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Chapter 4: Formulating the Predictor Variables

Chapter 3 focused on the construction of a gridded daily rainfall dataset, which will

form the response variable in the statistical model that is the goal of this thesis. This

chapter will focus on the creation of a suite of predictor variables.

As noted in Chapter 2, the suite will be made up of atmospheric variables, as they

can have a direct effect on rainfall i n the Sahel. Whilst the review of past studies in

Chapter 2 demonstrated that variables such as sea surface temperature or measures of

land surface condition undoubtedly have an influence over Sahel rainfall , they are

not included here. This is principally because variations take place over a much

longer time scale than daily, and because any change in these variables should be

reflected in changes in atmospheric composition and dynamics.

This chapter includes a description of the underlying data to be used for prediction, a

review of the techniques used to transform it into useful predictor variables, and

analyses to identify a suitable domain size.

4.1. The NCEP / NCAR reanalysis dataset

One of the biggest challengers facing researchers in analysing the West African

climate is the comparative lack of physical observations. For example, Chapter 2

reported that Grist and Nicholson (2001) attempted to use radiosonde and pibal data

to analyse the link between atmospheric variabili ty and rainfall , but were severely

hampered by a lack of data. Therefore, a common approach is to use reanalysis data,

which is observations data from various sources processed using a General

Circulation Model (GCM) to make the data physically consistent and fill mi ssing

values.

The most frequently used reanalysis data comes from the National Centers for

Environmental Prediction / National Center for Atmospheric Research reanalysis

project, hereafter referred to as the NCEP reanalysis (Kalnay et al., 1996). The aim

of the project was to provide a 'frozen state of the art analysis / forecast system', as

use of previous forecasts in climatological analysis produced inhomogeneities
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whenever the forecast system was improved. Originally data were produced for

1957-1996, but now the record goes back to 1948, and is continuously updated.

The NCEP reanalysis provides data for 28 vertical levels at a 2.5 ° × 2.5 ° resolution

for a wide range of variables. Many data are reported for every six hours, but this

study uses the daily averages, to match the gridded rainfall data. NCEP variables are

grouped into four classes to ill ustrate whether they are primarily influenced by

observations or by the model. Class A are described as 'strongly influenced by

observed data', whereas whilst class B are directly influenced by observations, the

model also has a strong effect upon them. Kalnay et al. suggest class C variables,

such as rainfall , should be used with caution, as they are completely derived from the

model. Finally, class D variables, such as albedo, are obtained purely from

climatological values, and hence are independent of the model.

Other reanalyses projects have been performed. In particular, the ERA40 reanalysis

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)

has been released recently, unfortunately too late for it to be used in this project.

This study uses four atmospheric levels from the NCEP reanalysis: 1000, 850, 600

and 200 hPa. Together these levels cover the main atmospheric processes throughout

the troposphere which affect rainfall at the surface. The 1000 and 850 hPa levels

contain the main monsoon flow, whereas the 600 and 200 hPa levels contain the two

jet streams described in Chapter 2.

This study uses six of the available NCEP variables: geopotential height, air

temperature, specific humidity, the zonal and meridional components of wind, and

vertical velocity. NCEP classify all of these as class A variables, apart from vertical

velocity and specific humidity, which are class B. Specific humidity is not available

at 200 hPa, so data from the highest available level, 300 hPa, was used instead.

Originally, the intention was to use the NCEP data over the same period as the

rainfall data, that is 1958-1997. Unfortunately, studies by Camberlin et al. (2001)

and Janicot et al. (2001) compared NCEP data with observations over West Africa,

and found problems with the reanalysis data prior to 1968. This was demonstrated

most clearly by Janicot and Sultan (2001), who used the West African Monsoon

Index (WAMI), defined by Fontaine et al. (1995), as an observational dataset. The
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WAMI is calculated directly from rawinsonde data, and compares the monthly mean

standardised anomaly of wind speed at 900 hPa over the Sahel with the zonal wind

component at 200 hPa. The authors compared this index with a WAMI calculated

from the NCEP reanalysis. The two indices were very similar post-1968, but differed

previously. However, when the data were subjected to a high-frequency filter, the

indices were similar over the whole period. This suggests a long-term bias in the

NCEP data. This and other studies indicate that the problem results from a change in

the number of observations prior to 1968; particularly in land surface and

rawinsonde observations (Poccard et al., 2000), and ship reports (Camberlin et al.,

2001).

Because of these inhomogeneities, Camberlin et al. (2001) and Janicot and Sultan

(2001) recommend not using NCEP data for years before 1968. Unfortunately, these

studies were not discovered until some of the analyses in this thesis were carried out,

so some pre-1968 data has been used. However, where this has been the case, further

analyses have been carried out to ensure that results have not been significantly

affected.

4.2. An Introdu ction to Principal Compon ent Analysis

Having identified a suitable dataset for further analysis, the next step was to choose a

method to extract the most important information from the dataset, and thus create

the suite of variables to be used in the final model. The next section introduces

Principal Component Analysis (PCA), an established technique for the eff icient

extraction of ranked patterns of variance from a dataset. This section explains why

PCA was chosen, examine some of the main problems encountered when using the

method, and consider possible extensions and alternatives.
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4.2.1. The Purpose of Principal Compon ent Analysis

Principal Component Analysis (hereafter referred to as PCA) is a multivariate

statistical technique that has been widely used in climatological studies3. It aims to

'reduce the dimensionality of a data set consisting of a large number of interrelated

variables, while retaining as much as possible of the variation present in the data set'

(Jolli ffe, 2002), p1. In the climatological field, this enables the identification of

dominant patterns of simultaneous variation of a given statistical field. Hence, in the

context of this thesis, the complexities of variation in several variables at thousands

of grid points measured at several heights could be simpli fied to just a few factors.

PCA is dogged by confusions over terminology. PCA is often referred to as

Empirical Orthogonal Function (EOF) analysis, when used in a climatological

context. Some authors (such as Jolli ffe, 2002), suggest that the terms can be used

interchangeably, whereas others (Richman, 1986) insist that the terms distinguish

between two variants of the technique.

Similarly, the notation used to define PCA varies considerably; those used here are

based on Jolli ffe (2002). Given a vector of p random variables, let us call it x, we

aim to find a linear combination of these variables with maximum variance, let us

call it z1. The linear combination can be expressed mathematically as:

1 1 11 1 12 2 1p pz x x xα α α′= = + + +. [ " (4.1)

where αα1 is a vector of p coefficients, and αα1' signifies the transpose of αα1. Note that

the choice of sign of αα1 is arbitrary, as the variances of αα1 and −αα1 are equal.

So, we have found z1 with maximum variance. The next step is to find a second

function, z2, or αα1'x, that is uncorrelated with z1 but with maximum variance. This

process continues, at each step finding zk that maximises variance but is uncorrelated

with z1, z2, …, zk-1. In theory p components could be found, but typically an often

                                                

3 Jolli ffe (2002) reports that nearly 25% of articles appearing in the International Journal of

Climatology in 1999 and 2000 used some form of PCA (p71).
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small subset can account for most of the total variance in the system, so only the first

m are calculated, where m << p.

Methods of calculation have been described in detail elsewhere (for example see

Jolli ffe, 2002 or von Storch and Zwiers, 1999). The coeff icients of ααk are the

elements of the eigenvector of ΣΣ corresponding to the kth largest eigenvalue, λk,

where ΣΣ is the covariance matrix formed from x. Again, much confusion can be

caused by the wide range of terminology for the ααk and the zk. Here the ααk will be

referred to as the principal component (or PC) loadings or patterns, and the zk the

principal component scores or time series.

