Chapter 4: Formulating the Predictor Variables

Chapter 3 focused onthe anstruction d a gridded daily rainfall dataset, which will
form the resporse variable in the statisticd modd that is the goal of this thesis. This
chapter will focus onthe aedaion d asuite of predictor variables.

As noted in Chapter 2, the suite will be made up of atmospheric variables, as they
can have adirect effed on rainfall in the Sahel. Whilst the review of past studiesin
Chapter 2 demonstrated that variables such as sa surfacetemperature or measures of
land surface cndtion undoukedly have an influence over Sahel rainfal, they are
not included here. This is principally because variations take place over a much
longer time scde than daily, and kecause aty change in these variables shoud be

reflected in changes in atmospheric composition and dynamics.

This chapter includes a description d the underlying data to be used for prediction, a
review of the tedniques used to transform it into useful predictor variables, and

analyses to identify a suitable domain size.

4.1. The NCEP / NCAR reanalysis dataset

One of the biggest challengers fadng researchers in analysing the West African
climate is the mmparative lack of physical observations. For example, Chapter 2
reported that Grist and Nichadson (2001) attempted to use radiosonde and pbal data
to analyse the link between atmospheric variability and rainfall, bu were severely
hampered by aladk of data. Therefore, a mmmon approach isto use reanaysis data,
which is observations data from various urces procesed using a Genera
Circulation Model (GCM) to make the data physicdly consistent and fill missng

values.

The most frequently used reanalysis data wmes from the National Centers for
Environmental Prediction / National Center for Atmospheric Reseach reanalysis
projed, heredter referred to as the NCEP reanalysis (Kalnay et al., 1996. The am
of the projed was to provide a'frozen state of the at analysis / forecast system’, as

use of previous forecasts in climatological analysis produced inhamogeneities
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whenever the forecast system was improved. Originaly data were produced for
19571996, b now the record goes badk to 1948,andis continuowsly upckted.

The NCEP reanalysis provides data for 28 vertical levelsat a2.5 °x 2.5 °resolution
for a wide range of variables. Many data ae reported for every six hous, bu this
study uses the daily averages, to match the gridded rainfall data. NCEP variables are
grouped into four classes to illustrate whether they are primarily influenced by
observations or by the model. Class A are described as 'strongly influenced by
observed data, whereas whilst class B are directly influenced by observations, the
mode also has a strong effect uponthem. Kalnay et al. suggest class C variables,
such asrainfall, shoud be used with caution, as they are completely derived from the
model. Finaly, class D variables, such as abedo, are obtained puely from
climatologicd values, and hence ae independent of the model.

Other reanalyses projeds have been performed. In particular, the ERA40 reanalysis
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)
has been released recently, unfortunately too late for it to be used in this projed.

This gudy uses four atmospheric levels from the NCEP reanalysis: 1000, 850, 600
and 200 IPa. Together these levels cover the main atmospheric processes throughout
the troposphere which affect rainfal at the surface The 1000 and 850 Ira levels
contain the main monsoonflow, whereas the 600 and 200 iPa levels contain the two
jet streans described in Chapter 2.

This gudy uses sx of the avalable NCEP variables: geopdentia height, air
temperature, spedfic humidity, the zonal and meridional components of wind, and
verticd velocity. NCEP classfy all of these a classA variables, apart from verticd
velocity and spedfic humidity, which are dassB. Specific humidity is not avail able
at 200 HPa, so data from the highest avail able level, 300 HPa, was used instead.

Originaly, the intention was to use the NCEP data over the same period as the

rainfall data, that is 19581997. Unfortunately, studies by Camberlin et a. (200J)

and Janicot et al. (2001 compared NCEP data with olservations over West Africa

and found poblems with the reanalysis data prior to 1968.This was demonstrated

most clealy by Janicot and Sultan (2001), who wed the West African Monsoon

Index (WAMI), defined by Fontaine & al. (1995, as an observationa dataset. The
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WAMI is cdculated drectly from rawinsonde data, and compares the monthly mean
standardised anomaly of wind speed at 900 HPa over the Sahel with the zonal wind
comporent at 200 HPa. The authors compared this index with a WAMI cdculated
from the NCEP reanalysis. The two indices were very similar post-1968, bua diff ered
previously. However, when the data were subjeded to a high-frequency filter, the
indices were similar over the whaole period. This suggests a long-term bias in the
NCEP data. This and aher studiesindicate that the problem results from a change in
the number of observations prior to 1968 particularly in land surface and
rawinsonde observations (Poccard et a., 20M), and ship reports (Camberlin et al.,
2001).

Because of these inhamogeneities, Camberlin et al. (2001) and Janicot and Sultan
(2001 recommend nd using NCEP data for years before 1968.Unfortunately, these
studies were not discovered urtil some of the analyses in this thesis were caried ou,
so some pre-1968 dita has been used. However, where this has been the case, further
analyses have been caried ou to ensure that results have not been significantly
aff ected.

4.2. An Introdu ction to Principal Component Analysis

Having identified a suitable dataset for further analysis, the next step was to chocse a
method to extrad the most important information from the dataset, and thus creae
the suite of variables to be used in the final model. The next sedion introduces
Principal Comporent Analysis (PCA), an established technique for the dficient
extradion d ranked patterns of variance from a dataset. This sction explains why
PCA was chosen, examine some of the main problems encourtered when using the

method,and consider posshble extensions and alternatives.
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4.2.1. The Purpose of Principal Component Analysis

Principal Comporent Analysis (heresfter referred to as PCA) is a multivariate
statistica technique that has been widely used in climatologicd studies®. It aims to
'reduce the dimensionality of a data set consisting of a large number of interrelated
variables, whil e retaining as much as possble of the variation pgresent in the data set’
(Jolliffe, 2002, pl. In the dimatologica field, this enables the identificaion o
dominant patterns of simultaneous variation d a given statisticd field. Hence, in the
context of this thesis, the complexities of variation in several variables at thousands

of grid pants measured at severa heights could be simplified to just afew factors.

PCA is dogged by confusions over terminology. PCA is often referred to as
Empiricd Orthogonal Function (EOF) analysis, when used in a dimatologicd
context. Some aithors (such as Jolliffe, 2003, suggest that the terms can be used
interchangeably, whereas others (Richman, 198§ insist that the terms distinguish

between two variants of the technique.

Similarly, the notation wsed to define PCA varies considerably; those used here ae
based on Jolliffe (2002. Given a vedor of p randam variables, let us cal it x, we
am to find a linea combination d these variables with maximum variance, let us

cdl it z. Thelinea combination can be expressed mathematicaly as:

Z = X =00, % +05,% ot A X (4.7)

where a1 is avector of p coefficients, and a;' signifies the transpose of a;. Note that

the dhoiceof sign of a; isarbitrary, asthe variances of a; and —a; are equal.

So, we have found z; with maximum variance The next step is to find a second
function, z, or a1'x, that is uncorrelated with z; but with maximum variance This
processcontinues, at each step finding z that maximises variance but is uncorrel ated
with z;, 2, ..., z1. In theory p comporents could be found, ba typically an dften

3 Jolliffe (2002 reports that nealy 25% of articles appeaing in the International Journal of
Climatology in 1999and 2000 used some form of PCA (p71).
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small subset can accourt for most of the total variancein the system, so orly the first

mare cdculated, where m<<p.

Methods of cdculation have been described in detail elsewhere (for example see
Jolliffe, 2002 @ von Storch and Zwiers, 1999. The coefficients of ayx are the
elements of the egenvedor of Z correspondng to the kth largest eigenvalue, Ay,
where Z is the avariance matrix formed from x. Again, much confusion can be
caused by the wide range of terminadogy for the ay and the z. Here the ay will be
referred to as the principal comporent (or PC) loadings or patterns, and the z the
principal comporent scores or time series.

