is prudent to avoid selecting highly correlated predictors.

Furthermore, selecting a large number of predictors can result in overfitting. Ideally

the set of predictors should be parsimonious, that is, the selected set should be as

simple and small as possible, yet explain a substantial proportion of total variation in

the model. Furthermore, all covariates in the model should have a significant effect

on the predicted variable.

The ideal approach is to consider all possible combinations of available covariates,

known as the 'all -subsets' method (Fahrmeir and Tutz, 2001, p142). A model is fitted

to each subset, and some statistic, Q, is calculated that measures the trade off

between quali ty of f it and simplicity of the model. Atkinson (1981) notes that most

variations of choice of Q are based on minimising the formula:

Q D pB K� � (5.12)
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where D is the deviance of the model, 3� is the estimated dispersion parameter, p is

the size of the covariate subset in the given model, and . is either a constant or a

function of the number of observations. One of the most common choices, Akaike's

Information Criteria (or the AIC) uses . = 2 (McCullagh and Nelder, 1989, p91).

Hence a penalty is added to the deviance, which increases with model size.

Unfortunately, an all -subsets search is not always possible. For example, in the case

of this study with 37 potential covariates, there are 237 possible models, which is

approximately equal to 1011. Obviously, it is computationally infeasible to consider

all of these models.

Other possibiliti es are methods based on stepwise regression, often used in a

multiple linear regression (von Storch and Zwiers, 1999, p166-7). One variety, a

forward stepwise approach, is based on the following simple procedure:

1. Begin with an empty model, that is the model with only an intercept term.

2. Forward Step: Search for the factor not in the model which, when added,

causes the largest decrease in deviance (and thus improves the fit most). Test

to see if the decrease in deviance is significant. If so, add the factor to the

model.

3. Backward Step: Search for the factor in the model which, when removed,

causes the smallest increase in deviance (the least important factor in the

model). Test to see if the increase in deviance is significant. If not, remove

the factor from the model.

4. If steps 2-3 have altered the model, return to step 2. If not, finish the

procedure, and use the current model.

A backward stepwise algorithm also exists, which begins with the full model: the

model with all possible covariates included. The procedure is the same as for the

forward approach, but with the order of steps 2 and 3 reversed. Unfortunately, the

procedures used to calculate the maximum-likelihood estimates for GLMs are

particularly prone to not converging when using large numbers of covariates

(Fahrmeir and Tutz, 2001, p140 & 143). If the full model cannot be fitted, the
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algorithm breaks down at the first stage. Furthermore, the time taken to fit the

smaller models of a forward-stepping algorithm is typically much shorter than that

taken to fit the large models in the backward method.

Therefore, the forward stepwise method seems most appropriate for this study. Note

that the selected model cannot be considered optimal, but is merely a comparatively

good choice. However, the optimal model may only be a marginal improvement, and

the time taken to find it exorbitant.

5.3. Fitting the model to daily Sahelian rainfall

The previous sections have demonstrated that Generalised Linear Models provide a

suitable framework for the modelli ng of daily Sahelian rainfall . This section will

provide a description of how the model was fitted, and what steps were taken to

ensure the model is valid.

The aim is to fit a GLM to daily rainfall i n the six regions created in Section 4.2.3,

ill ustrated in Figure 5.1. The predictor variables used will be the 37 leading

components of atmospheric variabili ty in the NCEP reanalysis in the region 0 - 20

°N, 30 °W – 60 °E, extracted using a rotated PCA, as described in Chapter 4. These

predictor variables will be allowed to lead the modelled rainfall by up to five days, to

allow for the study of atmospheric conditions prior to rainfall events.

Figure 5.1. The six rainfall regions to be modelled using GLMs. For details of the

creation of the regions see section 4.2.3.
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This model will only be fitted to the period of interest: the four-month wet season

from June to September. Furthermore, due to the concerns about data quality

expressed in Section 4.1, only data for 1968 to 1997 will be used.

