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7 Modelling climate impacts 
 

7.1 Introduction 
 

Although econometric theory (Section 7.1.1 and 7.1.2) suggests that the statistical 

modelling methodologies (OSR and ANN) discussed previously (Chapter 4.2) may be 

appropriate for socio-economic upscaling analysis (Chapter 1.3), econometrics is not 

the only method by which socio-economic impacts can be assessed in a quantative 

fashion. Other approaches, examples of which are discussed below, offer distinct 

advantages and disadvantages. 

 

The Ricardian approach is among the leading methods for measuring sensitivity 

to climate (Mendelsohn et al., 2000). It assumes that climate variables may affect 

profitability of a given activity, e.g. agriculture (Mendelsohn et al., 1994), forestry 

(Mendelsohn and Sohngen, 1996), or energy production (Morrison and Mendelsohn, 

1998), and therefore the value of the land upon which such activity takes place 

(Mendelsohn et al., 1999). The Ricardian method uses land prices as a cipher for 

costing socio-economic impacts. Adaptation measures such as the substitution of crops 

or other inputs are therefore implicitly incorporated in the method, which can include a 

wide range of potential forcing factors and measures sectoral impact in a form that can 

be easily understood by decision makers (Mendelsohn et al., 1994; Mendelsohn et al., 

2000). However, the Ricardian approach may not thoroughly isolate climate influence 

from other important factors (Mendelsohn et al., 2000), cannot be specifically utilised 

for impacts upon types of crop (e.g. wheat, or maize), or energy production, or forestry 

(Mendelsohn et al., 1994), and it is not useful where a given form of activity is not 

directly tied to land price (e.g. energy consumption, or mortality).  

 

The macro-economic method relies upon an extended input-output matrix of 

supply and delivery concerning economic goods (Aaheim and Schjolden, 2004). Due to 

the interlocking nature of both economic systems and the input-output matrix, the 

method is highly effective at placing downscaling studies into a broader perspective 

(particularly in terms of productivity) and analysing impacts that may have knock-on 
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effects from one sector to another (Aaheim and Schjolden, 2004). In addition, extreme 

climate events can be represented within an input-output model as shocks to the 

economy (in terms of effects upon productivity). However, macro-economics requires 

the aggregation of climate conditions to the same scale as socio-economic data, must 

assign economic value to impacts for cross-sector analysis, and requires many 

assumptions based upon detailed knowledge of national economic systems at the micro-

level (Aaheim and Schjolden, 2004).  

 

Although econometric predictand indices must be carefully chosen to avoid or 

incorporate issues specific to the sector under consideration (Chapter 6.2), the 

econometric models used within this study (Section 7.2) measure impacts upon 

mortality in lives, and upon agriculture in yield per hectare. These impacts are not easily 

compared between sectors, and interactions between both sectors and countries are left 

for future work (Chapter 8.4). However, advantages of the econometric approach used 

here include: 

 

o an empirical basis, 

o a methodology that can be applied consistently between sectors, while 

applying the same (linear and non-linear) function fitting methods used 

for climatological downscaling in previous chapters. 

o the avoidance of substantial difficulties associated with the valuation of  

human life (a problem for any cost-benefit based analysis concerning 

mortality),  

o and cross-scale analysis, without the need for aggregation of climate 

extremes. 

 

Examples of the use of econometric modelling techniques, and a review of their 

application for this chapter, are therefore given in Section 7.2. The most common form 

of econometric modelling (OLS regression) is also summarised (Section 7.2.1), and 

applied so that results may be compared to earlier work. The performance of OLS 

regression, OSR, and ANN models is discussed in Chapter 7.3 for the socio-economic 

indices defined in Chapter 6.2.2. The performance of a given method may, however, 

vary from region to region. The regional nature of sensitivity is discussed in Chapter 
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7.4.1. Where econometric models successfully replicate socio-economic indices, a 

strong statistical link exists (Chapter 6.4) and the previous discussion suggests a 

physical process for the link (Chapter 3.4 and Chapter 5.3), weights of predictors can 

then be utilised to quantatively estimate the sensitivity of socio-economic activity to 

climate (Chapter 7.4.2).  

 

7.1.1 Econometrics  
 

Any given econometric equation consists of a dependent socio-economic 

variable, a number of independent explanatory variables, and an error term (Gujurati, 

2003). For example, economically, the demand for any household commodity (D): 

 

 D = f(the cost of available commodities, household income) (7.1) 

 

Where the given commodity may be, for instance, electricity (Anderson, 1973). 