So at ead stage we wish to maximise the variance of z. However, in arder to make
sense of this problem some @nstraint must be imposed, to creae some upper bound
for the wefficients. This constraint is referred to as a normalisation constraint. A

common choiceis:
ak’ak =1 (43)

which forces each eigenvector to have unit length. Furthermore, the variance of z is
given by A2, It is this method which Richman (1986 refers to as EOFs. He defines

PCA asthe methodthat uses another common namali sation constraint:
ak'ak = (4.9

Another useful choice(see Jolli ffe, 1990 is:

' 1
a, o, :)\— (45)
k

which gives the variance of z = 1 for al k. Thus the choice of normalisation
constraint determines whether information on the size of the agenvalue Ay is
contained in the PC scores (case 4.3), the PC loadings (case 4.5) or bath (case 4.4).

Note that as the PC loadings are @genvectors, they are orthogonal (so for i # j, a;'a;
is zero). So the PC loadings are orthogonal, and the PC scores are uncorrelated.

98



These properties are sometimes referred to as the orthogonality properties of the

comporents (Mestas-Nunez, 2000.

When moving from a theoreticd to a pradical formation d a PCA, where N
observations are taken for each of the p variables, it is common to expressformula

4 1in full matrix form as foll ows:
Z =XA (4.6)

where X is a N x p matrix of data observation, whaose (i,j)th element is the ith
observation d the jth variable, A isap x mloading matrix, whaose jth column is the
vedor of loadings for the jth principal comporent, and Z isthe N x m score matrix,
whaose (i,j)th element is the score of the jth component relating to the ith observation.
Principal comporent loadings are estimated using the sample @variance matrix,
often referred to as S, whaose (i,j)th element is the avariance between variable i and

variablej wheni # j, and whose diagonal (j,j)th element is the variance of variablej.

By definition, the matrix A is orthogonal, so its inverse is equal to its transpose.

Hence (4.7) is often expressd as.
X =ZA' (4.7)

Preisendafer (1988 p30 refers to (4.6) as the analysis formula and (4.7) as the
synthesis formula. The synthesis formula indicaes that we can ‘decompose’ the data

matrix into two parts. a score matrix and aloading matrix.

A common pradice is to standardise the variables, that is the clumns of X, before
procealing with the analysis. This ensures the variance of ead variable is one, and
hence prevents bias toward variables with greater variance. Standardisation o
variables is equivaent to finding the egenvedors and eigenvalues of the wrrelation

matrix, rather than the ovariance matrix.

Complicdions occur if two o more agenvalues are ejual. Together, the q
eigenvedors correspondng to the egual eigenvalues gan a g-dimensional subspace
of the whaole sample space, bu they canna be uniquely defined (Jolli ffe, 2002, p27.
Any of the infinite number of g mutually orthogonal vedors that span the given
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subspace can be used: in effect, the q patterns canna be separated. The q
comporents are said to be degenerate (von Storch and Zwiers, 1999, p28).

Degeneracy is extremely rare in pradice, as smpled eigenvalues are dmost never
equal. Nevertheless the theory has sme important ramificaions. It is quite cmmmon
to have some a@genvalues that are nearly equal. North et a. (198) demonstrated that
when this occurs, high sampling errors can cause the patterns to form an 'effectively
degenerate multiplet'. To pu it more simply, the patterns can become mixed. The
study also showed that larger sample sizes increase the chance that patterns can be
separated, although separation can never be guaranteed (see the cae study of
Richman, 198§.

North et a. (1982 formed a 'rule of thumb' to estimate where patterns may become
mixed by deriving the following estimate of the typicd error AA; for any given

DA = \EAi 4.9
n

where n is the number of independent samples. If AA; is greder than the distanceto a

eigenvalue A;:

neighbauring eigenvalue, then it is possble that the patterns may be mixed.
Unfortunately, in a dimatologicd setting, samples can hardly ever be mnsidered
independent, and hencefinding avalue for n can be problematic.

Other problems can accur from zero or near-zero eigenvalues. This can result in an
ill -condtioned sample @rrelation a covariance matrix, and hence unstable resullts, if
sample size is too small. A common recommendation is to have more independent
observations than variables (Richman, 1993.

Oneisse yet to be discussed is how to seled a vaue for m, the number of principal
comporents to be cdculated. Many techniques exist, varying dramaticdly in their
sophisticaion, bu al have to make atrade-off between a small value of m, which
provides for the greaest reduction d dimensionality of the data set, and a large m,

which retains the greaest proportion d variance
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The simplest techniques retain principal componrents that coll ectively explain a given
propation d total variance. So, for example, the first m componrents may be dosen
so that together they contain 93% of the total variance This smple rule is
surprisingly effective, as typicdly the first few components contain a large majority
of the total variance However, the seledion o what percentage of total variance to

retain is arbitrary.

Another simple methodis to retain any individual comporent with a variance above
a given cut-off point. A speda case of this method, knavn as Kaiser's Rule, is to
retain all comporents with a @rrespondng eigenvalue greaer than ore. Thus only
comporents that contain more variance than the average variable (or any variable in
the cae of a @rrelation based PCA) are retained (Tabadnick and Fidell, 2001).

Other popuar methods are based ona plot of successve agenvalues, often referred
to as a scree graph. Named by Cattell (1966), athough already widely used at the
time, the 'screetest’ typicdly bases the choice of number of components to retain on
the point when the plot moves from being steep to shallow, a point often referred to
as the 'elbow’ of the graph. Whilst useful in many cases, interpretation is not always
straightforward. An example scree plot is displayed later in this chapter, as Figure
4.4. However, this plot could be interpreted as having two elbows, one & the fourth
comporent, and ore & the sixth. Furthermore, there is disagreement as to whether
the aut-off shoudd include the comporent at the dbow (Jolliffe 2002 pll157,
Tabachnick and Fidell 2001, p62)L

Cattell (1966 preferred a dlightly different formulation for a screetest. Instead of
basing a dhoice on the dbow of the plot, Cattell reeommends looking for the point
beyond which the graph first becomes more-or-lessa straight line, and taking to cut-
off to the right of this paoint (Jolliffe 2002, p117. Hence, Cattell's method would
retain six comporents for Figure 4.4, although again, this result is open to
interpretation.

Many other criteria for seleding the number of components to retain exist; the
textbooks by Preisendorfer (1988 and Jolli ffe (2002 bath have chapters devoted to
different methods. Some of the more complex attempt to use statisticd justificaion
for a at-off paint. However, Jolli ffe suggests that, at present, such methods sem to
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"offer littl e alvantage over the simpler rules in most circumstances®. Similarly, von

Storch and Zwiers (1999 advise against using compli caed seledion rules.

In climatological studies, we typicdly have three'entities to consider; time, locaion
(i.e. astation a grid pant) and meteorologicd fields (such as temperature, presaure
or predpitation), one of which must be held constant. Richman (1986 divides
climatologicd PCAs into six 'operation modes, based on the modes of Caittell
(1952. Each o these modes is defined by which o the entities we hold constant,
which is represented in the wlumns of the data matrix X, that is the variables, and
which is represented by the rows of X, the caes. These six modes are summarised in
Table 4.1. Note that Cattell described two extra modes: S* and T, which have the
same antity in the rows of X asthe mlumns.

PC mode | 'Variables: 'Cases Fixed entity
Columns of X dencte | Rows of X denote

O time field location

P field time location

Q location field time

R field location time

S location time field

T time location field

Table 4.1. The six modes of decomposition for climatological studies. Adapted from
(Richman, 1986).

After analysis, the entity described in the wlumns of X is associated with the PC
loadings, and the entity described in the rows of X is associated with the PC scores.
Many climatological analyses are caried out in S-mode, hence the use of the terms

‘patterns' and ‘time series' to describe the loadings and scores respedively.