5.3.1. Details of the model

GLMs have been shown to be useful in the modelli ng of daily rainfall (Coe and

Stern, 1982; Stern and Coe, 1984; Chandler and Wheater, 2002; Buishand et al.,

2004; Abuarrea and Asín, 2005). These studies use a two-step approach. Firstly,

logistic regression is used to determine whether a day is wet or dry. Secondly,

gamma distributions are fitted to determine the amount of rain falli ng on wet days.

The two-step approach is necessary as the gamma distribution is not defined for zero

(or negative) values, and hence attempts to fit to data with zero values fail .

Fortunately, the processes of gridding and regionalising Sahelian rainfall described

in Chapter 3 and Section 4.2.3 have removed the need for the first step in this study.

The model will be based on the 3660 days of June to September, 1968-1997. During

this period, the four central regions each had less than five days with zero rainfall

(recall that the regional rainfall i s given in units of standard deviations). The two

extreme regions registered more zeros, probably due to the smaller number of

stations available in the regions, with the Far West region recording 14 zeros, and the

Far East recording 44.

Therefore, the chosen model was a simple one-step GLM based on the gamma

distribution. On the very few dry days, rainfall i n the regions was reset at a trace

value (defined as 0.0001 standard deviations) to ensure a model could be fitted.

The other component of the model to be defined was the link function. The previous

studies listed above all use the natural logarithm as a link function, although the

canonical li nk for the gamma distribution is the reciprocal function. Hence the two

obvious options were models defined by:

0 1 1log link : ln i i p ipx x"N C C C� � � � (5.13)
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which can be rearranged to give mean rainfall i n terms of the linear predictor (the

right hand side of 5.13 and 5.14) as:

0 1 1 0 1 1log link: i p ip p ipi
x x xx

i e e e e"
!

C C C CC CN
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� � (5.15)

0 1 1

1
reciprocal link: i

i p ipx x"
N

C C C
�

� � �
(5.16)

Using the log link rather than the reciprocal gives two benefits. Firstly, note that

values for µi using a log link are by definition positive, which is obviously useful

when modelli ng rainfall . Secondly, note that as the linear predictor approaches zero,

µi tends to one for the log link, but tends to infinity for the reciprocal li nk (or

negative infinity if approaching from the negative side). Hence, a very small li near

predictor with a reciprocal li nk will l ead to a very large predicted mean.

Consequently, modelli ng with a reciprocal li nk can give some surprisingly large

prediction errors for a few observations.

For these reasons, the model selected was a gamma-distributed GLM with a log link

function. Note that the expansion of the exponential function in equation 5.15 reveals

that the model is now multiplicative.

5.3.2. Is the gamma model valid?

Before the model was fitted, a few tests needed to be carried out, to ensure that it

would be valid. Firstly, the regional rainfall needed to be shown to be approximately

gamma distributed. Secondly, section 5.2.1 introduced the dispersion parameter ϕ,

which is assumed constant for all i. In the case of the gamma distribution, ϕ is the

variance divided by the square of the mean (McCullagh and Nelder, 1989, p30). The

validity of this assumption was tested by calculating the corresponding value of ϕ

from the data for each day of the year. If the assumption holds true, the value should

be equal for each day of the wet season. However, some degree of variabilit y is
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inevitable with only thirty years of data. Results of the two tests are displayed in

Figure 5.2.

The plots suggest that the gamma distribution approximates rainfall i n each region

well , except for some extremely high values. Estimated dispersion parameters vary

considerably at the start and the end of the year (partly due to the high number of

zeros), but appear nearly constant in most of the wet season. Problems may occur at

the start and end of the season, as the plots indicate the dispersion parameter may be

slightly higher, particularly for the Far West and Far East plots.
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Figure 5.2(a). Validation plots for the Far West region. The top plot shows the

estimated dispersion parameter for each calendar day, with the shaded region

indicating the wet season to be modelled. The bottom plot shows a quantile-quantile

plot comparing the distribution of regional rainfall with the best fitting gamma

distribution. The different shades of circles indicate deciles of data (i.e. each shade

represents 10% of total data), ill ustrating the clustering of data near the origin.
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Figure 5.2(b). Validation plots for the Central West region. See Figure 5.2(a) for

explanation.
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Figure 5.2(c). Validation plots for the Central North region. See Figure 5.2(a) for

explanation.
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Figure 5.2(d). Validation plots for the Central South region. See Figure 5.2(a) for

explanation.
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Figure 5.2(e). Validation plots for the Central East region. See Figure 5.2(a) for

explanation.
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Figure 5.2(f). Validation plots for the Far East region. See Figure 5.2(a) for

explanation.