However, if, for the sake of simplicity, we assume a linear relationship, econometric 

demand for electricity might be written as: 

 

 De=a0+a1X1+a2X2+u (7.2) 

 

Where X1 represents the cost of electricity, X2 represents household income, a values are 

coefficients (including a constant/intercept value a0), and u the stochastic disturbance 

(error) term, which includes all the factors not taken into account (which in this 

oversimplification are likely to be numerous) (Anderson, 1973; Gujurati, 2003). For the 

above example, variables might include factors such as the costs of competing 

commodities (e.g. oil and gas), or of related equipment (e.g. heating systems), or of 

climatic variables such as temperature (Anderson, 1973). Where climate variables are 

utilised in econometric models they are usually accompanied by socio-economic factors 

also related to the activity under consideration (Anderson, 1973; Galeotti et al., 2004; 

Bigano et al., 2004). 
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The definition of the variable under investigation can substantially affect the 

explanatory variables that may be relevant in, for instance, Equation 7.2. Aggregated 

electricity demand per household (ADe) for a given region reflects average 

characteristics of households within that region, and therefore only variables that are 

likely to vary significantly from region to region are relevant within a given model 

(Anderson, 1973; Gujurati, 2003). A model for comparing the energy demand of 

individual states within the U.S. might, therefore, be described as: 

 

 ADe=a0+a1H+a2R+a3TX+a4TN+u (7.3) 

 

Where H is the average size of households for a given region, R is the ratio of 

urban to non-urban population for the region, TX is a measure of heat, and TN a 

measure of cold (Anderson, 1973). Similarly, electricity consumption may vary as in 

equation 7.3, but with a measure of wealth emplaced as goods in the place of household 

size (Chapter 5.3.4). The models used for the rest of this chapter are all variations upon 

this form (Equation 7.3), using the socio-economic indices (e.g. excess mortality, 

electricity consumption, yield anomaly) defined in the previous chapter (Chapter 6.2.2) 

as dependent variables, and the climate indices (e.g. consecutive dry days, rainfall 

intensity) defined in Chapter 3.4.1 and discussed in Chapter 6.4 as independent 

variables. Where relevant, additional socio-economic independent variables (e.g. 

proportion of land irrigated), as discussed in Chapter 6.4, have been included within a 

given model. 

 

7.1.2 Terminology and assumptions  
 

 Econometric models are subject to many of the same constraints that apply to 

models for climate analysis (Table 3.9). However, terminology differs between the two 

fields. Many of the terms specific to econometric modelling are related to the choice of 

an appropriate functional form (Chapter 1.3), and the strict need to meet assumptions 

relevant to that form. Table 7.1 presents the issues related to functional form in 
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econometric language, but model requirements are generally identical to those given in 

Table 3.9.  

 

 Complex temporal lags and serial effects may influence excess mortality 

(Chapter 5.3.5). One of the assumptions of econometric theory, as applied to classical 

linear regression models (e.g. Equation 7.3), prohibits the use of lagged values of the 

dependent variable as an independent variable (Table 7.1). However, the inclusion of 

lagged dependent variables in econometric models is not uncommon (Peirson and 

Henley, 1994; Bigano et al., 2004), as a range of techniques exist for safely bypassing 

this assumption through mathematical manipulation (e.g. partial adjustment models, 

adaptive expectations models, the general method of moments approach) (Johnston, 

1972; Anderson and Hsiao, 1982). Unless applied with great care, these techniques may 

lead to further problems, including invalid test procedures, and bias and inconsistency 

in the estimation of model coefficients (particularly problematic for small sample sizes) 

(Gujurati, 2003; Bigano et al., 2004). In this study, the use of adjustment and 

expectation techniques has been left for further work, and instead lagged independent 

climate variables are included in the model to compensate for effects that may persist 

from one season to the next (Agnew and Palutikof, 1997).  

  

7.2 Econometric application of models 
 
 
 Both of the models discussed in Chapter 4 are utilised for econometric analysis 

in this Chapter. However, the Basin wide OSR approach (BOSR) has not been applied 

as it has been shown that statistical links to climate vary substantially from one country 

to the next (Chapter 6.4). Additionally, models have been applied with respect to the 

sensitivity testing discussed in Chapter 4.2.3. Additional testing using socio-economic 

data has found that the same starting conditions apply, but that the Thin Plate Spline 

basis function neural network consistently provided lower skill than neural networks 

constructed with other basis functions. No other form of basis function (Chapter 4.2.2) 

could be rejected. All the models discussed in this chapter have been constructed with a 

pre-selected climate index predictor set (Table 6.2) restricted by the results of 

correlation testing (Chapter 6.4). 
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 In this part of the study, the (Regional) OSR model described in Chapter 4.2.1 

is applied only to mortality and agricultural yield data, as there is not enough data 

available to apply OSR to electricity consumption. For both an ordinary least-squares 

regression method (Section 7.2.1) and the neural network approaches, electricity 

consumption models that are unlikely to provide complete calibration and verification 

periods (Chapter 4.2.1) for the entirety of the bootstrapping process through missing 

climate data have also been removed from the analysis (listed in Table 7.2). A brief 

review of the models utilised in this chapter, as applied econometrically, is given below.  