Note that the location entity usually covers more than ore dimension. Analysis
points are sometimes represented by a range of stations scdtered across a map,
usually at different heights. Alternatively the may be aseries of points on atwo (or

threg dimensional grid. In this case, usual pradice is to 'unfold' these dimensions
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into ore, thus ignoring any structure in the distributions of locaions aaoss the
analysis region. Hence, any clustering of locationsin a particular areawill result in a
bias toward that region. Thus, the use of regularly spaced gridded data is preferable
toirregularly scattered station chta.

Note that further modes can be aeaed by 'unfolding the field entity in a similar
fashion. For example, suppasing that we measured several fields at several locations
on many separate occasions. We muld perform a PCA using the occasions as rows,
and wing ead field at each locaion as a separate variable. This approach is
sometimes cdled Extended Empiricd Orthogonal Functions (EEOF) (von Storch,
1999, p29%

4.2.2. Rotation of Principal Compon ents

Oncethe initial stage of the PCA has been carried ou, we are left with m PCs that
geometricadly span the most informative m-dimensional subspace of the p-
dimensional spacespanned by the original variables (Jolli ffe, 1993. However, they
do nd uniquely define this subspace Furthermore, typicdly the cwmplexity of the
structure of ead conseautive PC pattern increases, for example see Richman (1986)
and the analyses later in this chapter. Therefore, a common pradice is to find an
aternative set of vedors ganning the given subspace which have amuch smpler

structure. This processis referred to as rotation.

Algebraicaly, this amourts to finding a suitable m x m matrix T, which is used to

construct a new loading matrix B:
B=AT 4.9

Once anew rotated loading matrix has been found, new rotated scores can be
cdculated using equation (4.6), bu repladng A with B. Often T is orthogonal,
referred to as an orthogonal rotation. However, nonorthogona transformations,
known as oblique rotations, are available, see Nichoson and Palao (199) for an

example. Again, terminodogy can cause grea confusion; an orthogona
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transformation will not necessarily produce aset of orthogonal patterns, as discussed
below.

There ae many different techniques used to seled T, and all differ in their definition
of 'simple structure', see Richman (1986, for a mmprehensive list. Most operate by
attempting to oltain loadings or scores that either have alarge @solute value, or are
nea to zero. The most commonly used orthogona transformation, ‘arimax,
maximises the variance of loadings within each pettern. Anather useful choice the
quartimax criterion, maximises the variance of one variable aross al the
comporents (Tabachnick & Fidell 2001, p614 Jolliffe (2002 suggests that the
choice of rotation criteria is usualy less important than the dhoice of how many
variables to rotate (that is the doice of m). However, he dtes ome studies where a

different choices of rotation criteriaresult in significantly diff erent results.

Before rotation, the PCA exhibits two orthogonality properties. scores are
uncorrelated and patterns are mutualy orthogonal. The st of rotation is the
saaifice of at least one of these properties. The dhoice of normalisation constraint
will dedde which properties are lost. For orthogonal rotation, Mestas-Nunez (2000
demonstrates that the use of normalisation constraint (4.3), referred to by Richman
(1986 as an EOF, preserves orthogonality of patterns but results in correlation
between scores. Constraint (4.5 results in urcorrelated scores, bu loses
orthogonality of patterns. Constraint (4.4), Richman's PCA, sacrifices baoth
orthogonality properties. Oblique rotation, by definition, saaifices orthogondity of
patterns.

In addition to providing a simpler structure, and hence greater interpretability,
rotation hes been suggested to have anumber of other benefits. Firstly, Richman
(1986 nates that rotated patterns have a smaler sampling error than urrotated
patterns; hence when eigenvalues are similar, rotated pattern can be separated more
easily. Jolli ffe (1987 argues that there is no reason why al m comporents need to be
rotated, suggesting that effedively degenerate multiplets could be identified using
North's rule of thumb, and then ead multiplet could be rotated. Thus, the smplest
solution for eat multiplet would be used to represent the variance ®ntained by its

comporents.
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In order to illustrate another benefit of rotation, it is necessary to introduce the
concept of Buell patterns. In a series of studies, Buell discovered that principal
comporents of two-dimensional fields often exhibit similar patterns, and these
patterns are heavily influenced by the shape of the domain in which the analysisis
caried ou (Buell, 1975 Budll, 1979. Figure 4.1 ill ustrates a series of grid pants
forming a9 x 9 gid, perhaps representing giid pants on which climatologicd data
have been measured. Usually, there is a definite spatial structure to data observed on
such a grid, for example the temperature & a given pant is likely to have strongest
correlations with pants immediately surroundng it, with correlations wegening as

distanceincreases.

In Figure 4.1, the left panel ill ustrates typical strength of correlation with the bladk
grid pant at locaion (5,5, whereas the right figure ill ustrates correlation strength
with the grid pant at (1,1). Strongest correlations are represented by red circles, then
as distance increases and correlations reduce, colours fade to arange, yellow then to
white. Noticethat on the left hand grid only a few paints are yell ow, whereas many

arein theright hand gid.
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Figure 4.1. Examples of underlying structure of correlation in a typical gridded data
set. The depth of colour in each plot represents strength of correlation with the black
grid point. See text for a full explanation.
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This ill ustrates a potential weakness in spatially based PCAs. As the central grid
points are, on average, likely to be more strongly correlated with cther grid pants,
they exert far more influence on the analysis than pants nearer the edge. Hence, in
many PCAs the first pattern is a global pattern, with most grid pants having the
same sign, bu with loadings being gredest in the entre.

The second PCA represents the main axis of variance, once the variance of the first
PCA has been removed. As the first pattern focused on the centre, most remaining
variance is locaed at the edges of the domain. Hence, the second pattern tends to be
one alge versus the oppaite alge (such as left versus right), and the third pettern
tends to be a90° rotation d the second (up versus down). Buell calculated predicted
patterns for square, redangular and triangular domains. Figure 4.2 ill ustrates one of
Budll's results for a 6 x 6 square (Buell, 1979, where the crrelationr between two

pointsisgiven by:
r= exp[—(x2 + yz)%] (4.10

where (x,y) represents the mordinate separation between the two pants concerned.
All 36 comporents are ill ustrated.
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Figure 4.2. Example of Buell patterns for a 6 x 6 square, after (Buell, 1975). See text

for explanation.

Note that in the example given in Figure 4.2 there are many pairs of equal
eigenvalues, such as the secondand third eigenvalues. Hencethe order of many pairs
is arbitrary, explaining why the ordering is dightly different to thase shown in
Figure 2 of Buell (1975. Furthermore, where @genvalues are equal, the patterns are
degenerate. Hence @mporents two and three ould be represented in an infinite
number of ways. For example, instead of bottom-left versus top-right and bdtom-
right versus top-left; they could be represented as top \versus bottom and left versus
right. Also, nde that in a dimatologicd or meteorological context, a physica
interpretation d all but the first few patterns would be impossble.

As rotation tends to force loadings to high values or zero, it often causes rotated
patterns to be locdised. This is clearly indicaed by Figure 4.3, which shows the

result of performing a varimax rotation onthe first ten PCs, chosen according to
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Kaiser's rule (use dl components with an eigenvalue greater than ane). All ten
patterns show a small areain oppgaition to the rest of the domain, physicaly far
more interpretable than the unrotated solution.

PC1 PC2

SIO1 4.
R~ B [

PC6 pC7 PCs PCo PC10
- -

Figure 4.3. The varimax rotation of the first ten components from Figure 4.2.

Buell's results suggest the shape of the domain has a significant effect on grincipal
comporent patterns. However, this does not render them useless As Jolliffe (1987
indicates, even if the second PC is predictably a one side versus the oppdsite, it is not
always predictable how it will be oriented. Furthermore, the result indicaes the
'direction d maximum variation d the dimatological variable of interest'. Jolliffe
also claims that the strong spatial correlation d variables is the main reason for
predictable patterns in climatological studies, with danain shape being a significant

semndary fador.