A final assumption made is that each Yi is independent. Hence, we are assuming that

rain today is not dependent on rain yesterday, probably not a safe assumption.

However, this can be rectified using the strategy of Chandler and Wheater (2002),

who use the amount of rainfall on a previous day as a predictor (see Chapter 6 of

Fahrmeir and Tutz, 2001, for a justification of this procedure). Note that the initial

model (described in the next section) did not include this modification.
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5.3.3. The Initial "Full" Model

Initial attempts involved fitting separate gamma-distributed GLMs with a log link

function to each of the six rainfall regions. The 37 predictor variables were allowed

to lead rainfall by up to five days, giving a total of 37 × 6 = 222 possible predictors.

At this stage, the possible inconsistencies in the NCEP dataset prior to 1968 were not

known, so the analysis was based on 1958-1997. Furthermore, the model did not

include any previous values of rainfall as a predictor.

The predictors used were chosen using a forward stepwise procedure, with a 5%

level of significance required to add or remove an element from the model. The

procedure was carried out using MATLAB. Due to the large number of possible

models, a completed procedure for each region took several hours.

Table 5.1 displays the number of factors in the model fitted for each region, and its

goodness of f it as measured by the deviance and the adjusted R2 of Chandler and

Wheater (1998). Note that as the response variable is modelled by the gamma

distribution, the deviance is given by (McCullagh and Nelder, 1989, p34):

1

ln
n

i i i

i i i

y y N

N N�

  ¯� ¬ �­�¡ °­� �� ­¡ °� ­�� ®¡ °¢ ±
� (5.17)

Each of the six fitted models contained at least 23 factors, with the two outlying

regions requiring over 40. Such large models cause a number of problems. First, the

models are almost certainly overfitted; they provide a good fit to the particular

sample of data taken, but not necessarily to the underlying population. Second, even

if the model were valid, a model of that size would be very hard to interpret.

Figure 5.3 shows the evolution of the two goodness of f it parameters for the Central

West region during the forward stepwise variable selection procedure. Note that for

this particular model, no factors were removed from the model during backward

steps. This is an exceptional case; for all the other models between four and seven

factors were removed. Hence, for the Central West region deviance decreases at each

step of the procedure.
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Region Factors in Model R2 Deviance

Far East 43 0.218 6766

Central East 29 0.203 5298

Central West 25 0.256 3614

Central North 31 0.209 5304

Central South 23 0.180 3888

Far West 45 0.160 7118

Table 5.1. Size of model and goodness of fit statistics for the initial six models.

Figure 5.3. Evolution of the deviance and R2 goodness of fit diagnostics during the

stepwise variable selection procedure for the initial GLM fitted to the Central West

region.

The decay of the deviance is approximately exponential, so the marginal benefit

from adding each successive factor decreases. The same is largely true for the R2,

although note that occasionally R2 decreases when a factor is added. This

demonstrates that minimising deviance does not maximise R2, and hence R2 is not a
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perfect indicator of f it for gamma-based GLMs. The marginal benefit in adding extra

factors has to be balanced against the increase in complexity of the model, added risk

of overfitting, and the considerable rise in time required to fit larger models.

The accusation of overfitting was investigated by bootstrapping the results of the

final fitted model. Bootstrapping allows the investigation of stabili ty of f itted

parameters without making assumptions about their distributions, and is performed

by the resampling of data cases with replacement (see Davison and Hinkley, 1997,

Chapters 6 & 7).