So at each stage we wish to maximise the variance of zk. However, in order to make

sense of this problem some constraint must be imposed, to create some upper bound

for the coeff icients. This constraint is referred to as a normalisation constraint. A

common choice is:

1k k
′ =. . (4.3)

which forces each eigenvector to have unit length. Furthermore, the variance of zk is

given by λk
2. It is this method which Richman (1986) refers to as EOFs. He defines

PCA as the method that uses another common normalisation constraint:

k k kλ′ =. . (4.4)

Another useful choice (see Jolli ffe, 1990) is:

1
k k

kλ
′ =. . (4.5)

which gives the variance of zk = 1 for all k. Thus the choice of normalisation

constraint determines whether information on the size of the eigenvalue λk is

contained in the PC scores (case 4.3), the PC loadings (case 4.5) or both (case 4.4).

Note that as the PC loadings are eigenvectors, they are orthogonal (so for i ≠ j, ααi'ααj

is zero). So the PC loadings are orthogonal, and the PC scores are uncorrelated.
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These properties are sometimes referred to as the orthogonali ty properties of the

components (Mestas-Nunez, 2000).

When moving from a theoretical to a practical formation of a PCA, where N

observations are taken for each of the p variables, it is common to express formula

4.1 in full matrix form as follows:

=Z XA (4.6)

where X is a N × p matrix of data observation, whose (i,j)th element is the ith

observation of the jth variable, A is a p × m loading matrix, whose jth column is the

vector of loadings for the jth principal component, and Z is the N × m score matrix,

whose (i,j)th element is the score of the jth component relating to the ith observation.

Principal component loadings are estimated using the sample covariance matrix,

often referred to as S, whose (i,j)th element is the covariance between variable i and

variable j when i ≠ j, and whose diagonal (j,j)th element is the variance of variable j.

By definition, the matrix A is orthogonal, so its inverse is equal to its transpose.

Hence (4.7) is often expressed as:

′=X ZA (4.7)

Preisendorfer (1988, p30) refers to (4.6) as the analysis formula and (4.7) as the

synthesis formula. The synthesis formula indicates that we can 'decompose' the data

matrix into two parts: a score matrix and a loading matrix.

A common practice is to standardise the variables, that is the columns of X, before

proceeding with the analysis. This ensures the variance of each variable is one, and

hence prevents bias toward variables with greater variance. Standardisation of

variables is equivalent to finding the eigenvectors and eigenvalues of the correlation

matrix, rather than the covariance matrix.

Complications occur if two or more eigenvalues are equal. Together, the q

eigenvectors corresponding to the equal eigenvalues span a q-dimensional subspace

of the whole sample space, but they cannot be uniquely defined (Jolli ffe, 2002, p27).

Any of the infinite number of q mutually orthogonal vectors that span the given
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subspace can be used: in effect, the q patterns cannot be separated. The q

components are said to be degenerate (von Storch and Zwiers, 1999, p296).

Degeneracy is extremely rare in practice, as sampled eigenvalues are almost never

equal. Nevertheless, the theory has some important ramifications. It is quite common

to have some eigenvalues that are nearly equal. North et al. (1982) demonstrated that

when this occurs, high sampling errors can cause the patterns to form an 'effectively

degenerate multiplet'. To put it more simply, the patterns can become mixed. The

study also showed that larger sample sizes increase the chance that patterns can be

separated, although separation can never be guaranteed (see the case study of

Richman, 1986).

North et al. (1982) formed a 'rule of thumb' to estimate where patterns may become

mixed by deriving the following estimate of the typical error ∆λi for any given

eigenvalue λi:

2
i in

λ λ∆ ≈ (4.8)

where n is the number of independent samples. If ∆λi is greater than the distance to a

neighbouring eigenvalue, then it is possible that the patterns may be mixed.

Unfortunately, in a climatological setting, samples can hardly ever be considered

independent, and hence finding a value for n can be problematic.

Other problems can occur from zero or near-zero eigenvalues. This can result in an

ill -conditioned sample correlation or covariance matrix, and hence unstable results, if

sample size is too small . A common recommendation is to have more independent

observations than variables (Richman, 1993).

One issue yet to be discussed is how to select a value for m, the number of principal

components to be calculated. Many techniques exist, varying dramatically in their

sophistication, but all have to make a trade-off between a small value of m, which

provides for the greatest reduction of dimensionali ty of the data set, and a large m,

which retains the greatest proportion of variance.
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The simplest techniques retain principal components that collectively explain a given

proportion of total variance. So, for example, the first m components may be chosen

so that together they contain 95% of the total variance. This simple rule is

surprisingly effective, as typically the first few components contain a large majority

of the total variance. However, the selection of what percentage of total variance to

retain is arbitrary.

Another simple method is to retain any individual component with a variance above

a given cut-off point. A special case of this method, known as Kaiser's Rule, is to

retain all components with a corresponding eigenvalue greater than one. Thus only

components that contain more variance than the average variable (or any variable in

the case of a correlation based PCA) are retained (Tabachnick and Fidell , 2001).

Other popular methods are based on a plot of successive eigenvalues, often referred

to as a scree graph. Named by Cattell (1966), although already widely used at the

time, the 'scree test' typically bases the choice of number of components to retain on

the point when the plot moves from being steep to shallow, a point often referred to

as the 'elbow' of the graph. Whilst useful in many cases, interpretation is not always

straightforward. An example scree plot is displayed later in this chapter, as Figure

4.4. However, this plot could be interpreted as having two elbows, one at the fourth

component, and one at the sixth. Furthermore, there is disagreement as to whether

the cut-off should include the component at the elbow (Jolli ffe 2002, p115-7;

Tabachnick and Fidell 2001, p621).

Cattell (1966) preferred a slightly different formulation for a scree test. Instead of

basing a choice on the elbow of the plot, Cattell recommends looking for the point

beyond which the graph first becomes more-or-less a straight line, and taking to cut-

off to the right of this point (Jolliffe 2002, p117). Hence, Cattell's method would

retain six components for Figure 4.4, although again, this result is open to

interpretation.

Many other criteria for selecting the number of components to retain exist; the

textbooks by Preisendorfer (1988) and Jolli ffe (2002) both have chapters devoted to

different methods. Some of the more complex attempt to use statistical justification

for a cut-off point. However, Jolli ffe suggests that, at present, such methods seem to
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"offer littl e advantage over the simpler rules in most circumstances". Similarly, von

Storch and Zwiers (1999) advise against using complicated selection rules.

In climatological studies, we typically have three 'entities' to consider; time, location

(i.e. a station or grid point) and meteorological fields (such as temperature, pressure

or precipitation), one of which must be held constant. Richman (1986) divides

climatological PCAs into six 'operation modes', based on the modes of Cattell

(1952). Each of these modes is defined by which of the entities we hold constant,

which is represented in the columns of the data matrix X, that is the variables, and

which is represented by the rows of X, the cases. These six modes are summarised in

Table 4.1. Note that Cattell described two extra modes: S2 and T2, which have the

same entity in the rows of X as the columns.

PC mode 'Variables':
Columns of X denote

'Cases'
Rows of X denote

Fixed entity

O time field location

P field time location

Q location field time

R field location time

S location time field

T time location field

Table 4.1. The six modes of decomposition for climatological studies. Adapted from

(Richman, 1986).

After analysis, the entity described in the columns of X is associated with the PC

loadings, and the entity described in the rows of X is associated with the PC scores.

Many climatological analyses are carried out in S-mode, hence the use of the terms

'patterns' and 'time series' to describe the loadings and scores respectively.