The exchange between Legates (1991, 1993 and Richman (1993 shows the level of
controversy theissue can cause. Legates produces two examples of aglobal PCAson
monthly data, ore on temperature, ore on rainfall, which he daims do nd exhibit
Buell patterns. Despite the deficiencies in Legates' analysis that Richman identifies,
including the exceptionally small sample size, it does illustrate some important
paints. The rainfall analysis demonstrates that variables withou the kind d strong
domain-wide crrelation illustrated in Figure 4.1 reed nad produwce dassc Buell
patterns, athough this does not mean they are unaffected by domain shape. The
temperature example demonstrates that different authors can come to wildly different
conclusions from the same analysis, Legates claims they do nd represent Buell
patterns, whil st Richman, suppated by Smith et a. (1990, claimsthey do.
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Buell patterns concern data that shows a high level of spatial correlation. Similar
problems can occur for data with high levels of tempora correlation, althoughthese
sean to have been subjeded to less srutiny (Buell, 1979 Jolli ffe, 2002, p298

The isaue of physicd interpretation o PCAs has also been the cause of much
discusson. Richman (1986 in particular seemsto be of the view that the wedknesses
of unrotated PCA noted above mean that they can cause severe, posshly terminal,
problems in interpretation. Indeed, Richman (1987 notes that the original
proporents of PCA never intended it to be used to discover physicd patterns.
Furthermore, Richman (1985) nates that often urrotated physicd modes have no
basis in redity, citing an example of PCA on 3day precipitation ower the United
States. The first unrotated PCA represents the expeded damain-wide variability.
Richman argues this makes no physical sense, as it never rains (or is dry)
simultaneously acrossthe whole domain. Conversely, Dommenget and Latif (2002
(followed by discusson by Behera @ al., 2003 Dommenget and Latif, 2003 and
Jolliffe, 2003 suggest that rotating a PCA can sometimes hinder physicd
interpretation, as they produce patterns that 'have very little to do with climate
physics. Dommenget and Latif use acombination d red life and artificially created
examples to ill ustrate that rotated PCAs can create 'artificial’ patterns that have no
basis in redity, athough these daims are disputed by the following discusson

papers.

The isaue of the failure of PCA, whether rotated o nat, to produce physicdly
meaningful patterns is tadkled by Jolliffe (2002 p2968). He suggests that the
proposed criticisms of PCA listed above ae somewhat unfair; the am of PCA is to
produce orthogonal, uncorrelated comporents that successvely maximise variance.
If the physicd modes do nd exhibit these dharaderistics, then PCA will not uncover
them. Indeed, Buell (1979 compares the interpretation d improperly conceved PCs
(in the context of his analysis of the dfed of domain shapes) with children seang
cestlesin the douds.

Perhaps the most serious drawbadk of rotation is the dfed of different flavours of
PCA on the fina rotated ouput. In a rotated PCA, we must make anumber of
choices: whether to use the variance or correlation matrix, what normalisation

constraint to use, how many comporents to retain, and what rotation criterionto use.
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Each of these dhoices can have asignificant effed on the rotated output, although

some choices have agreder effed than athers.

Asnoted ealier, the most important choiceis how many comporents to retain before
rotating (Jolliffe, 2002 p27). In an attempt to avoid this dilemma, Jolliffe & al.
(2002 suggest a number of adternatives to the two-stage "PCA then rotation’
approach. These gproaches rely on applying an extra constraint when finding each
conseautive PC. For example, in the SCOTLASS technique, when finding ai'x
subjed to the normalisation constraint ai'ax =1, we gply the extra @nstraint to the

coefficients:
p
Z‘akj‘st (4.11
J:

for some tuning parameter t. For t = Vp the solution is the same & for PCA, whereas
if t =1, there will be exadly one non-zero coefficient for each loading vector.
Seleding a value somewhere between these extremes results in patterns where some
coefficients are forced to zero, with solutions dowing geater smplicity as t is
deaeased (Jolli ffe, 2002 p28§. Unfortunately, this elegant approach is penali sed by
asevere increase in computational complexity. At present, ogtimal routines have yet
to be developed to make this option feasible for data sets as large & those used in
thisthesis (Jolli ffe @ al., 2003.

Rotation shoud nd be viewed as a panacea for al of the problems with PCA.
Nevertheless Richman (1986and 19%B) demonstrates that rotated solutions are less
affected by domain dependence ad sampling errors, and typicdly more
interpretable. However, these benefits have a ©st. In addition to urcertainty abou
choice of m, at least one of the orthogonality constraints will have to be sacrificed.
This could be undesirable, for example if the scores are to be used in a regresson
anaysis (Richman, 198§.
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4.2.3. An example of PCA on the Sahelian gridded rainfall data set.

To give an example of how PCA operates, this ®dion pesents an analysis on the
gridded rainfall data set creded in Chapter 3. The ultimate am of this thesis is to
crede ar empirical model of Sahel climate relating atmospheric variability to
rainfall. However, the high dmensionality of the gridded rainfal data set makes it
unwieldy. The entire domain contains 230 grid baxes. Hence, mathematicdly, the
data set can be said to be 230-dimensional. By using PCA, it may be possble to
reduce the dimensionality of the data set, and hence reduce the number of fadors we

need to predict in the final empiricad model.

The first thing to reagnise is that the quality of each of the 230 grid baxes is nat
equal, as demonstrated in Chapter 3. Therefore, only grid boes that contain a station
used in the gridding procedure are used in this gage of the analysis. This eliminates
al the border boxes that were aeaed by extrapdation, and leaves us with 114
boxes, ead with 14,610 obkervations, ore for each day of the period 19581997.

As rainfal, and hence rainfal variability, is greaer in the southern regions,
performing a PCA on the wvariance matrix would introduce bias against the
northern Sahel. Therefore, eady gid bax time series was dandardised prior to
anaysis, a technique equivalent to performing the PCA on the crrelation matrix.
The st of this move is that the cmporent time series are now dimensionless

expressed in terms of standard deviations, rather than millim etres.

Another consideration was the strong seasona cycle in Sahelian rainfall. A PCA
performed on raw data would undoulbedly output this as the leading principa
comporent. This would na be new information; we dready know the whole region
is dominated by the seasonal cycle, as documented in Chapter 2. However, it would
also force dl following comporents to be orthogonal to it. Therefore, it isa cmmmon
pradice to deseasonalise data before analysis, to remove the predictable anua
cycle. So, for example, eah of the 40 olservations made on the 17" August for the
grid bax 12 N, 1 W has the mean o these 40 values subtraded from it. Similar

subtradions are performed for each cdendar day in each grid box.

The PCA was carried ou using the normalisation constraint (4.4), referred to by
Richman (1986 as PCA. Rotated results for constraints (4.3) and (4.5 were dso
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cdculated, and show very similar patterns. The analysis was carried out on a desktop
PC using MATLAB.

Figure 4.4 and Table 4.2 dsplay information abou the first ten eigenvalues of the
correlation matrix. Figure 4.4 dsplays the scree plot, whereas the table gives the
eigenvalues, the percentage of total variance plained by each component, and the
cumulative percentage of total variance eplained by all comporents up to and
including that comporent. It also gives two estimates of error from North's rule of
thumb (4.8), ore optimistic (all observations are independent, n = 14610, ore
pessmistic (only every fifth olservation is independent, n=2922). The pessmistic
value of nis used puely to ill ustrate the dfed autocorrelation in the rainfal time
serieswould have onthe estimated error, the dhoiceof nitself was arbitrary.