The bootstrapping procedure was carried out as follows (adapted from Davison and

Hinkley, 1997, p264):

For r = 1, …, 1000

• Sample * *
1, , ni i!  randomly from {1, 2, …, n}

• for j = 1, …, n, k = 1, …, p, set * *

* *,
j j

jk ji k i
x x y y= =

• Fit a GLM to ( x*
11, x*

12, …, x*
1p, y*

1), giving estimated for model

coeff icients and diagnostics (e.g. deviance and R2)

where j represents the index relating to observation, and k the index relating to

predictor variable.

Figure 5.4 shows the bootstrapped coeff icients for the specific humidity variables in

the GLM fitted to the Far East region. Note that many predictors appear at multiple

lags. Also note the wide range in estimated coeff icients, particularly in the 'shum1'

variable. This instabili ty is a typical indicator of colli nearity, and suggests overfitting

has occurred, particularly as there seems no physical reason why a large fluctuation

in 'shum1' (humidity at low and mid-levels over the Gulf of Guinea) over three days

should be associated with increased rainfall i n western Niger.
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Figure 5.4. Bootstrapped coefficients of the specific humidity variables in the original

GLM fitted to the Far East region. The width of bars indicate the proportion of the

1000 bootstraps fitting coefficients of that value. Blue bars indicate a 95% confidence

interval for the true coefficient, red bars indicate values outside the interval. Grey

circles indicate the value of the coefficient in the original GLM. Predictor names are

represented by the first letter of the variable, number of the PC, and the lag of the

predictor. Hence 's4+2' represents the fourth specific humidity component leading

rainfall by two days.

Any theoretical problems with the initial models are moot, to a certain extent, as the

large size of the model make them almost uninterpretable. Later models reduced

model size by considering predictors at each lag separately, and increasing the level

of significance required to change the model during the stepwise procedure.

5.3.4. Improving the model

The improved model was fitted considering each lag separately. Models were based

on data from 1968-1997, ignoring the pre-1968 period when NCEP atmospheric data

is problematic. In order to reduce model size, the level of significance required to

add or remove a factor was increased to 1%. The issue of autocorrelation in the
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rainfall time series was accounted for by adding the rainfall on the previous day as a

predictor in the baseline model. Finally, models were also fitted to June-July data

only, and to August-September data only, recalli ng the two-stage monsoon theory

suggested, amongst others, by Nicholson and Palao (1993) and Lebel et al. (2003).

The coeff icients, fit statistics and model size of the fitted models are displayed in

Appendix B, figures B.1-42. Note that model sizes are now considerably smaller,

containing between two and thirteen atmospheric factors. Most models explain

between ten and twenty percent of regional rainfall . Deviance suggests that the

models for the four central regions are the best fitting, despite typically containing

fewer atmospheric predictors. Note deviance in the two-month models is roughly

half the deviance in the four-month models. This is a predictable result: deviance is

an equivalent measure to the residual sum of squares in a linear regression.

Of particular note is the apparent failure of the model to predict rainfall i n the Far

West region in June / July. Negative scores are recorded for R2, suggesting the fitted

gamma distribution mean for each day is a worse predictor than the overall mean of

the rainfall series. This failure will be investigated later, but note that the previous

day's rainfall ('Prior1') is a considerably more important in the Far West than in any

other region.

Some care must be taken when comparing the value of coeff icients in different

models. Recall that all predictors (including prior rainfall ) were standardised before

being used, hence within a model the most influential factor will have the largest

absolute coefficient. However, coefficients in a small model will t end to be larger

than those in model with many factors. Also, note that if a factor is not included in a

model (indicated by a value of 0 in the figures), it does not mean it has no effect on

rainfall , but that any effect it does have can be better explained by other factors.

An initial scan of results shows that some factors are clearly more important than

others. Air temperature and geopotential height components appear in very few

models; indeed the second geopotential height component ('gph2') does not appear in

any model. However, there are some components, particularly those representing

wind speeds, which occur in many of the models.
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Specific humidity also provides some important components, in particular 'shum1',

for which a positive value represents enhanced humidity over equatorial Africa and

the Gulf of Guinea, particularly at lower levels. 'shum1' appears in 77 of the 108

models, with a strong positive loading in all cases. This importance is unsurprising.