 

7.2.1 Linear regression 
 
 

Equations 7.2 and 7.3 are both examples of linear econometric models.  The 

coefficients of these models are generally solved via the use of ordinary least-squares 

(OLS) regression (Gujurati, 2003; Kennnedy, 2003; Barreto and Howland, 2006). When 

applying econometrics to climate variables OLS regression is a common form of 

analysis (e.g. Anderson, 1973, Galeotti et al., 2004; Bigano et al., 2005). OLS 

regression is described in detail by Wilks (1995), and Von Storch and Zwiers (1999). 

Linear regression models demand that equations are linear in the parameters, but not 

necessarily) in the variables considered (Barreto and Howland, 2006). In most of the 

OLS regression literature referenced above, squared variables are entered as equation 

parameters in order to take the potentially u-shaped distribution of temperature based 

impacts (e.g. Fig 5.3) into account within the functional form. Although associated 

errors become a function of the manipulated variable (the parameter), rather than the 

original variable, manipulation of variables in this way, prior to their entry as 

econometric parameters, does not violate any of the conditions required for analysis. As 

an example: 

 

 EM = a0+a1X1+a2X2+a3X3+a4X4+u (7.4) 
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Where Expected Mortality (EM) is a function of time (X1), influenza deaths (X2), 

temperature (X3) and temperature squared (X4) and the function shown is a valid 

polynomial econometric equation that can be solved by linear regression (Bentham, 

1997).  

 

Although trends due to time have been absorbed into the dependent variable 

(Chapter 6.2.2) this study otherwise follows the methodology used by Galeotti et al. 

(2004). Using the results of Chapter 6 to determine potential predictors (Table 6.2) a 

first estimation OLS regression is performed. The estimates of each coefficient (a0, a1, 

a2, ...) are then checked for statistical significance (at the 0.05 level) and the residuals 

(observed minus simulated time series) are tested for stationarity and the need for non-

linearity. Where a u-shaped distribution is apparent in the residuals, for instance, 

squared variables are introduced (with respect to relationships evident within the 

literature presented in Chapter 5.3) before the regression is estimated again. Where 

parameters are insignificant they are removed and the OLS regression is re-estimated 

(Figure 7.1).  

 

For this study a substantial volume of station-level data is available. Classical 

OLS regression cannot, however, be used for simultaneous analysis of multiple climate 

sites due to collinearity issues (Gujurati, 2003). For each national-scale socio-economic 

(dependent) index (e.g. Greek winter Excess Mortality), separate models have therefore 

been created for each climate station, drawing predictors from the independent climate 

indices at that site (e.g. minimum temperatures at Athens).  In some cases only one 

significant model can be found (at one station) for each country, in others, many similar 

models (at multiple stations) can be found across the region. In the latter case, the 

variation of coefficients, skill, and error between models is generally small (i.e. less 

than 5% of mean values).  
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Figure 7.1: Flow diagram of OLS regression process. X refers to all temperature 
and precipitation climate indices. This process is repeated for all N climate stations 
(n), and all Y socio-economic predictands (y). N refers to all stations relevant to a 
given national socio-economic predictand (e.g. all Portuguese stations for a 
Portuguese Electricity Consumption model). 
 
 

7.2.2 OSR 
 

 OSR has been utilised to solve issues of multicollinearity in both climatological 

analysis (Jones et al., 1987) and econometrics (Johnston, 1972; Fomby et al., 1984; 

Barreto and Howland, 2006). Econometrically, PC regression can be mathematically 

reduced to a restricted least squares estimator that satisfies all the conditions shown in 

Table 7.1: for a full proof see Fomby et al. (1984). Although the PC regression method 

is relatively common in economic applications to trade, market change (Alexander, 

2001), monetary policy (Favero et al., 2005), and other financial sectors, recent 

examples of PC regression in Mediterranean applied econometrics are scarce.  
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Oliveira (2006) uses a methodology analogous to OSR to counter 

multicollinearity when constructing predictors influencing Portuguese fertility. Principal 

components regression has also been utilised to model the electricity load and 

consumption (for one month) of France, Greece, and Italy using temperature-based 

parameters as predictors. (Manera and Marzullo, 2003). Results of the Manera and 

Marzullo (2003) study suggest that for electricity consumption modelling, PC 

regression may outperform other forms of analysis (i.e. fourier analysis and smoothing 

spline estimation).  

 

Unlike OLS regression, the OSR method can be applied to multiple climate sites 

simultaneously. In this study one model is developed for each socio-economic 

dependent variable (e.g. Wheat Yield) for each country (e.g. Portuguese Maize Yield), 

drawing predictors from all independent climate indices at all stations for the relevant 

country (e.g. all temperature and precipitation indices, lagged by up to a year, for all 

Portuguese stations). The number of extreme climate index predictors is restricted based 

upon both the results of correlation testing (Chapter 6.3) and the variance-based 

deletion of components (Chapter 4.2.1), as previous analysis (Chapter 4.3) has shown 

that prior selection and restriction of candidate predictors may result in greater OSR 

performance, and rarely reduces levels of skill (Chapter 4.4.1). The inclusion of the 

OSR approach (Fig 7.2) at this stage allows for an assessment of whether or not a single 

model that constructs spatially aggregated predictors (with respect to variance) is more 

appropriate than a single model at one predictor site, or multiple models over multiple 

sites. 