Note that the location entity usually covers more than one dimension. Analysis

points are sometimes represented by a range of stations scattered across a map,

usually at different heights. Alternatively the may be a series of points on a two (or

three) dimensional grid. In this case, usual practice is to 'unfold' these dimensions
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into one, thus ignoring any structure in the distributions of locations across the

analysis region. Hence, any clustering of locations in a particular area will result in a

bias toward that region. Thus, the use of regularly spaced gridded data is preferable

to irregularly scattered station data.

Note that further modes can be created by 'unfolding' the field entity in a similar

fashion. For example, supposing that we measured several fields at several locations

on many separate occasions. We could perform a PCA using the occasions as rows,

and using each field at each location as a separate variable. This approach is

sometimes called Extended Empirical Orthogonal Functions (EEOF) (von Storch,

1999, p298).

4.2.2. Rotation o f Principal Compon ents

Once the initial stage of the PCA has been carried out, we are left with m PCs that

geometrically span the most informative m-dimensional subspace of the p-

dimensional space spanned by the original variables (Jolli ffe, 1993). However, they

do not uniquely define this subspace. Furthermore, typically the complexity of the

structure of each consecutive PC pattern increases, for example see Richman (1986)

and the analyses later in this chapter. Therefore, a common practice is to find an

alternative set of vectors spanning the given subspace which have a much simpler

structure. This process is referred to as rotation.

Algebraically, this amounts to finding a suitable m × m matrix T, which is used to

construct a new loading matrix B:

B = AT (4.9)

Once a new rotated loading matrix has been found, new rotated scores can be

calculated using equation (4.6), but replacing A with B. Often T is orthogonal,

referred to as an orthogonal rotation. However, non-orthogonal transformations,

known as oblique rotations, are available, see Nicholson and Palao (1993) for an

example. Again, terminology can cause great confusion; an orthogonal
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transformation will not necessarily produce a set of orthogonal patterns, as discussed

below.

There are many different techniques used to select T, and all differ in their definition

of 'simple structure', see Richman (1986), for a comprehensive list. Most operate by

attempting to obtain loadings or scores that either have a large absolute value, or are

near to zero. The most commonly used orthogonal transformation, varimax,

maximises the variance of loadings within each pattern. Another useful choice, the

quartimax criterion, maximises the variance of one variable across all the

components (Tabachnick & Fidell 2001, p614). Jolli ffe (2002) suggests that the

choice of rotation criteria is usually less important than the choice of how many

variables to rotate (that is the choice of m). However, he cites some studies where a

different choices of rotation criteria result in significantly different results.

Before rotation, the PCA exhibits two orthogonality properties: scores are

uncorrelated and patterns are mutually orthogonal. The cost of rotation is the

sacrifice of at least one of these properties. The choice of normalisation constraint

will decide which properties are lost. For orthogonal rotation, Mestas-Nunez (2000)

demonstrates that the use of normalisation constraint (4.3), referred to by Richman

(1986) as an EOF, preserves orthogonali ty of patterns but results in correlation

between scores. Constraint (4.5) results in uncorrelated scores, but loses

orthogonali ty of patterns. Constraint (4.4), Richman's PCA, sacrifices both

orthogonali ty properties. Oblique rotation, by definition, sacrifices orthogonali ty of

patterns.

In addition to providing a simpler structure, and hence greater interpretabilit y,

rotation has been suggested to have a number of other benefits. Firstly, Richman

(1986) notes that rotated patterns have a smaller sampling error than unrotated

patterns; hence when eigenvalues are similar, rotated pattern can be separated more

easily. Jolli ffe (1987) argues that there is no reason why all m components need to be

rotated, suggesting that effectively degenerate multiplets could be identified using

North's rule of thumb, and then each multiplet could be rotated. Thus, the simplest

solution for each multiplet would be used to represent the variance contained by its

components.
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In order to ill ustrate another benefit of rotation, it is necessary to introduce the

concept of Buell patterns. In a series of studies, Buell discovered that principal

components of two-dimensional fields often exhibit similar patterns, and these

patterns are heavily influenced by the shape of the domain in which the analysis is

carried out (Buell , 1975; Buell , 1979). Figure 4.1 ill ustrates a series of grid points

forming a 9 × 9 grid, perhaps representing grid points on which climatological data

have been measured. Usually, there is a definite spatial structure to data observed on

such a grid, for example the temperature at a given point is li kely to have strongest

correlations with points immediately surrounding it, with correlations weakening as

distance increases.

In Figure 4.1, the left panel ill ustrates typical strength of correlation with the black

grid point at location (5,5), whereas the right figure ill ustrates correlation strength

with the grid point at (1,1). Strongest correlations are represented by red circles, then

as distance increases and correlations reduce, colours fade to orange, yellow then to

white. Notice that on the left hand grid only a few points are yellow, whereas many

are in the right hand grid.

Figure 4.1. Examples of underlying structure of correlation in a typical gridded data

set. The depth of colour in each plot represents strength of correlation with the black

grid point. See text for a full explanation.
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This ill ustrates a potential weakness in spatially based PCAs. As the central grid

points are, on average, li kely to be more strongly correlated with other grid points,

they exert far more influence on the analysis than points nearer the edge. Hence, in

many PCAs the first pattern is a global pattern, with most grid points having the

same sign, but with loadings being greatest in the centre.

The second PCA represents the main axis of variance, once the variance of the first

PCA has been removed. As the first pattern focused on the centre, most remaining

variance is located at the edges of the domain. Hence, the second pattern tends to be

one edge versus the opposite edge (such as left versus right), and the third pattern

tends to be a 90° rotation of the second (up versus down). Buell calculated predicted

patterns for square, rectangular and triangular domains. Figure 4.2 ill ustrates one of

Buell's results for a 6 × 6 square (Buell , 1975), where the correlation r between two

points is given by:

( )
1
22 2exp[ ]r x y= − + (4.10)

where (x,y) represents the coordinate separation between the two points concerned.

All 36 components are ill ustrated.
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Figure 4.2. Example of Buell patterns for a 6 × 6 square, after (Buell, 1975). See text

for explanation.

Note that in the example given in Figure 4.2 there are many pairs of equal

eigenvalues, such as the second and third eigenvalues. Hence the order of many pairs

is arbitrary, explaining why the ordering is slightly different to those shown in

Figure 2 of Buell (1975). Furthermore, where eigenvalues are equal, the patterns are

degenerate. Hence components two and three could be represented in an infinite

number of ways. For example, instead of bottom-left versus top-right and bottom-

right versus top-left; they could be represented as top versus bottom and left versus

right. Also, note that in a climatological or meteorological context, a physical

interpretation of all but the first few patterns would be impossible.

As rotation tends to force loadings to high values or zero, it often causes rotated

patterns to be localised. This is clearly indicated by Figure 4.3, which shows the

result of performing a varimax rotation on the first ten PCs, chosen according to
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Kaiser's rule (use all components with an eigenvalue greater than one). All ten

patterns show a small area in opposition to the rest of the domain, physically far

more interpretable than the unrotated solution.

Figure 4.3. The varimax rotation of the first ten components from Figure 4.2.

Buell's results suggest the shape of the domain has a significant effect on principal

component patterns. However, this does not render them useless. As Jolli ffe (1987)

indicates, even if the second PC is predictably a one side versus the opposite, it is not

always predictable how it will be oriented. Furthermore, the result indicates the

'direction of maximum variation of the climatological variable of interest'. Jolli ffe

also claims that the strong spatial correlation of variables is the main reason for

predictable patterns in climatological studies, with domain shape being a significant

secondary factor.