The average daily time series of the factor (shown in Figure A.18) is similar to the

typical daily rainfall cycle, and the factor represents humidity in roughly the right

area, although slightly to the south of the Sahel.

Zonal wind also plays a criti cal role, particularly in August and September. The

appearance of positive loadings for 'uwind4' at short lag times suggest enhanced low-

level westerlies over the Gulf of Guinea are linked to increase rainfall , hence the

factor seems to represent the monsoon flow. Interestingly, 'uwind4', westerly flow

over the oceanic Gulf of Guinea, is selected in preference to 'uwind3', westerly flow

over the continental Guinea Coast and Sahel. Thus, Sahel rainfall has a stronger link

to offshore monsoon flow.

At longer lead times rainfall i s associated with negative loadings of 'uwind5'

(representing strengthened low and mid-level easterly flow centred over Northern

Sudan) and 'uwind1' (easterlies at 200 hPa and over the Gulf of Guinea at 600 hPa

contrasted by westerlies elsewhere, particularly over East Africa and the coastal

Indian Ocean). This suggests that at higher lags, zonal flow east of the Sahel is more

important. However, the zone of interest is further east than the area where easterly

waves originate, so the link to rainfall i s not obvious.

The meridional wind components provide some extremely interesting results. Two

components, 'vwind5' and 'vwind6', are particularly notable. 'vwind6' seems

particularly important in the first half of the wet season. At no lag, and lags of one

day, positive scores are associated with decreased rainfall i n the western regions (and

vice versa). However, at a lag of one day, positive scores are also associated with

increased rainfall i n the east. Positive scores are also associated with increased

rainfall i n the central regions at two days, and at the western regions at three days.

Hence, the positive link appears to 'drift' across the Sahel. 'vwind5' shows a similar,

but reversed pattern, with negative loadings drifting across the Sahel.
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These drifting motions from the east to west are rather reminiscent of the movement

of easterly waves across the Sahel. Furthermore, both pattern loadings show a band

of northerlies just to the west of a band of southerlies in the lower and mid

troposphere, possibly suggesting a wave motion. The drift takes about four days to

travel the width of the whole region (approximately 3000 km). This equates to a

speed of 8.5 ms-1, comparable to the wave speed of 8 ms-1 quoted in Reed et al.

(1977). Furthermore, the gap between the positive and negative centres in the

patterns is approximately 1500 km, suggesting a wavelength of 3000 km. Estimated

wavelengths for African waves range from 2000 – 4000 km (Carlson, 1969; Burpee,

1972).

Prior rainfall proves to be a relatively unimportant (but significant) factor in all

models, except those fitted to the Far West region. Investigations were carried out as

to whether using rainfall two and three days prior to the day in question improved

the model, factors referred to as 'Prior2' and 'Prior3'. The coeff icients relating to

atmospheric predictors changed littl e when these factors were included, hence they

are not shown here, and this suggests that using only 'Prior1' is sufficient.

The 'Prior1' predictor is particularly important in the Far West region. This is a result

of the much higher autocorrelation than in other region, with a lag 1 correlation of

0.41 for June-August, compared to a maximum of 0.23 in the other regions. 'Prior1'

also indirectly results in the poor performance of the Far West model in June and

July, when measured by the R2 statistic. However, analysis suggests this may be due

to a failure of the R2 statistic to represent variabilit y, rather than a failure in the

model itself.

Models without the 'Prior1' predictor had been fitted to all regions. Table 5.2 shows

the statistics for the two models fitted to the Far West region for June-July using

predictors at a lag of f ive days; the right column uses 'Prior1', the left does not. The

selected models and fitted coefficients (not shown) are similar; only three factors

appear in exactly one of the models. The R2 statistic suggests that the model without

a previous rainfall predictor is reasonable, and the model with the predictor is

abysmal. Note, however, that the deviance is lower for the model using 'Prior1'.

Comparing deviances of non-nested models should be done with caution, but this
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does suggest that the quali ty of the two models is nowhere near as distant as the R2

statistic suggests.