Chapter 7: Modelling climate impacts  
 

 452 

 

Figure 7.2: Flow diagram of econometric OSR process. This process is repeated for 
all Y socio-economic predictands (y). N refers to all stations relevant to a given 
national socio-economic predictand (e.g. all Portuguese stations for a Portuguese 
Electricity Consumption model). Chapter 4.2.1 also discusses the OSR model . 
 

7.2.3 ANN 
 

The RBF network discussed in Chapter 4 can be described, in econometric 

terms, as a nonlinear least squares estimation approach with a highly flexible functional 

form (Kennedy, 2003), fixed via a large number of iterations. Neural networks have 

found uses in econometrics, much as they have in climatology, particularly in the field 

of power generation and forecasting (Feinberg and Genthliou, 2005). Several ANN 

methods have been used for the forecasting of Greek energy load (Papalexopoulos et 

al., 1994). Beccali et al. (2004) have successfully utilised neural networks to forecast 

urban and suburban electricity load in Palermo (Italy). However, although neural 

networks have proven useful in the analysis of satellite derived land cover and the 

potential for Mediterranean crop development (Moriondo and Bindi, 2006), there is a 

general lack of studies that focus upon the econometric application of neural networks 

to Mediterranean agriculture, or mortality. Further afield, econometrically applied 

nonlinear ANN techniques have been favourably compared with regression approaches 

by Pao (2006). Pao (2006) found that an ANN approach outperformed a selection of 

regression methods (including multiple log-linear regression, and response surface 

regression) when attempting to forecast Taiwan’s consumption of electricity. Liu et al. 

(1991) also compare econometric methods and apply a neural network approach to 
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energy consumption for Singapore. However, their study shows that neural networks 

may not always outperform regression-based forecasts of future consumption. Crowley 

and Joutz (2005) used ANN results to verify an OLS regression focussed on energy 

demand, finding that the two gave similar results for the Pennsylvania-New Jersey-

Maryland region of the U.S. Electricity consumption models developed for one country 

may not, however, be appropriate if applied to another (Pao, 2006). 

 

A popular approach to the econometric application of neural networks, where an 

appropriate functional form is unknown (Pelaez, 2006), is the use of a non-linear ‘logit’ 

basis function: 
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However, with enough logits (k), these highly flexible basis functions are 

capable of fitting any functional form, can be particularly prone to overfitting 

(Kennedy, 2003), and tell us little about the appropriate function for a particular model. 

In this study the radial basis functions given in Chapter 4.2.2 are used so that, where 

non-linear performance is greater than linear performance, the improvement can be 

assigned to a particular mathematical function. However, where nonlinear function 

neural networks provide greater performance than linear networks, uncertainty over the 

activation of the basis function may lead to further uncertainty over the internal 

weighting structure of a given network (Chapter 4.2.2). As with the climatologically 

applied neural networks in Chapter 4, rigorous calibration and validation (Chapter 4.2) 

is essential in order to avoid overfitting (Kennedy, 2003). Neural networks are limited 

in application by multicollinearity issues between predictors (Pao, 2006; Chapter 4.2.2). 

They are therefore applied here in a similar fashion to the OLS models detailed above  

(Section 7.2.1), to produce an array of models across each country (one for every 

climate station site) (Fig 7.3). As ANNs weight irrelevant predictors to zero internally, 

all models produced by this method possess only statistically significant predictors.  
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Figure 7.3: Flow diagram of the econometric ANN process. This process is 
repeated for all N relevant climate stations (n), and all Y socio-economic 
predictands (y). X refers to all temperature and precipitation climate indices. N 
refers to all stations relevant to a given national socio-economic predictand (e.g. all 
Portuguese stations for a Portuguese Electricity Consumption model). Chapter 
4.2.2 also discusses the ANN model. 
 