Component| Eigenvalue Optimistic Pessimistic % of total Cumulative
A AN AN variance %
1 19.48 0.23 0.51 17.09 17.09
2 12.26 0.14 0.32 10.75 27.84
3 8.90 0.10 0.23 7.80 35.65
4 6.76 0.08 0.18 5.93 41.58
5 6.32 0.07 0.17 5.54 47.12
6 4.22 0.05 0.11 3.71 50.82
7 3.81 0.04 0.10 3.34 54.16
8 2.91 0.03 0.08 2.55 56.72
9 2.89 0.03 0.08 2.54 59.26
10 2.54 0.03 0.07 2.23 61.49

Table 4.2. Satistics for the first ten eigenvalues of the PCA carried out on the daily
gridded Sahel rainfall data set. See text for further explanation.

The estimated errors in the a@genvalues, whether optimistic or pessmistic, suggest
that all comporents are well separated, with the exception d components eight and
nine. Despite the darity of the leading comporents, it is clea that they do nd
explain an overwhelming amourt of the total variance in the system. This indicates
the complexity of Sahelian rainfall, particularly when it is remembered that the

gridding procedure itself removed alarge anourt of variance.
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Eigenvalue

Component number

Figure 4.4. Scree plot of the first ten eigenvalues from the PCA of daily gridded Sahel

rainfall data.

Asaresult of this complexity, most selection rules would chocse avery high number
of comporents to retain. For example, Kaiser's rule (retain al eigenvalues greater
than ore) would suggest retaining 22 comporents. However, this is gill a
considerable number of factors to predict in afinal model. Therefore, it was deaded
to retain componrents that would explain a, somewhat arbitrary, value of 50% of total
variance. The unrotated comporent loadings are displayed in Figure 4.5. However,
this choiceis nat entirely arbitrary; as noted earlier in this chapter, Cattell's (1966

formulation d the screetest would retain six comporents.
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Figure 4.5. Unrotated PC loadings for the first six components of the PCA of daily
gridded Sahel rainfall data.

Despite the strange domain shape, the unrotated petterns do sean reminiscent of
Budll patterns. In particular, loadings four and six bea little physicd relevance to

rainfall.

Figure 4.6 illustrates the loading patterns after a varimax rotation is caried ou.
These results are, as might be expeded, much more localised. Negative loadings are
dwarfed by the positive loadings. Each pattern describes the rainfal variability in
one part of the domain. Therefore, these patterns are used to define wherent regions

of rainfal in the final empiricd model.

Eadh o the regions was defined using one of the rotated comporents, bu only
considering squares where the loading was greater than 0.5.An exception was given
for the blank space that can be seen in the middle of PC2; blank becaise the square
was omitted from the PCA, as it did na contain a station. This gjuare was
reintroduced as boxes containing stations surround it, and hence the interpolated
estimates of rainfal were wmparatively accurate. The regions are ill ustrated in the

next chapter, in Figure 5.1.
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Figure 4.6. Rotated PC loadings from the PCA of daily gridded Sahel rainfall data. Sx
components were rotated using the varimax criterion and normalisation constraint
(4.4). The black regions in each plot indicate areas where loadings are greater than

0.5; used to define the six rainfall regions used in the remainder of the study.

Time series were recalculated for each o the newly defined regions based onthe raw
data divided by its dandard deviation, to prevent bias in the wetter, southern boxes.
The PC time series could have been used, bu this would have meant sacrificing all
the variance in the system not represented by the first six componrents (almost 50%).

It is important to recognise that, had a different number of comporents been
retained, dfferent regions would have been formed that could have been just as
representative & those shown here ae. However, these regions conveniently
separate out the somewhat dubious eastern and western regions (PCs 4 and 6
respedively), and dvide the dependable central regions into nath, south, east and
west.
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4.2.4. Complex extensions of PCA

Some interesting extensions of PCA exist for considering complex data. The term
‘complex PCA' (or complex EOF) is used to describe several of them, causing yet
more terminologicd confusion. Some, such as the technique von Storch and Zwiers
(1999 refer to as 'Hilbert EOFs, take the cmplex part of the inpu variable as a
transform of the red part, thus al owing analysis of patterns propagating in space and
time. Ancther, which is here referred to as 'Vedor PCA', refer to PCA caried ou on
vedor (as oppased to scdar) variables. Vedor PCA is formulated identicaly to the
PCA described above, providing the conjugate transpose operator is used.

In a dimatologicd context, the most obvious use of a vedor PCA is in analysing
wind ceta. Given u, a set of p randam zonal wind variables, and v, a set of p randam
meridional wind variables, where u; and v; relate to olservations at some locdion i,

we can construct a set of complex randam variables x using:
X=U+iv (4.12

wherei is the imaginary square root of —1. An example of avedor PCA is given by
Klink and Willm ott (1989.

Interpretation o vedor data is more wmplex than the usual scdar case, bu still
feasible. Eigenvalues are still red numbers, bu the PC patterns and time series are
both complex. The patterns represent the main variability in drection d the wind,

the time series the strength of the flow in the direction represented by the patterns.

In anormal scalar PCA pattern, each variable is represented by a scdar coefficient.
The sign of each pattern is arbitrary, so the sign of every coefficient can be flipped if
desired. S0, in effed, each PC has two solutions, ore 'paositive’ and ane 'negative'. In
a vedor PCA, each variable is represented by a vector coefficient. The set of
coefficients exhibit a similar arbitrary nature, but instead of flipping signs, eadh
vedor may be rotated by the same anourt. Hence there are an infinite number of
passble solutions, athough a sensible solution would be to maximise the fit between
the data and the patterns. Note that this ‘rotation' shoud na be anfused with the
rotation tedhniques described in sedion 4.2.2.
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Interpretation o the time series is more @nfusing. The red part of the series
represents the strength of the flow in the diredion d the pattern, and the imaginary
part represents the strength of the flow at 90° to the pattern. Interpretabili ty is usually
increased by conwverting each number the time series into a magnitude and an angle
of the relevant vedor. Then, the magnitude represents the strength of the flow, and
the angle indicates that diredion d the flow relative to the pattern.

Vedor PCAs are an elegant extension d the usual method, havever their rare use
means that they have not been extensively investigated. Most arguments abou PCA
can be extended to the wmplex case; there ae probably Buell-type patterns for
vedor PCAs, and the solutions can probably be rotated in the sense of sedion 4.2.2.
However, noreseach into these aeas could be found. Furthermore, the intention d
the PCA isto produce aset of predictors for the final model. The relevant variables
outputted from aveaor PCA, the PC time series, are complex, and would be difficult
to use is aregresson type anaysis. Therefore, vector PCA seams unsuitable for the
main aim of this projed.

4.2.5. Multiway extensions of PCA

The description d the PCA given in Sedion 4.2.1,when used in a dimatologicd
context, treas ead location as a variable. Consequently, the data matrix does nat
contain information abou the geographical position d ead site, other than that
implicit in the crrelation (or covariance) matrix. This form of PCA is esentiadly a
two-dimensional process (considering time and space); however the data usualy
exists in at least threedimensions (time, latitude and longitude). Extensions of PCA
are available that can consider this gructure, however at the time of writing no
examples relating to climate science ould be found, although examples of use can
be foundin the field of foodscience (Pravdova & al., 2001 Pravdova € al., 2003.

Recdli ng Preisendafer's synthesis formulafor PCA given earlier:

X =ZA’ 4.7)



Formula 4.7 alows for the decomposition d the data matrix into two variables,
representing time (Z, the score matrix) and space (A, the loading matrix). Extensions
decompose the data into more variables. For example, when considering a data set
on a regular grid, the PARAFAC (Parallel Fador) method approximates the

observation x;jx using amodel of the form:
X = ;aikbijk (4.13

where x;; is the observed value & latitude i, longitude j for observation|, wherei = 1,
Lo =1, ..., Jandl =1, ...,n. Asfor PCA, m comporents are extraded and each
comporent K is represented by atime series, made up d the zy. However, instead of
being represented by one loading pattern, the comporent k is represented by two
loading vectors, ore (the ay) relating to latitude, the other (the bj) relating to
longitude.