The exchange between Legates (1991, 1993) and Richman (1993) shows the level of

controversy the issue can cause. Legates produces two examples of a global PCAs on

monthly data, one on temperature, one on rainfall , which he claims do not exhibit

Buell patterns. Despite the deficiencies in Legates' analysis that Richman identifies,

including the exceptionally small sample size, it does ill ustrate some important

points. The rainfall analysis demonstrates that variables without the kind of strong

domain-wide correlation ill ustrated in Figure 4.1 need not produce classic Buell

patterns, although this does not mean they are unaffected by domain shape. The

temperature example demonstrates that different authors can come to wildly different

conclusions from the same analysis; Legates claims they do not represent Buell

patterns, whilst Richman, supported by Smith et al. (1990), claims they do.
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Buell patterns concern data that shows a high level of spatial correlation. Similar

problems can occur for data with high levels of temporal correlation, although these

seem to have been subjected to less scrutiny (Buell , 1979; Jolli ffe, 2002, p298).

The issue of physical interpretation of PCAs has also been the cause of much

discussion. Richman (1986) in particular seems to be of the view that the weaknesses

of unrotated PCA noted above mean that they can cause severe, possibly terminal,

problems in interpretation. Indeed, Richman (1987) notes that the original

proponents of PCA never intended it to be used to discover physical patterns.

Furthermore, Richman (1986) notes that often unrotated physical modes have no

basis in reali ty, citing an example of PCA on 3-day precipitation over the United

States. The first unrotated PCA represents the expected domain-wide variabili ty.

Richman argues this makes no physical sense, as it never rains (or is dry)

simultaneously across the whole domain. Conversely, Dommenget and Latif (2002)

(followed by discussion by Behera et al., 2003; Dommenget and Latif, 2003 and

Jolli ffe, 2003) suggest that rotating a PCA can sometimes hinder physical

interpretation, as they produce patterns that 'have very littl e to do with climate

physics'. Dommenget and Latif use a combination of real li fe and artificially created

examples to ill ustrate that rotated PCAs can create 'artificial' patterns that have no

basis in reali ty, although these claims are disputed by the following discussion

papers.

The issue of the failure of PCA, whether rotated or not, to produce physically

meaningful patterns is tackled by Jolli ffe (2002, p296-8). He suggests that the

proposed criti cisms of PCA listed above are somewhat unfair; the aim of PCA is to

produce orthogonal, uncorrelated components that successively maximise variance.

If the physical modes do not exhibit these characteristics, then PCA will not uncover

them. Indeed, Buell (1979) compares the interpretation of improperly conceived PCs

(in the context of his analysis of the effect of domain shapes) with children seeing

castles in the clouds.

Perhaps the most serious drawback of rotation is the effect of different flavours of

PCA on the final rotated output. In a rotated PCA, we must make a number of

choices: whether to use the covariance or correlation matrix, what normalisation

constraint to use, how many components to retain, and what rotation criterion to use.
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Each of these choices can have a significant effect on the rotated output, although

some choices have a greater effect than others.

As noted earlier, the most important choice is how many components to retain before

rotating (Jolli ffe, 2002, p271). In an attempt to avoid this dilemma, Jolliffe et al.

(2002) suggest a number of alternatives to the two-stage "PCA then rotation"

approach. These approaches rely on applying an extra constraint when finding each

consecutive PC. For example, in the SCoTLASS technique, when finding ααk'x

subject to the normalisation constraint ααk'ααk =1, we apply the extra constraint to the

coeff icients:

1

p

kj
j

tα
=

≤∑ (4.11)

for some tuning parameter t. For t ≥ √p the solution is the same as for PCA, whereas

if t = 1, there will be exactly one non-zero coeff icient for each loading vector.

Selecting a value somewhere between these extremes results in patterns where some

coeff icients are forced to zero, with solutions showing greater simplicity as t is

decreased (Jolli ffe, 2002, p288). Unfortunately, this elegant approach is penalised by

a severe increase in computational complexity. At present, optimal routines have yet

to be developed to make this option feasible for data sets as large as those used in

this thesis (Jolli ffe et al., 2002).

Rotation should not be viewed as a panacea for all of the problems with PCA.

Nevertheless, Richman (1986 and 1993) demonstrates that rotated solutions are less

affected by domain dependence and sampling errors, and typically more

interpretable.  However, these benefits have a cost. In addition to uncertainty about

choice of m, at least one of the orthogonali ty constraints will have to be sacrificed.

This could be undesirable, for example if the scores are to be used in a regression

analysis (Richman, 1986).
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4.2.3. An example of PCA on the Sahelian gridded rainfall data set.

To give an example of how PCA operates, this section presents an analysis on the

gridded rainfall data set created in Chapter 3. The ultimate aim of this thesis is to

create an empirical model of Sahel climate relating atmospheric variabili ty to

rainfall . However, the high dimensionali ty of the gridded rainfall data set makes it

unwieldy. The entire domain contains 230 grid boxes. Hence, mathematically, the

data set can be said to be 230-dimensional. By using PCA, it may be possible to

reduce the dimensionality of the data set, and hence reduce the number of factors we

need to predict in the final empirical model.

The first thing to recognise is that the quali ty of each of the 230 grid boxes is not

equal, as demonstrated in Chapter 3. Therefore, only grid boxes that contain a station

used in the gridding procedure are used in this stage of the analysis. This eliminates

all the border boxes that were created by extrapolation, and leaves us with 114

boxes, each with 14,610 observations, one for each day of the period 1958-1997.

As rainfall , and hence rainfall variabili ty, is greater in the southern regions,

performing a PCA on the covariance matrix would introduce bias against the

northern Sahel. Therefore, each grid box time series was standardised prior to

analysis, a technique equivalent to performing the PCA on the correlation matrix.

The cost of this move is that the component time series are now dimensionless,

expressed in terms of standard deviations, rather than millimetres.

Another consideration was the strong seasonal cycle in Sahelian rainfall . A PCA

performed on raw data would undoubtedly output this as the leading principal

component. This would not be new information; we already know the whole region

is dominated by the seasonal cycle, as documented in Chapter 2. However, it would

also force all following components to be orthogonal to it. Therefore, it is a common

practice to deseasonalise data before analysis, to remove the predictable annual

cycle. So, for example, each of the 40 observations made on the 17th August for the

grid box 12 °N, 1 °W has the mean of these 40 values subtracted from it. Similar

subtractions are performed for each calendar day in each grid box.

The PCA was carried out using the normalisation constraint (4.4), referred to by

Richman (1986) as PCA. Rotated results for constraints (4.3) and (4.5) were also
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calculated, and show very similar patterns. The analysis was carried out on a desktop

PC using MATLAB.

Figure 4.4 and Table 4.2 display information about the first ten eigenvalues of the

correlation matrix. Figure 4.4 displays the scree plot, whereas the table gives the

eigenvalues, the percentage of total variance explained by each component, and the

cumulative percentage of total variance explained by all components up to and

including that component. It also gives two estimates of error from North's rule of

thumb (4.8), one optimistic (all observations are independent, n = 14610), one

pessimistic (only every fifth observation is independent, n=2922). The pessimistic

value of n is used purely to ill ustrate the effect autocorrelation in the rainfall time

series would have on the estimated error, the choice of n itself was arbitrary.

Component Eigenvalue
λ

Optimistic
∆λ

Pessimistic
∆λ

% of total
variance

Cumulative
%

1 19.48 0.23 0.51 17.09 17.09
2 12.26 0.14 0.32 10.75 27.84
3 8.90 0.10 0.23 7.80 35.65
4 6.76 0.08 0.18 5.93 41.58
5 6.32 0.07 0.17 5.54 47.12
6 4.22 0.05 0.11 3.71 50.82
7 3.81 0.04 0.10 3.34 54.16
8 2.91 0.03 0.08 2.55 56.72
9 2.89 0.03 0.08 2.54 59.26

10 2.54 0.03 0.07 2.23 61.49

Table 4.2. Statistics for the first ten eigenvalues of the PCA carried out on the daily

gridded Sahel rainfall data set. See text for further explanation.