7.2.4 Summary of models 
  

In this section the most commonly utilised form of econometric model (OLS 

regression) has been introduced so that results can be compared between novel 

applications of econometric upscaling models and a more traditional method. In 

addition, the models developed in previous chapters have been placed within an 

econometric context. The methods used throughout the rest of this chapter are 

summarised below and in Table 7.3: 

 

o An OLS regression applied for one socio-economic predictand 

(Chapter 6.2) at a time, for each country, utilising a limited number 

of extreme climate index predictors (Table 6.2) from one relevant 

station (Table 3.1) at a time. 

o A regional OSR model (ROSR) applied for one socio-economic 

predictand (Chapter 6.2) at a time, for each country, utilising a 

limited number of extreme climate index predictors (Table 6.2) from 

all relevant stations (Table 3.1) simultaneously. 

o A Linear RBF neural network (LBF) applied for one socio-economic 

predictand (Chapter 6.2) at a time, for each country, utilising all 
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extreme climate index predictors from one relevant station (Table 

3.1) at a time. 

o Gaussian, Thin Plate Spline, Multiquadratic, Inverse Multiquadratic, 

and cubic RBF neural networks applied in an identical fashion to the 

Linear RBF. 

 

7.3 Performance of upscaling models 
 

7.3.1 Definitions of model performance 
 

This section discusses the performance of each modelling method (Section 7.2) 

when applied socio-economically. In trying to assess the skill in simulation of socio-

economic predictands (Chapter 6.2) as part of a socio-economic sensitivity study, 

measures of skill and significance that are useful in climatology are just as useful when 

applied to econometrics (if they are applied with care given to the assumptions required 

of a given model). Where skill is referred to in the following sections (7.3.2-7.3.5) it has 

been assessed using r (Gujuratti, 2003) and described using the definitions given in 

Section 3.3.5 and Table 3.2. Taylor diagrams have also been constructed for the socio-

economic models discussed above, as discussed in Chapter 4.3.1 (Figures 7.4-7.19). 

The RMS error of any OSR or ANN model can be estimated from the distance between 

any point shown in these diagrams, and the ‘perfect model’ (r=1, v=1) point (Chapter 

4.3.1).  

 

7.3.2 Agricultural Yield Anomaly 
 

 This section concerns Table 7.3 (OLS regression results), Figure 7.4 (OSR 

results), and Figures 7.6 to 7.10 (ANN results). 

Citrus  
 

For Citrus Yield Anomalies, the greatest level of skill can be found when 

utilising the OSR method to model Spanish values (r=0.67) (Figure 7.4). Neural 

network models applied to the same predictand (Spanish Citrus Yield Anomaly) result 
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in less skill (Figure 7.6), but in the case of the linear basis function neural network, 

much better simulation of Citrus Yield variance.  

 

For the Portuguese Citrus Yield Anomaly, the OSR model produces a high level 

of skill (r=0.51). OSR based estimates of Portuguese Citrus Yield Anomaly (variance 

underestimated) show much lower levels of error than those for Spain (variance 

overestimated), and show performance comparable to the upper limits of skill found 

with the Gaussian, Multiquadratic and Inverse Multiquadratic basis function neural 

network models.  

 

Both Greek and French OSR performance is poor, but French ANN performance 

is high. The upper limits of French Gaussian neural network show both relatively high 

levels of skill (r=0.55) and variance estimation (v=0.81). When modelling Italian Citrus 

Yield Anomaly, the upper limits of neural network skill are very high (r > 0.90) using 

the Multiquadratic, Inverse Multiquadratic and Cubic basis functions. However, errors 

are also very high, with a very poor estimation of variance. Of these three neural 

networks, the Inverse Multiquadratic basis function neural network produces the lowest 

error, although differences between the performance of the Multiquadratic and Inverse 

Multiquadratic basis function neural networks are minimal. For these models, the 

estimation of variance improves substantially if choosing a model with slightly lower 

skill. 

 

It can be seen that nonlinear ANN methods generally produce better 

performance than linear ANN methods for Citrus Yield (although estimation of 

variance tends to decline at very high levels of skill). Each of the non-linear functions 

are capable of modelling relationships with at least one shift in behaviour (i.e. one or 

many ‘change-points’), unlike linear methods, they are well suited to modelling 

complex interactions that may vary over a range of values. As an example, the yield of a 

given permanent crop may increase with temperature up to a given point, then decrease 

up to a second threshold, and then decrease rapidly. Such a process may reflect an 

increase in growing period, followed by wilting, followed by scorching (Chapter 5.3.3), 

and is likely to be more accurately represented by a cubic or quadratic function, than a 

linear one. 
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Grape 
 
 For French and Spanish Grape Yield Anomalies the greatest levels of skill are 

provided by ANN methods (Figure 7.7). Upper limits of skill are r=0.69 for France 

(using a Gaussian basis function), and r=0.61 for Spain (using either Multiquadratic or 

Inverse Multiquadratic basis functions). However, for both regions, OSR models 

replicate observed data more skillfully (with r=0.43 in both cases) than the majority of 

French and Spanish ANN models, with a much better estimation of variance (Figure 

7.4), which tends to be very poor for the ANN models. The upper limits of the ANN 

skill distribution provide very high levels of skill for Italian Grape Yield Anomalies, 

particularly when using cubic basis function models  (r=0.95), but again the estimation 

of variance is very poor.  