Statistic Model without 'Prior1' Model with 'Prior1'

Atmospheric Factors in model 6 7

Deviance 4469 4305

R2 0.10 -2.14

Table 5.2. Fit statistics for two models fitted to the Far West region for June-July using

atmospheric predictors at a lag of five days. One model uses the 'Prior1' predictor

(rainfall on the previous day); the other does not.

Figure 5.5 shows three histograms. The first represents the variable to be predicted,

regional rainfall i n the Far West region for June-July 1968-1997: units are in

standard deviations. The second and third histograms represent the predicted rainfall

for the models without and with 'Prior1' respectively. As can be seen, variabili ty of

the 'observed' rainfall i s much higher than for either of the predicted models.

However, recall that the predicted rainfall values are the mean of a distribution, the

mean of the fitted distribution being the best prediction. If a direct comparison of

distributions was required, then random values from gamma distributions using the

fitted parameters should be created.

The top histogram indicates that an extreme outlier exists in the rainfall series, a

value of 8.85, which occurred on the 29th July 1975. The extreme outlier on the

predicted series using 'Prior1', with an astonishingly high value of 50.79, occurs for

the 30th July 1975, when the actual rainfall was 2.67.

In the second model, the coefficient corresponding to the previous day's rainfall i s

0.40. Hence, the contribution of 'Prior1' to the multiplicative model is given by e (0.40

× 8.85) = 34.47. As a comparison, the next highest value of rainfall , 5.50, would only

contribute 9.03. Hence the extreme rainfall on 29th July 1975 caused an even more

extreme predicted rainfall for 30th July 1975. Obviously, the model not using 'Prior1'

as a predictor did not suffer from this problem.
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Figure 5.5. Histograms of actual and fitted regional rainfall for the Far West region.

The bottom two plots use predicted data formed from the GLM using atmospheric

predictors leading rainfall by five days, with the lower plot also using the previous

day's rainfall as a predictor. The bin width of each bar on the x-axis is 0.2. Note the

different scale on the y-axis in the top plot.

Note that even ignoring this extreme, the tail of the 'Prior1' model is much longer

than the model without. It is li kely that these outliers heavily influence the R2 for the

'Prior1' model. This is a further indication of the caution that should be used in

interpreting the R2 statistic. Note that the deviance residual for the 30th July 1975 for

the 'Prior1' model is –2.0. This seems rather small , for comparison see Figure 5.6,

which shows histograms of the deviance residuals for the two fitted models in

question. However, the appearance of f itted rainfall i n both the denominators in
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equation 5.17 suppresses the influence of vastly overestimated cases; a desirable

property for distributions as highly skewed as daily rainfall . In terms of deviance, the

second model is better fitting.

Figure 5.6. Histograms of deviance residuals for the two models fitted to the Far West

region using atmospheric predictors leading rainfall by five days. The lower plot also

using the previous day's rainfall as a predictor. The bin width of each bar on the x-axis

is 0.1.

Remember that irrespective of quali ty of f it, the model not using 'Prior1' as a

predictor should be viewed with suspicion, due to the autocorrelation in the rainfall

series.

The validity of the models was checked by examining the distribution of Anscombe

residuals and the mean of Pearson residuals, in the manner of Chandler and Wheater,

(1998). If the assumption that rainfall i s gamma-distributed holds, then Anscombe
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residuals should be approximately normal. Systematic trends in residuals can be

discovered by examining Pearson residuals: any subset should have a common mean

(zero) and variance. Chandler and Wheater indicate that the standard error of any

given subsample of Pearson residuals is given by:

1
standard error = 

ˆNϕ
(5.18)

where ϕ is the dispersion parameter and N is the size of the sub-sample.

A typical set of validation plots is produced in Figure 5.7. The top plot, analysing the

distribution of Anscombe residuals, shows they are almost normal. Deviation from

the 45° line only occurs at the ends of the distribution, and, in this case, only

noticeably at the bottom tail . This deviation is typical when modelli ng rainfall

amounts (see Chandler and Wheater, 2002), and occurs due to the Gamma

distribution being unable to yield negative values, whilst the normal distribution

does.