The estimated errors in the eigenvalues, whether optimistic or pessimistic, suggest

that all components are well separated, with the exception of components eight and

nine. Despite the clarity of the leading components, it is clear that they do not

explain an overwhelming amount of the total variance in the system. This indicates

the complexity of Sahelian rainfall , particularly when it is remembered that the

gridding procedure itself removed a large amount of variance.
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Figure 4.4. Scree plot of the first ten eigenvalues from the PCA of daily gridded Sahel

rainfall data.

As a result of this complexity, most selection rules would choose a very high number

of components to retain. For example, Kaiser's rule (retain all eigenvalues greater

than one) would suggest retaining 22 components. However, this is still a

considerable number of factors to predict in a final model. Therefore, it was decided

to retain components that would explain a, somewhat arbitrary, value of 50% of total

variance. The unrotated component loadings are displayed in Figure 4.5. However,

this choice is not entirely arbitrary; as noted earlier in this chapter, Cattell 's (1966)

formulation of the scree test would retain six components.
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Figure 4.5. Unrotated PC loadings for the first six components of the PCA of daily

gridded Sahel rainfall data.

Despite the strange domain shape, the unrotated patterns do seem reminiscent of

Buell patterns. In particular, loadings four and six bear littl e physical relevance to

rainfall .

Figure 4.6 ill ustrates the loading patterns after a varimax rotation is carried out.

These results are, as might be expected, much more localised. Negative loadings are

dwarfed by the positive loadings. Each pattern describes the rainfall variabili ty in

one part of the domain. Therefore, these patterns are used to define coherent regions

of rainfall i n the final empirical model.

Each of the regions was defined using one of the rotated components, but only

considering squares where the loading was greater than 0.5. An exception was given

for the blank space that can be seen in the middle of PC2; blank because the square

was omitted from the PCA, as it did not contain a station. This square was

reintroduced as boxes containing stations surround it, and hence the interpolated

estimates of rainfall were comparatively accurate. The regions are ill ustrated in the

next chapter, in Figure 5.1.
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Figure 4.6. Rotated PC loadings from the PCA of daily gridded Sahel rainfall data. Six

components were rotated using the varimax criterion and normalisation constraint

(4.4). The black regions in each plot indicate areas where loadings are greater than

0.5; used to define the six rainfall regions used in the remainder of the study.

Time series were recalculated for each of the newly defined regions based on the raw

data divided by its standard deviation, to prevent bias in the wetter, southern boxes.

The PC time series could have been used, but this would have meant sacrificing all

the variance in the system not represented by the first six components (almost 50%).

It is important to recognise that, had a different number of components been

retained, different regions would have been formed that could have been just as

representative as those shown here are. However, these regions conveniently

separate out the somewhat dubious eastern and western regions (PCs 4 and 6

respectively), and divide the dependable central regions into north, south, east and

west.
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4.2.4. Complex extensions of PCA

Some interesting extensions of PCA exist for considering complex data. The term

'complex PCA' (or complex EOF) is used to describe several of them, causing yet

more terminological confusion. Some, such as the technique von Storch and Zwiers

(1999) refer to as 'Hilbert EOFs', take the complex part of the input variable as a

transform of the real part, thus allowing analysis of patterns propagating in space and

time. Another, which is here referred to as 'Vector PCA', refer to PCA carried out on

vector (as opposed to scalar) variables. Vector PCA is formulated identically to the

PCA described above, providing the conjugate transpose operator is used.

In a climatological context, the most obvious use of a vector PCA is in analysing

wind data. Given u, a set of p random zonal wind variables, and v, a set of p random

meridional wind variables, where ui and vi relate to observations at some location i,

we can construct a set of complex random variables x using:

i= +x u v (4.12)

where i is the imaginary square root of −1. An example of a vector PCA is given by

Klink and Willmott (1989).

Interpretation of vector data is more complex than the usual scalar case, but still

feasible. Eigenvalues are still real numbers, but the PC patterns and time series are

both complex. The patterns represent the main variabili ty in direction of the wind,

the time series the strength of the flow in the direction represented by the patterns.

In a normal scalar PCA pattern, each variable is represented by a scalar coeff icient.

The sign of each pattern is arbitrary, so the sign of every coeff icient can be flipped if

desired. So, in effect, each PC has two solutions, one 'positive' and one 'negative'. In

a vector PCA, each variable is represented by a vector coeff icient. The set of

coeff icients exhibit a similar arbitrary nature, but instead of f lipping signs, each

vector may be rotated by the same amount. Hence, there are an infinite number of

possible solutions, although a sensible solution would be to maximise the fit between

the data and the patterns. Note that this 'rotation' should not be confused with the

rotation techniques described in section 4.2.2.
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Interpretation of the time series is more confusing. The real part of the series

represents the strength of the flow in the direction of the pattern, and the imaginary

part represents the strength of the flow at 90° to the pattern. Interpretabili ty is usually

increased by converting each number the time series into a magnitude and an angle

of the relevant vector. Then, the magnitude represents the strength of the flow, and

the angle indicates that direction of the flow relative to the pattern.

Vector PCAs are an elegant extension of the usual method, however their rare use

means that they have not been extensively investigated. Most arguments about PCA

can be extended to the complex case; there are probably Buell -type patterns for

vector PCAs, and the solutions can probably be rotated in the sense of section 4.2.2.

However, no research into these areas could be found. Furthermore, the intention of

the PCA is to produce a set of predictors for the final model. The relevant variables

outputted from a vector PCA, the PC time series, are complex, and would be difficult

to use is a regression type analysis. Therefore, vector PCA seems unsuitable for the

main aim of this project.

4.2.5. Multiway extensions of PCA

The description of the PCA given in Section 4.2.1, when used in a climatological

context, treats each location as a variable. Consequently, the data matrix does not

contain information about the geographical position of each site, other than that

implicit in the correlation (or covariance) matrix. This form of PCA is essentially a

two-dimensional process (considering time and space); however the data usually

exists in at least three dimensions (time, latitude and longitude). Extensions of PCA

are available that can consider this structure, however at the time of writing no

examples relating to climate science could be found, although examples of use can

be found in the field of food science (Pravdova et al., 2001; Pravdova et al., 2002).

Recalli ng Preisendorfer's synthesis formula for PCA given earlier:

′=X ZA (4.7)
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Formula 4.7 allows for the decomposition of the data matrix into two variables,

representing time (Z, the score matrix) and space (A, the loading matrix). Extensions

decompose the data into more variables. For example, when considering a data set

on a regular grid, the PARAFAC (Parallel Factor) method approximates the

observation xij k using a model of the form:

1

m

ijl ik jk lk
k

x a b z
=

= ∑� (4.13)

where xijl is the observed value at latitude i, longitude j for observation l, where i = 1,

…, I; j = 1, …, J and l = 1, …, n. As for PCA, m components are extracted and each

component k is represented by a time series, made up of the zlk. However, instead of

being represented by one loading pattern, the component k is represented by two

loading vectors, one (the aik) relating to latitude, the other (the bjk) relating to

longitude.