 

Although, in the majority of cases, Greek and Italian, Multiquadratic, Inverse 

Multiquadratic, and Gaussian ANN models do not perform as well as OSR models, they 

show upper limit results that are better in terms of both skill (r=0.30 and 0.49), and 

variance estimation (v=0.95 and 0.98). As for Citrus Yield, the most successful ANN 

models are generally those that are capable of non-linearities. However, for both France 

and Spain, the OSR method clearly shows better performance.  

Maize 
 
 As for Grape Yield performance, ANN Maize models tend to underestimate 

Yield variance (Figure 7.8). However, for Maize, this overdispersion problem (Chapter 

4.3.2) is also evident for the relevant OSR models (Figure 7.4).  For all Maize models, 

as skill increases, variance estimates decline.  

 

The best performance (in terms of both skill and variance) is found with a Cubic 

neural network for France, a Multiquadratic neural network for Portugal, and a Linear 

neural network for Spain (Figure 7.8). For Greece, OLS regression skill exceeds that 

gained when using ANN models (which is generally less than r=0.30) resulting in a 

value of r=0.40 and comparatively low error (Table 7.4).  It is clear that to successfully 

model Maize Yield across the Mediterranean a range of functional forms is required.  
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Potato 
 
 The highest levels of skill that can be found when modelling French and Italian 

Potato Yield Anomaly models (0.65 r for France, and 0.41 r for Italy) are both gained 

through OSR (Figure 7.4), suggesting that aggregate conditions are useful for 

prediction, rather than the variance of climate at a given site (discussed in further detail 

in Section 7.4.1). For Greece the OLS method (Table 7.4) gives the highest levels of 

skill (0.60 r). Although Cubic function neural networks demonstrate relatively high 

levels of skill for Greece (Figure 7.9), they are not as high as the OLS results, and ANN 

performance is otherwise poor. Variance is substantially underestimated for all basis 

function neural networks.  

 

French and Greek Potato Yield Anomalies are more successfully modelled with 

OSR than French and Greek yield anomalies for any other crop, although the 

Mediterranean climate varies substantially between the two regions (Chapter 3.4.2). The 

one quality that both regions share is a relatively cold winter regime, which has been 

shown to possess a statistical link with anomalous Potato Yield (Chapter 3.4.2 and 

Chapter 6.3.2).  

 

The best results for Potato Yield Anomaly are all gained through the use of 

linear methods.  

Wheat 
 
 Wheat Yield Anomalies are modelled with comparable levels of skill for OLS 

regression models (Table 7.4) for Italy (r=0.42), Portugal (r=0.47), and Spain (r=0.47). 

The highest levels of skill are also found when using OLS regression to model Wheat 

Yield for Greece (r=0.58). For Greece the greatest performance is produced with OLS 

regression models for all Yield Anomalies (i.e., for all crops). There may be a linear 

quality within Greek agriculture that persists between crops.  

 

ANN (Figure 7.8) and OSR models are generally not as effective when 

modelling Wheat Yield Anomalies. OSR performance is generally very poor, and the 

majority of ANN performance is comparable. However, Linear models applied to 
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French and Spanish Yield may produce performance (for single sites) comparable to 

that for OLS regression. It is clear that in some instances sophisticated models may not 

offer much improvement in performance over relatively simple linear regression 

methods (Liu et al., 1991), as Wheat Yields are generally simulated better by linear 

OLS regression than through the other methods considered here. 

 

7.3.3 Electricity Consumption 
 

Issues concerning the availability of data and the nature of OSR methodology 

have meant that meaningful OSR models cannot be constructed for Electricity 

Consumption (Section 7.2.3), and that when applying OLS and ANN models, certain 

stations cannot be used to provide extreme climate predictors (Table 7.2). This section 

concerns Table 7.5 (OLS regression results), and Figures 7.11 to 7.14 (ANN results). 

Winter Commercial Electricity Consumption 
 

For Spanish, Portuguese, and Italian Winter Commercial Energy Consumption, 

OLS regression models provide the greatest skill (r=0.93, 0.55, and 0.44 respectively) 

with very low errors (Table 7.5). Greek Winter Commercial Energy Consumption is 

simulated most successfully by Cubic and Linear (r=0.70) radial basis function neural 

network models (Figure 7.11). For French Winter Commercial Energy Consumption, 

Multiquadratic, Inverse Multiquadratic and Gaussian models produce the greatest levels 

of skill (r=0.77).  

 

The requirement for different functional forms for different countries may 

reflect differences in energy consumption dependent on climate regime. As seen in 

Chapter 5.3.4, winter energy use may decline in a near-linear fashion with decreasing 

temperature to a balance point, and then increase non-linearly, as large deviations from 

the balance point may require large increases in heating. Where winters are relatively 

mild (Italy, Portugal, and Spain) any decrease in winter temperature may require a 

linear increase in heating. Where winter regimes are colder (France and Greece) and 

lower temperature values are reached (Chapter 3.4.2), non-linearities may appear in the 

relationship between electricity consumption and temperature. 