The PARAFAC mode! is a specia case of the general Tucker3 model, where X is
approximated using amodel of the form:

W W
X = ; n; 2 ] oy o (4.19

Here, instead of extrading k comporents, we extrad a different number of factors
for each 'dimension’. So in the example @wncerning gidded data, we extrad w;
fadors relating to latitude, w, fadors relating to longitude and ws fadors relating to
time. The matrix G, made up d the wefficients gim, iS known as the wre matrix,
and indicates the importance of ead interadion. If the value of gim, iS comparatively
high, then the interadion between latitude mode |, longitude mode m and time mode
n is comparatively important. Extra dimensions can be alded to create ahigher order

Tucker model.

As can be imagined, interpretation d a PARAFAC or Tucker model is far from
simple. Furthermore, their ladk of use when compared to PCA means that they are
lesswell understood. For example, do equivalents to Buell patterns exist for these

multiway methods? For these reasons, the methods were wnsidered, but eventually
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deamed ursuitable for this thesis, bu may prove to be afruitful avenue for future
studies.

4.2.6. An Assess ment of PCA

A review of the literature has helped to assessthe value of PCA. The need to reduce
the dimensionality of increasingly higher resolution climatologicd data has
stimulated interest in PCA, resulting in a thorough study of its applicaion and
implicaions. The strength and weaknesses of PCA in the cntext of climate analysis,
therefore, are well known. It is a mmparatively simple method to apply, can be

solved numericdly, andis computationally efficient.

However, a number of important dedsions need to be made during the analysis.
Shoud the mvariance or correlation matrix be analysed? How many comporents
shoud be used? Shoud the solution be rotated, and if so, hav? Not al of these
dedsions are straightforward, and analyticd approades to devise optimal answers
have generally faled. Often it is left to the analyst to make abitrary, if informed,

choices.

Furthermore, it must be remembered that PCA as represented here asumes a linea
process Nonlinear extensions do exist; see Chapter 14 d (Jolli ffe, 2009. However
the smplicity of linea PCA, bah in terms of complexity of calculation and
interpretability, make it a powerful technique suitable for many circumstances,

including producing a set of predictors for an empirical model of Sahel climate.

4.3. The selection of a domain for the PCA — Analysis of the NCEP

reanalysis fields

Before carrying out a PCA, it was necessary to identify a suitable domain for the
analysis. The NCEP dataset spans the whole globe & a 2.5 ° x 2.5 °resolution for
multiple levels. Hence, the number of posdble variables is far too gea for the
purpases of this gudy. Furthermore, many variables are likely to be irrelevant. For
example, data points agrea distance from the Sahel are unlikely to affed the rainfall
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there. This ®dion focuses on the identification o a suitable domain for the PCA.
Part of this identification was performed using a priori knowledge, part by
examining correlation between NCEP variables and Sahel rainfall.

Six variables from the NCEP dataset were to be analysed: geopaential height
(representing air presaure, and abbreviated by gph), air temperature (air), spedfic
humidity (shum), vertical velocity (omega), zonal wind (uwind) and meridional wind
(vwind). Eadh variable was obtained for four atmospheric levels: 1000, 850600and
200 HPa, with the exception d spedfic humidity, which was nat avail able for the top
level, so the 300 HPalevel was used instead. These @ver the surface level, the top o
the boundary layer, and the mid and upper troposphere. Furthermore, the two upper
levels contain the actions of the major jet streams, the African Easterly Jet and the
Tropicd Easterly Jet, which are suspected to have a significant influence on Sahelian
rainfall (see Chapter 2).

Monthly data were obtained for each grid pdnt between 50 °N and 50 S; higher
latitude regions were omitted, as they are very unlikely to affect Sahelian rainfall .
Correlations were cdculated between ead grid pant at ead level for each variable

andall six of therainfall regions creded in section 4.2.3.

An analysis of the results demonstrated that the seasonal cycle dominated most of
the oorrelation petterns. Therefore dl data series were deseasoned (by subtrading
long-term monthly means) and correlations recdculated. Figures 4.7 to 4.12 show
the result, based on 19581997,and ony considering the Sahelian wet season (here
defined as June to September). Only the strongest correlation with any of the six
rainfall regions is displayed. The figures ill ustrate that the strongest correlations,
regardliess of which variable is considered, accur either over West Africa or just
offshore. Whilst absolute correlations over 0.3 (the minimum required to appear in

the figures) do exist in ather areas, particularly over the oceans, they are wedker.

The results suggest that rainfall i s associated with cooler condtions over the south of
the Sahel and the Guinea mast in the lower troposphere, overlaid by warmer
condtions and ascending air in the mid tropasphere. It is also associated with low
presaures in the lower and midde tropasphere just off the West African coast at
abou 20 °N. Just south of thislow presaure pattern are apattern of correlation with
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westerlies which extend aadossto the Horn of Africa, overlaid by easterlies at the top
of the troposphere. Southerly, low level winds acrossthe Sahel, extending northeast
toward the Midde East, are dso associated with increased rainfall. Finaly, and
perhaps least surprisingly, is the asciation with high humidity acossthe Sahel at
al levels, again extending toward the Midde East. Notable, however, is the ladk of
correlation with moisture in the Gulf of Guineg indeed rain is correlated with dry
condtions at lower levels. This is reminiscent of the findings of Fontaine & al.
(2003 and Long et a. (2000 naed in Chapter 2, which suggest most moisture

which falsasrain in the Sahel comes from the eat.

Most of the variables show coherent spatial patterns of correlations. The exceptionis
the plot for verticd velocity, in which petterns are very patchy. This might suggest
the field would be of littl e use, although ore of the few notable wherent patches of
ascent occurs over the Sahel at the 600 HPalevel.

Idedly, the fina domain would be large enough to consider all areas that are thought
to be cnreded to Sahelian climate. However, various considerations impose limits
on peshle domain size. Recdl the suggestion that sample size shoud be larger than
the number of variablesin a PCA. As the analysis was to be carried ou for 1958to
1997,there are atotal of 14610days. However, idealy this anaysis sioud orly take
placein the wet season, as thisis the period d interest. Furthermore, the stabili ty of
the PCs was to be investigated by performing two separate PCAs on the two halves
of the time period: 1958to 1977,and 1978to 1997, lalving the acceptable number
of variables. If the duration d the wet season were to be mnsidered as June to
September, this would set an upper maximum of 2435.Note this is only an advisory
maximum; a much lower number would be preferable a the sampling error in the
PCs would be less and hence the results would probably be more stable.
Furthermore, lowering the number of variables substantially decreases the time taken
to compute results.
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Figure 4.7. Correlation coefficient between monthly anomalies in air temperature and Sahel rainfall, June to September, 1958-1997. Correlations were
calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.8. Correlation coefficient between monthly anomalies in geopotential height and Sahel rainfall, June to September, 1958-1997. Correlations were
calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.9. Correlation coefficient between monthly anomalies in specific humidity and Sahel rainfall, June to September, 1958-1997. Correlations were
calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.10. Correlation coefficient between monthly anomalies in vertical velocity and Sahel rainfall, June to September, 1958-1997. Correlations were
calculated for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and

descending motion. The black box indicates the domain used for the PCA described in section 4.4
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Figure 4.11. Correlation coefficient between monthly anomalies in zonal wind and Sahel rainfall, June to September, 1958-1997. Correlations were calculated
for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and westerly motion.