The PARAFAC model is a special case of the general Tucker3 model, where xij k is

approximated using a model of the form:

31 2

1 1 1

ww w

ijl il jm kn lmn
l m n

x a b z g
= = =

= ∑∑∑� (4.14)

Here, instead of extracting k components, we extract a different number of factors

for each 'dimension'. So in the example concerning gridded data, we extract w1

factors relating to latitude, w2 factors relating to longitude and w3 factors relating to

time. The matrix G, made up of the coefficients glmn, is known as the core matrix,

and indicates the importance of each interaction. If the value of glmn is comparatively

high, then the interaction between latitude mode l, longitude mode m and time mode

n is comparatively important. Extra dimensions can be added to create a higher order

Tucker model.

As can be imagined, interpretation of a PARAFAC or Tucker model is far from

simple. Furthermore, their lack of use when compared to PCA means that they are

less well understood. For example, do equivalents to Buell patterns exist for these

multiway methods? For these reasons, the methods were considered, but eventually
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deemed unsuitable for this thesis, but may prove to be a fruitful avenue for future

studies.

4.2.6. An Assess ment of PCA

A review of the literature has helped to assess the value of PCA. The need to reduce

the dimensionali ty of increasingly higher resolution climatological data has

stimulated interest in PCA, resulting in a thorough study of its application and

implications. The strength and weaknesses of PCA in the context of climate analysis,

therefore, are well known. It is a comparatively simple method to apply, can be

solved numerically, and is computationally efficient.

However, a number of important decisions need to be made during the analysis.

Should the covariance or correlation matrix be analysed? How many components

should be used? Should the solution be rotated, and if so, how? Not all of these

decisions are straightforward, and analytical approaches to devise optimal answers

have generally failed. Often it is left to the analyst to make arbitrary, if informed,

choices.

Furthermore, it must be remembered that PCA as represented here assumes a linear

process. Non-linear extensions do exist; see Chapter 14 of (Jolli ffe, 2002). However

the simplicity of linear PCA, both in terms of complexity of calculation and

interpretabili ty, make it a powerful technique suitable for many circumstances,

including producing a set of predictors for an empirical model of Sahel climate.

4.3. The selection o f a domain for the PCA – Analysis of the NCEP

reanalysis fields

Before carrying out a PCA, it was necessary to identify a suitable domain for the

analysis. The NCEP dataset spans the whole globe at a 2.5 ° × 2.5 ° resolution for

multiple levels. Hence, the number of possible variables is far too great for the

purposes of this study. Furthermore, many variables are likely to be irrelevant. For

example, data points a great distance from the Sahel are unlikely to affect the rainfall



120

there. This section focuses on the identification of a suitable domain for the PCA.

Part of this identification was performed using a priori knowledge, part by

examining correlation between NCEP variables and Sahel rainfall .

Six variables from the NCEP dataset were to be analysed: geopotential height

(representing air pressure, and abbreviated by gph), air temperature (air), specific

humidity (shum), vertical velocity (omega), zonal wind (uwind) and meridional wind

(vwind). Each variable was obtained for four atmospheric levels: 1000, 850, 600 and

200 hPa, with the exception of specific humidity, which was not available for the top

level, so the 300 hPa level was used instead. These cover the surface level, the top of

the boundary layer, and the mid and upper troposphere. Furthermore, the two upper

levels contain the actions of the major jet streams, the African Easterly Jet and the

Tropical Easterly Jet, which are suspected to have a significant influence on Sahelian

rainfall (see Chapter 2).

Monthly data were obtained for each grid point between 50 °N and 50 °S; higher

latitude regions were omitted, as they are very unlikely to affect Sahelian rainfall .

Correlations were calculated between each grid point at each level for each variable

and all six of the rainfall regions created in section 4.2.3.

An analysis of the results demonstrated that the seasonal cycle dominated most of

the correlation patterns. Therefore all data series were deseasoned (by subtracting

long-term monthly means) and correlations recalculated. Figures 4.7 to 4.12 show

the result, based on 1958-1997, and only considering the Sahelian wet season (here

defined as June to September). Only the strongest correlation with any of the six

rainfall regions is displayed. The figures ill ustrate that the strongest correlations,

regardless of which variable is considered, occur either over West Africa, or just

offshore. Whilst absolute correlations over 0.3 (the minimum required to appear in

the figures) do exist in other areas, particularly over the oceans, they are weaker.

The results suggest that rainfall i s associated with cooler conditions over the south of

the Sahel and the Guinea coast in the lower troposphere, overlaid by warmer

conditions and ascending air in the mid troposphere. It is also associated with low

pressures in the lower and middle troposphere just off the West African coast at

about 20 °N. Just south of this low pressure pattern are a pattern of correlation with
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westerlies which extend across to the Horn of Africa, overlaid by easterlies at the top

of the troposphere. Southerly, low level winds across the Sahel, extending northeast

toward the Middle East, are also associated with increased rainfall . Finally, and

perhaps least surprisingly, is the association with high humidity across the Sahel at

all l evels, again extending toward the Middle East. Notable, however, is the lack of

correlation with moisture in the Gulf of Guinea, indeed rain is correlated with dry

conditions at lower levels. This is reminiscent of the findings of Fontaine et al.

(2003) and Long et al. (2000) noted in Chapter 2, which suggest most moisture

which falls as rain in the Sahel comes from the east.

Most of the variables show coherent spatial patterns of correlations. The exception is

the plot for vertical velocity, in which patterns are very patchy. This might suggest

the field would be of littl e use, although one of the few notable coherent patches of

ascent occurs over the Sahel at the 600 hPa level.

Ideally, the final domain would be large enough to consider all areas that are thought

to be connected to Sahelian climate. However, various considerations impose limits

on possible domain size. Recall the suggestion that sample size should be larger than

the number of variables in a PCA. As the analysis was to be carried out for 1958 to

1997, there are a total of 14610 days. However, ideally this analysis should only take

place in the wet season, as this is the period of interest. Furthermore, the stabili ty of

the PCs was to be investigated by performing two separate PCAs on the two halves

of the time period: 1958 to 1977, and 1978 to 1997, halving the acceptable number

of variables. If the duration of the wet season were to be considered as June to

September, this would set an upper maximum of 2435. Note this is only an advisory

maximum; a much lower number would be preferable as the sampling error in the

PCs would be less, and hence the results would probably be more stable.

Furthermore, lowering the number of variables substantially decreases the time taken

to compute results.
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Figure 4.7. Correlation coefficient between monthly anomalies in air temperature and Sahel rainfall, June to September, 1958-1997. Correlations were

calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.8. Correlation coefficient between monthly anomalies in geopotential height and Sahel rainfall, June to September, 1958-1997. Correlations were

calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.9. Correlation coefficient between monthly anomalies in specific humidity and Sahel rainfall, June to September, 1958-1997. Correlations were

calculated for all six rainfall regions, only the largest absolute correlation is displayed. The black box indicates the domain used for the PCA described in

section 4.4
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Figure 4.10. Correlation coefficient between monthly anomalies in vertical velocity and Sahel rainfall, June to September, 1958-1997. Correlations were

calculated for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and

descending motion. The black box indicates the domain used for the PCA described in section 4.4
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Figure 4.11. Correlation coefficient between monthly anomalies in zonal wind and Sahel rainfall, June to September, 1958-1997. Correlations were calculated

for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and westerly motion.

The black box indicates the domain used for the PCA described in section 4.4
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Figure 4.12. Correlation coefficient between monthly anomalies in meridional wind and Sahel rainfall, June to September, 1958-1997. Correlations were

calculated for all six rainfall regions, only the largest absolute correlation is displayed. Positive correlations indicate a link between greater rainfall and

southerly motion. The black box indicates the domain used for the PCA described in section 4.4
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A final domain size was set at 0 – 20 °N, 30 °W – 60 °E. This encloses most of the

areas of importance identified by the correlation analyses (see Figure 4.7 to 4.12),

but contains only 333 grid points per level, giving a grand total of 1332 grid points.