The bottom plots show the mean of Pearson residuals subsets divided in two ways,

on the left by year, and on the right by calendar day. As can be seen, yearly averages

lie well within the confidence limits for a zero mean residual. For monthly average,

more points lie outside the limits than may be expected. However, there is no clear

systematic trend to the outliers.
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Figure 5.7. Verification plots for the GLM fitted to the Central North region for June-

September, using atmospheric predictors at a lag of three days. The top plot is a

quantile-quantile plot of Anscombe residuals against a normal distribution: as in

Figure 5.2, each 10% of data is represented in a different colour. The bottom two plots

represent the means of subsets of Pearson separated by two different techniques. The

left plot considers yearly averages; the right plot splits residuals by day of the year.

Dotted lines indicate 95% confidence limits for a zero mean.

Finally, the stabili ty of the fitted coefficients was assessed by bootstrapping the fitted

models, using the method outlined in Section 5.3.3. The bootstrapped coefficients for

the model fitted to the Far East are again displayed, so results can be directly

compared with Figure 5.4. The results, shown in Figure 5.8, consider the model

fitted using predictors at a lag of f ive days, and for a four month wet season. In this

case, all fitted coeff icients are displayed.
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Figure 5.8. Bootstrapped coefficients of variables in the modified GLM fitted to the Far

East region, for June-September, using predictors at a lag of five days. As for Figure

5.4, except predictor codes are shown in full .

The bootstrapped coeff icients seen in Figure 5.8 are clearly more stable than those

shown in Figure 5.4, presumably as a result of the reduced correlation between the

underlying variables. Hence, the improvements made to the model have had the

desired effect.

5.3.5. Fitting to the gridded rainfall series

The analyses described in the previous sections have created a set of models for

rainfall i n the six regions. The next step was to attempt to fit GLMs to the individual

grid boxes. This would enhance spatial resolution in the analysis, which would

increase the proportion of actual rainfall variabili ty available to be modelled.

The criterion for selecting which grid boxes to use was the same as in section 4.2.3:

only grid boxes with a rainfall stations reporting 50% of values for June-September

1958 – 1997 were used. Models were again fitted to 1968 – 1997, and for the three
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different yearly periods (June/July only, August/September only, and June-

September). The amount of rainfall occurring on the previous day was included as a

predictor. Atmospheric predictors were again selected using a stepwise method.

However, air temperature and geopotential height components were not considered,

due to their apparent lack of importance in the regional GLMs. This decision

significantly reduced the time required to fit the models.

Fitted coefficients and model statistics of these 'gridded GLMs' are shown in

Appendix B, figures B.43-73. Each plot shows the rainfall regions in green to allow

comparison with the previous analyses. Results are similar: the best fitting and

simplest models are in the centre of the domain, particularly in the south.

The large negative values of R2 fitted to the western region in June / July are

reflected in the gridded GLMs. Indeed, the greater variabili ty of the gridded rainfall

enhances this problem: for example the worst fitting box (16°N, 16 °W) at zero lag

has an R2 of –10780, (note that this is a highly exceptional case; the second worse

case is 'only' –11.3). This poor fit also extends to August / September for boxes in

the north of the Far West region. This suggests all fits to the extreme northwest

should be ignored.

The gridded results permit a more detailed evaluation of some patterns. For example,

the gridded results for 'shum1' (shown in Figure B.48) suggests that the association

between the factor and rainfall also drifts across the Sahel, in a similar manner to the

wave-related meridional wind components. So, enhanced humidity along the Gulf of

Guinea is associated with enhanced rainfall i n the east of the region on the same day,

and enhanced rainfall i n the west several days later. This trend is particularly

apparent in August and September.

Similar August / September drifts occur in some of the zonal wind components. The

importance of 'uwind1' (associating rain with westerlies in the lower troposphere

overlaid by easterlies at 200 hPa) drifts in from the east from a lag of 1 day, and is

important for all central and eastern regions for five day lags. The drift of 'uwind4'

(low level Guinea Coast westerlies) is almost an exact reverse; importance in all

regions but the west at zero lag is diminished to relevance mainly in eastern regions



169

by day 5. Finally, the negative 'uwind5' pattern (implying rainfall i s linked with low

and mid level easterlies over Northern Sudan) seems to drift slowly to the west.