The black box indicates the domain used for the PCA described in section 4.4
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Figure 4.12. Correlation coefficient between monthly anomalies in meridional wind and Sahel rainfall, June to September, 1958-1997. Correlations were
calculated for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and
southerly motion. The black box indicates the domain used for the PCA described in section 4.4



A final domain sizewas st at 0 — 20 N, 30 W — 60 E. This encloses most of the
areas of importance identified by the correlation analyses (see Figure 4.7 to 4.19),
but contains only 333 grid pants per level, giving a grand total of 1332 gid pants.
Furthermore, it was decided to extend the period analysed to May to October, to
further increase the case to variables ratio; rainfal still occurs frequently in this
period. This dedsion poved to have very little dfect on results, indeed a PCA
caried ou onthe whoe yea (not shown here) gave very similar patterns.

4.4. Execution and results of the Principal Component Analysis

The PCA was exeauted by performing an analysis on each field in turn.
Theoretically, it would be passble to enter all six fieldsinto ore analysis, an EEOF,
but this would make interpretation d results far more difficult. Each PC pattern
would have to be represented by 24 maps (ead of the six variables at four levels),
and would result in the PC time series being a cmpasite of six physical quantiti es.
Furthermore, the number of variables would be increased by a fador of six, which
could have asubstantial impad on the stabili ty of the solution.

Therefore, it was dedded to analyse the different levels of each field in ore PCA. It
iIs common pradice to 'unfold' a two-dimensional field prior to PCA and consider
eat grid pdnt as a variable (see Pravdova & al., 2001,for a non-climatologicd
example). It seems reasonable to extend this pradice to threedimensions. As a
result, loading patterns are three-dimensional, and hence harder to interpret, bu it

does permit the analysis of variabili ty between levels.

The analysis was planned to be carried ou using MATLAB, bu the large size of the
data set prevented thiss MATLAB had insufficient virtual memory. Hence, the
correlation matrix for the data set was cdculated in MATLAB and exported into a
Fortran routine, where the PCA was caried ou. The results were interpreted into
MATLAB for post-analysis processng, such as the cdculation d PC time series and

examination d eigenvalues.

Table 4.3 shows the first ten eigenvalues for each of the six PCAs, and the

percentage of total variance they each explain. It aso indicaes the number of
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eigenvalues greder than ore: Kaiser's criterion. As can be seen, Kaiser's criterion
would retain an exceptionally large number of comporents for al six PCs, far too
many to use in an interpretable regresson analysis. Hence, an arbitrary decision was
made to retain al components that explained at least 2% of total variance The
bottom two rows of Table 4.3 show the number of components retained for each
PCA, and what propation d total variance they explain colledively. Acrossthe six
PCAs, atotal of 37 petterns were retained.

Eig. air gph shum omega uwind vwind
No. A % A % A % A % A % A %
1 393.2 29.5|588.9 44.2 |263.7 19.8 |121.4 9.1 |455.7 34.2 |168.8 12.7
2 200.4 15.0|230.5 17.3|99.1 7.4 |59.4 45 |110.7 8.3 [104.7 7.9
3 984 7.4 |2059 155|623 4.7 |52.7 40 |708 53 [658 4.9
4 578 43 |56.6 43 [424 32 (292 22 |418 3.1 |447 3.4
5 315 24 |345 26 |33.0 25 (241 18 (322 24 443 33
6 294 22 |242 18 |290 22 |21.3 16 |302 23 (416 3.1
7 264 19 |205 15 (255 19 |199 15 |252 19 (364 27
8 25,7 19 |179 13 (229 1.7 |181 14 |234 18 [348 26
9 232 17 |129 10 (188 1.4 |17.7 13 |226 1.7 |321 24
10 227 17 (112 08 |178 13 (171 13 |215 16 (278 2.1
11 199 15|96 0.7 |166 1.2 |155 1.2 |187 14 |26.1 1.9
12 166 12 | 80 06 |158 12 (144 11 |181 14 |225 1.7
A>1 98 39 175 243 111 145
“oxtacted | © 5 6 4 6 10
Va:/_"eo)fgl‘;tii'e 4 609 83.8 39.7 19.7 55.7 45.1

Table 4.3. Details of eigenvalues and percentage of total percentage of variance
explained for each of the six PCAs. The bottom three rows indicate the number of
eigenvalues greater than or equal to one, the number of components eventually

extracted, and the percentage of total variance they explained collectively.

The thirty-seven comporent loading patterns are ill ustrated in Appendix A, figures
A1-6. The original intention was to use unrotated PCs as the predictor variables in
the final model, bu the outputted loading patterns suggest this would be unwise for a
number of reasons. First, many of the patterns bea little physicd sense. For
example, later meridional wind comporents (referred to as 'vwind’) tend to involve

multiple verticd strips of northerly winds oppased to strips of southerly winds.

Furthermore, athough correlation structures are far from simple, Buell-type patterns
seam to ocaur. Thisis probably most striking in the ar temperature (‘'air') PCA, see
12¢



Figure A.1. The first component is an aimost all-global loading pattern, the second
courters northern regions with southern (althoughwith a bias at the 200 HPa level),
and the third is a high-level vs. low-level pattern. These are the type of patterns one

might exped to seein athree-dimensional extension d Buell's analyses.

The primary benefit of not rotating the PCA was that time series would na be
correlated, and hence much easier to use in a regresson model. Unfortunately, the
analysis of each field individually means that comporents from different fields can
be highly correlated. For example, the leading component for air temperature is
highly correlated with the second geopaential height comporent (‘airl' and 'gph2'
respedively); the wefficient of the crrelation between the two correspondng time
series being 0.922.Therefore, the st of introducing correlation between time series
from the same field is less problematic, as these strong across field correlations
shoud be reduced.

As a result, a dedsion was made to rotate the extraded comporents, using the
varimax criterion. The rotated patterns are dso ill ustrated in Appendix A, figures
A7-A43. The time series for these patterns were cdculated for the whole year, and
are presented in the form of a yearly average and a'daily average': the average of the
PC time series on eat calendar day. This daily average indicaes the typica
seasondl cycle of the given comporent. Note that eady PC time series was
normalised to give it a standard deviation d one. This was done to ensure that when
used in the final model, the regresson coefficient allocaed to each comporent
would be diredly comparable. However, at this dage it also alows for easier
comparison ketween the series.

Table 4.4 contains a summary of the main physicd processes invaved in eath

comporent:

PC name | Description of the main processesinvolved

arl High temperatures in low atmosphere, exped for low temperatures over

Atlantic & surface

air2 High temperature & al levels in atmosphere over equator and Horn of
Africa
air3 High temperatures at top o atmosphere north of 5°N
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PC name | Description of the main processes involved

ar4 High temperatures at 600 HPa between 0-30°E

airs High temperatures at 600 HPa, west of 0°

airé High temperatures at 600 HPa over Somalia versus Low temperatures in
lower atmosphere over Midd e East Gulf.

gphl High presauresin low to mid atmosphere over Sahel and Atlantic

gph2 High presauresin upper atmosphere over whole region

gph3 High presaure in low atmosphere over East Africa & Indian Ocean vs
low presaure over equator at top d atmosphere

gph4 High presaures over Sudan/EthiopiadMidde East in low atmosphere

gph5 High presaures over equatorial Gulf of Guineajust off African coast in
low to mid atmosphere

shuml High humidity over equatorial Africa and Gulf of Guineg espedaly in
lower levels

shum?2 High humidity over Indian Ocean and Ethiopia & all levels, and to a
lesser extent the Gulf of Guinea

shum3 High humidity over Atlantic (0-10°N), espedally in lower levels

shum4 High humidity over North Atlantic and North Africa especially in lower
levels

shum5 High humidity over North East Africa and Middle East at all |evels

shum6 High humidity over inland sub-Saharan North Africa & all levels

omegal Noisy at surface, strong ascent in lower atmosphere over and off coasts
of Ethiopia and Somalia, descent in middle amosphere to south o this
region, descent in upper atmosphere to the north of thisregion.