Furthermore, it was decided to extend the period analysed to May to October, to

further increase the case to variables ratio; rainfall still occurs frequently in this

period. This decision proved to have very littl e effect on results, indeed a PCA

carried out on the whole year (not shown here) gave very similar patterns.

4.4. Execution and results of the Principal Compon ent Analysis

The PCA was executed by performing an analysis on each field in turn.

Theoretically, it would be possible to enter all six fields into one analysis, an EEOF,

but this would make interpretation of results far more diff icult. Each PC pattern

would have to be represented by 24 maps (each of the six variables at four levels),

and would result in the PC time series being a composite of six physical quantities.

Furthermore, the number of variables would be increased by a factor of six, which

could have a substantial impact on the stabili ty of the solution.

Therefore, it was decided to analyse the different levels of each field in one PCA. It

is common practice to 'unfold' a two-dimensional field prior to PCA and consider

each grid point as a variable (see Pravdova et al., 2001, for a non-climatological

example). It seems reasonable to extend this practice to three-dimensions. As a

result, loading patterns are three-dimensional, and hence harder to interpret, but it

does permit the analysis of variabili ty between levels.

The analysis was planned to be carried out using MATLAB, but the large size of the

data set prevented this: MATLAB had insuff icient virtual memory. Hence, the

correlation matrix for the data set was calculated in MATLAB and exported into a

Fortran routine, where the PCA was carried out. The results were interpreted into

MATLAB for post-analysis processing, such as the calculation of PC time series and

examination of eigenvalues.

Table 4.3 shows the first ten eigenvalues for each of the six PCAs, and the

percentage of total variance they each explain. It also indicates the number of
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eigenvalues greater than one: Kaiser's criterion. As can be seen, Kaiser's criterion

would retain an exceptionally large number of components for all six PCs, far too

many to use in an interpretable regression analysis. Hence, an arbitrary decision was

made to retain all components that explained at least 2% of total variance. The

bottom two rows of Table 4.3 show the number of components retained for each

PCA, and what proportion of total variance they explain collectively. Across the six

PCAs, a total of 37 patterns were retained.

air gph shum omega uwind vwindEig.
No. � % � % � % � % � % � %

1 393.2 29.5 588.9 44.2 263.7 19.8 121.4 9.1 455.7 34.2 168.8 12.7
2 200.4 15.0 230.5 17.3 99.1 7.4 59.4 4.5 110.7 8.3 104.7 7.9
3 98.4 7.4 205.9 15.5 62.3 4.7 52.7 4.0 70.8 5.3 65.8 4.9
4 57.8 4.3 56.6 4.3 42.4 3.2 29.2 2.2 41.8 3.1 44.7 3.4
5 31.5 2.4 34.5 2.6 33.0 2.5 24.1 1.8 32.2 2.4 44.3 3.3
6 29.4 2.2 24.2 1.8 29.0 2.2 21.3 1.6 30.2 2.3 41.6 3.1
7 26.4 1.9 20.5 1.5 25.5 1.9 19.9 1.5 25.2 1.9 36.4 2.7
8 25.7 1.9 17.9 1.3 22.9 1.7 18.1 1.4 23.4 1.8 34.8 2.6
9 23.2 1.7 12.9 1.0 18.8 1.4 17.7 1.3 22.6 1.7 32.1 2.4
10 22.7 1.7 11.2 0.8 17.8 1.3 17.1 1.3 21.5 1.6 27.8 2.1
11 19.9 1.5 9.6 0.7 16.6 1.2 15.5 1.2 18.7 1.4 26.1 1.9
12 16.6 1.2 8.0 0.6 15.8 1.2 14.4 1.1 18.1 1.4 22.5 1.7

�!� 98 39 175 243 111 145

Components
extracted

6 5 6 4 6 10

% of total
var. explained

60.9 83.8 39.7 19.7 55.7 45.1

Table 4.3. Details of eigenvalues and percentage of total percentage of variance

explained for each of the six PCAs. The bottom three rows indicate the number of

eigenvalues greater than or equal to one, the number of components eventually

extracted, and the percentage of total variance they explained collectively.

The thirty-seven component loading patterns are ill ustrated in Appendix A, figures

A1-6. The original intention was to use unrotated PCs as the predictor variables in

the final model, but the outputted loading patterns suggest this would be unwise for a

number of reasons. First, many of the patterns bear littl e physical sense. For

example, later meridional wind components (referred to as 'vwind') tend to involve

multiple vertical strips of northerly winds opposed to strips of southerly winds.

Furthermore, although correlation structures are far from simple, Buell -type patterns

seem to occur. This is probably most striking in the air temperature ('air') PCA, see



130

Figure A.1. The first component is an almost all -global loading pattern, the second

counters northern regions with southern (although with a bias at the 200 hPa level),

and the third is a high-level vs. low-level pattern. These are the type of patterns one

might expect to see in a three-dimensional extension of Buell 's analyses.

The primary benefit of not rotating the PCA was that time series would not be

correlated, and hence much easier to use in a regression model. Unfortunately, the

analysis of each field individually means that components from different fields can

be highly correlated. For example, the leading component for air temperature is

highly correlated with the second geopotential height component ('air1' and 'gph2'

respectively); the coefficient of the correlation between the two corresponding time

series being 0.922. Therefore, the cost of introducing correlation between time series

from the same field is less problematic, as these strong across field correlations

should be reduced.

As a result, a decision was made to rotate the extracted components, using the

varimax criterion. The rotated patterns are also ill ustrated in Appendix A, figures

A7-A43. The time series for these patterns were calculated for the whole year, and

are presented in the form of a yearly average and a 'daily average': the average of the

PC time series on each calendar day. This daily average indicates the typical

seasonal cycle of the given component. Note that each PC time series was

normalised to give it a standard deviation of one. This was done to ensure that when

used in the final model, the regression coeff icient allocated to each component

would be directly comparable. However, at this stage it also allows for easier

comparison between the series.

Table 4.4 contains a summary of the main physical processes involved in each

component:

PC name Description of the main processes involved

air1 High temperatures in low atmosphere, expect for low temperatures over

Atlantic at surface

air2 High temperature at all l evels in atmosphere over equator and Horn of

Africa.

air3 High temperatures at top of atmosphere north of 5°N
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PC name Description of the main processes involved

air4 High temperatures at 600 hPa between 0-30°E

air5 High temperatures at 600 hPa, west of 0°

air6 High temperatures at 600 hPa over Somalia versus Low temperatures in

lower atmosphere over Middle East Gulf.

gph1 High pressures in low to mid atmosphere over Sahel and Atlantic

gph2 High pressures in upper atmosphere over whole region

gph3 High pressure in low atmosphere over East Africa & Indian Ocean vs

low pressure over equator at top of atmosphere

gph4 High pressures over Sudan/Ethiopia/Middle East in low atmosphere

gph5 High pressures over equatorial Gulf of Guinea just off African coast in

low to mid atmosphere

shum1 High humidity over equatorial Africa and Gulf of Guinea, especially in

lower levels

shum2 High humidity over Indian Ocean and Ethiopia at all l evels, and to a

lesser extent the Gulf of Guinea

shum3 High humidity over Atlantic (0-10°N), especially in lower levels

shum4 High humidity over North Atlantic and North Africa, especially in lower

levels

shum5 High humidity over North East Africa and Middle East at all l evels

shum6 High humidity over inland sub-Saharan North Africa at all l evels

omega1 Noisy at surface, strong ascent in lower atmosphere over and off coasts

of Ethiopia and Somalia, descent in middle atmosphere to south of this

region, descent in upper atmosphere to the north of this region.

omega2 Noisy, but ascent over Guinea coast and descent over Sahel at 850 Pa.