Chapter 7: Modelling climate impacts  
 

 460 

Winter Residential Electricity Consumption 
 
 Winter Residential Energy Consumption is the most skilfully modelled index of 

those considered in this study. For all regions, skill for Winter Residential Energy 

Consumption models is substantially greater than for Winter Commercial Energy 

Consumption. This contrast between relationships is suggested by discussion in Chapter 

5.3.4. In addition, where both linear and non-linear model functions are successful for 

Commercial Electricity Consumption, the most successful models for Residential 

Consumption are all linear. Linear basis function neural networks produce the most 

skilful Winter Residential Energy Consumption models for all countries, with an 

average (not upper limit) skill of r=0.93 r for France, r=0.96 for Greece, r=0.81 for Italy, 

and r=0.96 for Portugal and Spain. Although OLS regression models produce high 

levels of skill and low errors (Table 7.5), Linear basis function neural network 

performance (in terms of both skill and error) is superior (Figure 7.12).  

Summer Commercial Electricity Consumption 
 

Summer Commercial Energy Consumption is successfully modelled only for 

France. The OLS regression method (Table 7.5) outperforms all ANN basis function 

models r=0.78), with the greatest level of ANN skill (Figure 7.13) acquired with Linear 

basis function neural network models (r=0.51, but poor estimation of variance). Errors 

associated with the OLS models applied to summer values are substantially higher than 

those for winter, however. Compared to winter values, Summer Commercial Electricity 

Consumption is generally poorly simulated.  

Summer Residential Electricity Consumption 
 
 As for Summer Commercial Energy Consumption, application of the OLS 

regression method to French Summer Residential Energy Consumption results in the 

greatest levels of skill (r=0.85). OLS regression also demonstrates the greatest skill for 

Portugal (r=0.66), although errors are higher than for French models (0.67, compared to 

0.52 for France). ANN models perform very poorly for all countries except France, 

which displays a very poor estimation of variance (Figure 7.13). Again, the best results 

are all gained using linear methods, and OLS outperforms the more sophisticated 

methods deployed in this study (Liu et al., 1991). 
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7.3.4 Excess Mortality 
 
 

This section concerns Table 7.6 (OLS regression results), Figure 7.5 (OSR 

results), and Figures 7.15 to 7.19 (ANN results). 

Winter 
 

When modelling Excess Winter Mortality the greatest levels of skill are found 

when modelling Italian values with Multi-quadratic, Inverse Multi-quadratic, Gaussian, 

and Cubic basis function neural network models (Figure 7.15), all of which produce 

comparable skill values of up to r=0.64. Average values of skill are low however (r < 

0.32), and, for the majority (over 75%) of neural network models, the Italian Excess 

Winter Mortality OSR model (Figure 7.5) offers greater skill (r=0.45). Spanish Excess 

Winter Mortality values are also modelled well by Multi-quadratic, Inverse Multi-

quadratic, Gaussian, and Cubic basis function neural network models at the upper end 

of the skill distribution (with skill up to r=0.58), but are again outperformed by the OSR 

approach when considering average performance.  It is implied that Winter Excess 

Mortality for both Italy and Spain is a non-linear process with a single shift in 

behaviour (as Gaussian basis function neural networks perform as well as Quadratic 

basis function neural networks), possibly as suggested by discussion in Chapter 5.3.5 

(i.e., a u-shaped distribution). 

 

For Portuguese Excess Winter Mortality, the ANN approach performs poorly 

(for all models) and OLS regression methods are the most successful (r=0.44).  

Spring 
 
 Results for Spring Excess Mortality illustrate the fact that for some indices 

different methods are required to produce skilful and significant models for different 

regions. The greatest performance for Spring Excess Mortality models is found in 

Greece (r=0.56) using an OSR model (Figure 7.5), for Spain with a Gaussian basis 

function neural network (r=0.42) (Figure 7.16), for Italy with a Cubic function neural 

network (r=0.49) and for France with an OLS regression model (r=0.46). However, the 

neural networks tend to underestimate variance substantially, and the best results are 
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evident only for one or two models in the array, as also seen when modelling other 

socio-economic indices.  

 

The physical processes that lead to mortality during spring and autumn are less 

clearly defined than for winter and summer (Chapter 5.3.5), and may vary from one end 

of the Mediterranean to the other with variations in the dominant climate regime. The 

spatial variation of the Mediterranean spring climate has been shown to exceed that for 

autumn (Chapter 3.4.2). It is interesting to note, however, that the two coolest spring 

climates in the Mediterranean display linear processes. 

Summer 
 
 The highest levels of skill can be found for for Greek Summer Excess Mortality 

with an OLS regression model (r=0.44), and for Spanish and Italian values with a Cubic 

function neural network (up to r=0.85, and r=0.39 respectively) (Figure 7.17). 