Whilst zonal wind predictors are principally useful in August and September, several

meridional wind predictors dominate June and July. For example, 'vwind2' appears

in many models throughout the wet season, but appears to exert a stronger influence

in the first half. 'vwind2' is mainly represented in the model by negative loadings,

especially in the western half of the domain. This factor links increased rainfall

within the next three days to a band of low-level northerlies over Chad and Sudan, to

a band of southerlies at 600 hPa just to the west, and to a band of surface southerlies

over the Atlantic Ocean.

The drift of the 'vwind5' and 'vwind6' predictors, seemingly indicators of wave

activity, is more apparent in the gridded GLMs. They too play an important role

throughout the wet season, but are particularly influential in June and July.

Furthermore, note that the fitted GLM coeff icient patterns (Figures B.68 and B.69)

for the two predictors in June and July seem to be 90° out of phase, with 'vwind5'

lagging behind 'vwind6' by one day. This is consistent with a wave activity

interpretation; the PC pattern for 'vwind6' is located to the west of 'vwind5' (Figures

A.38 and A.39), thus the wave has travelled further west.

Other meridional wind patterns seem to have a greater influence in the later part of

the wet season. For example, 'vwind3' suggests increased low-level southerly flow is

associated with increased rainfall at short lags across Burkina Faso and the segment

of Niger covered in the analysis. This seems a reasonable supposition; increased

southerly flow would bring extra moisture into the Sahelian region.

Some links between predictors and rainfall are not so easy to explain. 'vwind10'

suggests higher levels of rainfall occur in the east half of the region 2-5 days after the

occurrence of strengthened northerly flow at the top of the troposphere. A physical

explanation for this association is unclear. Similar diff iculty surrounds the link

between a positive score for 'vwind4' and decreased rainfall i n the eastern half of the

domain on the same day, followed by increased rainfall four and five days later

across much of the area. The 'vwind4' PCA pattern links positive loadings with an
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area of increased low and mid level southerlies to the east of the considered region,

at about 30 °E.

One final observation concerns the difference between the two halves of the wet

season. It is noticeable that the processes that seem to dominate in June and July,

(namely: 'shum1, 'vwind2', 'vwind5' and 'vwind6') also seem to have an influence in

August and September. This suggests that the two halves of the monsoon season are

not controlled by completely different processes: rather, the second half has some

additional influences.

5.4. Conclusions

This chapter has presented a set of Generalised Linear Models that have linked daily

rainfall across the Sahel to wider atmospheric variabili ty. Valid models have been

fitted for all but the far-western regions of the Sahel, where attempts failed due to a

higher level of autocorrelation in the rainfall series.

The loadings of the GLMs suggested that, of the atmospheric variables considered,

changes in specific humidity and wind speed are most closely related to rainfall

variabili ty. Many of the factors in the models can be interpreted in terms of features

of the West African rainfall cycle that are well known, such as westerly monsoon

flow and easterly waves.

Some results seen in these analyses are straightforward. It is hardly surprisingly that

an increase in the 'uwind4' factor, representative of monsoon flow, is linked with an

increase in rainfall . The modelli ng of rainfall i n several different regions, and for two

different periods of the year, has allowed the identification of some subtle changes in

the importance of factors. For example, the monsoon flow pattern 'uwind4' is more

important in the east of the region, and in the second half of the wet season.

Furthermore, the production of models for different lags has identified factors whose

importance appears to 'drift' across the Sahel over several days.

Finally, these models have indicated that winds over East Africa may have an

influence on rainfall i n the Sahel, as indicated by 'uwind5' and 'vwind4'. However,
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the complexity of the PCA and GLM patterns for these factors mean that the

mechanism behind this link is not obvious. The most likely explanation is that these

changes in wind somehow affect the genesis of easterly waves.