omega2 Noisy, bu ascent over Guinea ®ast and descent over Sahel at 850 Pa
Descent pattern moves uthward as height increases, by 200 HPais over
Guinea oast.

omega3 Noisy, bu descent centred over southern Sudan in upper atmosphere.

omega4 Noisy, bu broad descent over equatorial West Africa a all levels
(Cameroon, Gabonand Repubic of Congo)

uwindl Westerlies at top d atmosphere and over equatorial Atlantic to midde

atmosphere, Easterlies elsewhere. Cyclonic flow over the Sahel / Guinea
Coast at the 600 HPalevel.
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PC name

Description of the main processes involved

uwind?2

Westerlies centred over Sahel in lower & middle @amosphere. Extend
over Atlantic. Strongest at 600 HPa.

uwind3

Westerlies in lower atmosphere centred over Nigeria, extend from
Ghanato Chad. Centred around 10N, do nd extend more than 5° nath
or south.

uwind4

Westerlies over Gulf of Guinea aand Cameroon in lower atmosphere.
Easterlieslie to the north of thisband at 600 HPa.

uwind5

Westerlies centred over Northern Sudan in lower and midde

atmosphere.

uwind6

Westerlies at 600HPa centred at southern tip of Sudan. Strong pattern
extends to coast of east Africa but loadings weaker over Atlantic coast.

vwindl

Southerlies in lower atmosphere over Indian Ocean, nath Somalia and
Middle East. Noisy lessr patterns of Southerlies elsewhere in lower
atmosphere (Atlantic Coast, southern Sudan), and lesser pattern of
Northerlies from surface to mid atmosphere over Ethiopia, south

Somalia and Kenya.

vwind?2

Southerlies in lower atmosphere centred. over Chad and Sudan.
Northerlies overlaying at 600 HPa, bu with centre just to Southwest
(over northern Nigeria/ northern Cameroon/ southern Chad baders) and
Northerlies at surface over Atlantic north of 10°N.

vwind3

'‘Backdash’ type slanted pattern of Southerlies in the lower atmosphere,
extending from West Coast equatorial Africato Democratic Repulic of
Congo, extends northwards along coast. Leaves coast past Gulf of
Guinea ad at northernmost extent it extends from eastern Mali to Chad.

vwind4

Verticdly danted pattern of Southerlies in lower and midde
atmosphere. Centred over Uganda and Kenya at surface but the pattern
moves northwards as height increases. By 600 HPa ceitred ower
Southern Sudan.

vwind5

'Dipadle backslash' structure in lower and midde amosphere, especially
850 HPa. Southerlies along West African coast oppcsed by Northerlies
inland (from Mali to Ghana). Cyclonic flow over the West Coast.
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PC name | Description of the main processes involved

vwind6 'Dipde badkslash' structure very similar to wind5 bu more westerly.
Lower & midde amosphere, again espedaly 850 HPa, Northerlies
aong West African coast opposed by Southerlies over Atlantic.
Cyclonic flow off the West Coast.

vwind7 Top d atmosphere doulle dipde. Northerlies centred over Cameroon/
Central African Repuldic border 'sandwiched' by two patterns of

Southerli es centred over Gulf of Guinea and Horn of Africa

vwind8 Top d amosphere dipde. Southerlies over Atlantic oppcsed by
Northerlies centred over Guinea Coast, bu extending from Gulf of

Guineaupto eastern Mali. High level cyclonic flow over West Africa.

vwind9 Southerlies in lower and middle amosphere. Over Horn of Africa &
surface, by 600 HPain centred over Gulf of Aden.

vwind10 | Northerlies at top o atmosphere cantred over southern Sudan / Uganda.
Flanked to east and west by wedker patterns of Southerlies.

Table 4.4. Main physical processes involved in each of the principal component

patterns.

Many of the comporents are interrelated. For example, the three geopaentia height
comporents 'gphl’, 'gph4'and gphS' are dl correlated with coefficients excealing
0.9. This is an ursurprising result, as each comporent represents low to mid-level
presaure in a different part of the domain. Furthermore, it is naticeale that the daily

and yearly average time series are very similar for all three comporents.

Other sets of components are highly correlated, bu are slightly harder to explain.
The crrelation coefficient between the 'shuml' and 'uwind2' time series in the wet
season is 0.90. The wrrespondng patterns $ow an incressed low and mid-level
westerly flow centred over the Sahel is associated with increased humidity over the
Gulf of Guinea ad the neighbouing coast. These may be related through the
monsoon flow, bu the westerlies em locaed dlightly too far to the north.
Similarly, the crrelation between 'shum3' and ‘'omega2’ is —0.94. So low to mid-
level ascent over the Sahel at the surface bu to the south at higher levels, is
asociated with incressed humidity over the eguatorial Atlantic and the Guinea
Coast.
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Finally, a set of four comporents are dl crosscorrelated with absolute correlations
excealing 0.9 with pasitive values of 'omegal’ and 'uwindl' associated with
negative values of 'vwindl' and 'shum2'. Together, the patterns suggest low-level
meridional conwvergence over East Africa, with accompanying ascending air.
Relative humidity in the area is decreased, perhaps as a result of rainfal; recdl that
results are based on dhily averages, so a a zero lag, rainfall can affect the variables.

Finally, low-level westerlies are overlaid by high-level easterlies.

4 5. A validation of the PCA

As mentioned in sedion 4.1, douts have been cast over the quality of NCEP data
over the Sahel from before 1968. Unfortunately, the PCA was caried ou withou
knowledge of these doulds, so used data stretching badk to 1958.Further analyses
would be based orly on cata from after 1968, b recdculating the PCs would be
very time consuming. If possble, the ideal solutionwas to use the PCs defined over
the period 19581997, bu only use the PC time series from 1968 awards in the
fina empiricd modd. This $roud na pose aproblem, providing the modes of

variabili ty are similar throughou the full period.

In order to chedk whether the full period PCAs represented variability after 1968
well, two additional PCAs were carried ou for eadh variable. The first only
considered data from the period 19581977, the second considered the period 1978
1997.Providing the outputted patterns were similar, the original PCs could be used
in the final empiricd model. A secondary benefit of this analysis would be to test the
stability of the PCA solutions. Vastly different patterns would either be aresult of
different processes occurring in the two periods, or instability of the PCs. Either

way, the usefulnessof the results would be cdled into question.

Even in an ided stuation, ore would exped minor differences in the leading
patterns. Furthermore, PCAs insistence on orthogonality would lead to greater
differences in the second atterns, and greder till i n later patterns. Hence, only the
first four patterns are ill ustrated. Also, results were not rotated. Patterns that were
similar prior to rotation would remain similar after rotation. Results are shown in
appendix A, figuresA.48t0 A.67.
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The results suggest the main modes of spatial variability of the amosphere ae
similar for the two periods. Patterns for air temperature, geopdential height and
spedfic humidity are nealy identical, athouwgh the order of PC3 and PC4 seemed to
have swapped for spedfic humidity. Results for the three velocity variables are less
definitive. In al three caes, the first two PCs show a good, athough far from exad
match. As a result, differences in the third and fourth PCs are mnsiderable.
However, the broad structure often remains the same. For example, the zonal wind
analyses have the same aeas of major variabili ty: positive loadings in the low to mid
atmosphere over the Gulf of Guinea ad central Africafor PC3, negative loadings in
the low to mid atmosphere of Sudan and the Midde East for PC4. For meridional
wind, PC4 for the first period looks smilar to PC3 for the first period. Verticd
velocity is the most problematic, as its noisy nature make it hard to interpret patterns

visualy.

The similarities between the two periods suggest that whilst the principal
comporents defined over the period 19581997 may not be the optimal
representation d atmospheric variability after 1968, they do represent it well.
Therefore, at the end d this chapter we ae left with 37 variables with which we will
predict daily rainfall in the final empiricd model.
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