Descent pattern moves southward as height increases, by 200 hPa is over

Guinea coast.

omega3 Noisy, but descent centred over southern Sudan in upper atmosphere.

omega4 Noisy, but broad descent over equatorial West Africa at all l evels

(Cameroon, Gabon and Republic of Congo)

uwind1 Westerlies at top of atmosphere and over equatorial Atlantic to middle

atmosphere, Easterlies elsewhere. Cyclonic flow over the Sahel / Guinea

Coast at the 600 hPa level.
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PC name Description of the main processes involved

uwind2 Westerlies centred over Sahel in lower & middle atmosphere. Extend

over Atlantic. Strongest at 600 hPa.

uwind3 Westerlies in lower atmosphere centred over Nigeria, extend from

Ghana to Chad. Centred around 10°N, do not extend more than 5° north

or south.

uwind4 Westerlies over Gulf of Guinea and Cameroon in lower atmosphere.

Easterlies lie to the north of this band at 600 hPa.

uwind5 Westerlies centred over Northern Sudan in lower and middle

atmosphere.

uwind6 Westerlies at 600hPa centred at southern tip of Sudan. Strong pattern

extends to coast of east Africa, but loadings weaker over Atlantic coast.

vwind1 Southerlies in lower atmosphere over Indian Ocean, north Somalia and

Middle East. Noisy lesser patterns of Southerlies elsewhere in lower

atmosphere (Atlantic Coast, southern Sudan), and lesser pattern of

Northerlies from surface to mid atmosphere over Ethiopia, south

Somalia and Kenya.

vwind2 Southerlies in lower atmosphere centred. over Chad and Sudan.

Northerlies overlaying at 600 hPa, but with centre just to Southwest

(over northern Nigeria/ northern Cameroon / southern Chad borders) and

Northerlies at surface over Atlantic north of 10°N.

vwind3 'Backslash' type slanted pattern of Southerlies in the lower atmosphere,

extending from West Coast equatorial Africa to Democratic Republic of

Congo, extends northwards along coast. Leaves coast past Gulf of

Guinea and at northernmost extent it extends from eastern Mali to Chad.

vwind4 Vertically slanted pattern of Southerlies in lower and middle

atmosphere. Centred over Uganda and Kenya at surface but the pattern

moves northwards as height increases. By 600 hPa centred over

Southern Sudan.

vwind5 'Dipole backslash' structure in lower and middle atmosphere, especially

850 hPa. Southerlies along West African coast opposed by Northerlies

inland (from Mali to Ghana). Cyclonic flow over the West Coast.



133

PC name Description of the main processes involved

vwind6 'Dipole backslash' structure very similar to vwind5 but more westerly.

Lower & middle atmosphere, again especially 850 hPa, Northerlies

along West African coast opposed by Southerlies over Atlantic.

Cyclonic flow off the West Coast.

vwind7 Top of atmosphere double dipole. Northerlies centred over Cameroon /

Central African Republic border 'sandwiched' by two patterns of

Southerlies centred over Gulf of Guinea and Horn of Africa.

vwind8 Top of atmosphere dipole. Southerlies over Atlantic opposed by

Northerlies centred over Guinea Coast, but extending from Gulf of

Guinea up to eastern Mali . High level cyclonic flow over West Africa.

vwind9 Southerlies in lower and middle atmosphere. Over Horn of Africa at

surface, by 600 hPa in centred over Gulf of Aden.

vwind10 Northerlies at top of atmosphere centred over southern Sudan / Uganda.

Flanked to east and west by weaker patterns of Southerlies.

Table 4.4. Main physical processes involved in each of the principal component

patterns.

Many of the components are interrelated. For example, the three geopotential height

components 'gph1', 'gph4' and 'gph5' are all correlated with coefficients exceeding

0.9. This is an unsurprising result, as each component represents low to mid-level

pressure in a different part of the domain. Furthermore, it is noticeable that the daily

and yearly average time series are very similar for all three components.

Other sets of components are highly correlated, but are slightly harder to explain.

The correlation coeff icient between the 'shum1' and 'uwind2' time series in the wet

season is 0.90. The corresponding patterns show an increased low and mid-level

westerly flow centred over the Sahel is associated with increased humidity over the

Gulf of Guinea and the neighbouring coast. These may be related through the

monsoon flow, but the westerlies seem located slightly too far to the north.

Similarly, the correlation between 'shum3' and 'omega2' is –0.94. So low to mid-

level ascent over the Sahel at the surface, but to the south at higher levels, is

associated with increased humidity over the equatorial Atlantic and the Guinea

Coast.
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Finally, a set of four components are all cross-correlated with absolute correlations

exceeding 0.9: with positive values of 'omega1' and 'uwind1' associated with

negative values of 'vwind1' and 'shum2'. Together, the patterns suggest low-level

meridional convergence over East Africa, with accompanying ascending air.

Relative humidity in the area is decreased, perhaps as a result of rainfall; recall that

results are based on daily averages, so at a zero lag, rainfall can affect the variables.

Finally, low-level westerlies are overlaid by high-level easterlies.

4.5. A validation o f the PCA

As mentioned in section 4.1, doubts have been cast over the quali ty of NCEP data

over the Sahel from before 1968. Unfortunately, the PCA was carried out without

knowledge of these doubts, so used data stretching back to 1958. Further analyses

would be based only on data from after 1968, but recalculating the PCs would be

very time consuming. If possible, the ideal solution was to use the PCs defined over

the period 1958-1997, but only use the PC time series from 1968 onwards in the

final empirical model. This should not pose a problem, providing the modes of

variabili ty are similar throughout the full period.

In order to check whether the full period PCAs represented variabili ty after 1968

well , two additional PCAs were carried out for each variable. The first only

considered data from the period 1958-1977; the second considered the period 1978-

1997. Providing the outputted patterns were similar, the original PCs could be used

in the final empirical model. A secondary benefit of this analysis would be to test the

stabili ty of the PCA solutions. Vastly different patterns would either be a result of

different processes occurring in the two periods, or instabili ty of the PCs. Either

way, the usefulness of the results would be called into question.

Even in an ideal situation, one would expect minor differences in the leading

patterns. Furthermore, PCAs insistence on orthogonali ty would lead to greater

differences in the second patterns, and greater still i n later patterns. Hence, only the

first four patterns are ill ustrated. Also, results were not rotated. Patterns that were

similar prior to rotation would remain similar after rotation. Results are shown in

appendix A, figures A.48 to A.67.
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The results suggest the main modes of spatial variabili ty of the atmosphere are

similar for the two periods. Patterns for air temperature, geopotential height and

specific humidity are nearly identical, although the order of PC3 and PC4 seemed to

have swapped for specific humidity. Results for the three velocity variables are less

definitive. In all three cases, the first two PCs show a good, although far from exact

match. As a result, differences in the third and fourth PCs are considerable.

However, the broad structure often remains the same. For example, the zonal wind

analyses have the same areas of major variabili ty: positive loadings in the low to mid

atmosphere over the Gulf of Guinea and central Africa for PC3, negative loadings in

the low to mid atmosphere of Sudan and the Middle East for PC4. For meridional

wind, PC4 for the first period looks similar to PC3 for the first period. Vertical

velocity is the most problematic, as its noisy nature make it hard to interpret patterns

visually.

The similarities between the two periods suggest that whilst the principal

components defined over the period 1958-1997 may not be the optimal

representation of atmospheric variabili ty after 1968, they do represent it well .

Therefore, at the end of this chapter we are left with 37 variables with which we will

predict daily rainfall i n the final empirical model.