Although, the highest levels of skill are associated with reduced variance (as shown for 

other socio-economic indices), the Cubic function ANN is less prone to overdispersion 

(when applied to Summer Mortality) than other forms of network applied to Excess 

Summer Mortality. A cubic function may be more useful when modelling Summer 

Excess Deaths where the number of deaths with temperature increases, increases more 

beyond a given threshold, and then begins to flatten out as the limit provided by the 

pool of susceptible population is approached (Chapter 5.3.5).  

 

The very high level of skill that can be gained for Spain implies a greater 

Spanish link between climate and mortality during summer than other seasons, as 

suggested by discussion in Chapter 5.3.5, but also a greater link than for other regions, 

which has not been suggested by the literature. There is, however, a general lack of 

work quantitatively comparing relationships between mortality and climate between 

countries (Chapter 8.4).  

Autumn 
 

As for Spring results, the most successful method of modelling Autumn values 

of Excess Mortality largely varies from country to country. The greatest skill can be 

found Spain and Greece with OSR models (up to r=0.61 and r=0.56 respectively, 
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although error is very high in the latter case) (Figure 7.5), for Portugal with an OLS 

regression model (r=0.56) (Table 7.6), and for Italy with a Linear basis function neural 

network (r=0.65) (Figure 7.18).  

 

Although the neural network approaches are competitive (compared to the OLS 

and OSR methodologies also used in this chapter) only when considering the upper end 

of the skill distribution, the highest levels of skill may be associated with poor 

replication of variance, as with the other socio-economic indices discussed in this 

chapter. Skill in replicating autumn excess mortality, in all cases, exceeds that for 

spring. It should be noted that Greek mortality is skilfully modelled with a linear 

functional form for all seasons but winter.  

Elderly Mortality 
 

Again, skill for ANN methods applied to Elderly Mortality (Figure 7.19) can 

display very high values (r >0.90), but variance is poorly estimated, ANN models with 

lower errors, however, can be seen for both Italian (r=0.39, v=1.22), and Greek (r=0.35, 

v=0.91) applications of the Cubic basis function neural network. For Greece, 

comparable levels of performance (r=0.39) can be gained through the use of an OLS 

regression (Table 7.6). For other models, performance is not as good. Skill for a Spanish 

application of the OSR model is comparable to the Greek value (r=0.36), but errors are 

substantially higher.  

 
 

7.3.5 Summary 
 

 Given the results discussed above it is difficult to recommend any one 

modelling approach over any other for a given application, although certain points can 

be summarised from the previous Sections: 

 

o In some cases it can be seen that socio-economic predictands can be 

skilfully replicated using a set of purely or largely climate-derived 

predictors (e.g. Winter Residential Electricity Consumption) 
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o The most skilfully modelled Yield Anomalies are for Italian permanent 

crops (Citrus and Grape), with nonlinear basis function (Cubic, Multi-

quadratic, Inverse Multi-quadratic) neural networks. However, at the upper 

limits of skill, estimation of crop variance is poor. 

o The most successful models for Grape are also generally nonlinear basis 

function neural networks. 

o Models applied to Maize Yield are particularly prone to the overdispersion 

problem (i.e. an underestimation of variance).  

o The ‘best’ Wheat Yield models are those utilising an OLS regression 

approach.  

o Potato Yield Anomaly models are also all linear (either OLS or OSR). 

o Winter Electricity Consumption is more successfully modelled than other 

socio-economic predictands, particularly in terms of Residential 

Consumption.  

o Winter Electricity Consumption is more successfully modelled than 

Summer Consumption, and Residential Consumption more than 

Commercial Consumption. 

o The Electricity Consumption models that demonstrate the greatest 

performance are linear, except those for Winter Commercial Consumption 

in France and Greece. 

o The best Greek models for all socio-economic predictands, except Winter 

Commercial Energy Use, are linear.  

o The functions that provide the highest level of skill for Excess Mortality 

vary highly from one region to another, and may be linear in one season 

and non-linear in the next. 

o The highest skill acquired when modelling Excess Mortality is for Spanish 

Summer Excess Mortality, with a cubic function non-linear network. 

o Spanish Excess Mortality models generally perform relatively well in 

comparison to those for other regions. Otherwise there are few 

consistencies between results for seasons or model functions. 

 

 As stated by Pao (2006) different regions generally require different modelling 

methods to accurately capture the variability of relevant socio-economic factors. 
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Sophisticated techniques may not always provide the greatest levels of skill (Liu et al., 

1991), and the best results can only be gained by utilising a number of different 

techniques. There are, however, certain methodological advantages and disadvantages 

from using one model over another: 

 

o Because the development of OLS regression models is often  ‘manual’ 

rather than automatic (i.e. is conducted via the inspection of residuals and 

repeated testing) the most parsimonious functional form may be developed. 

In instances where relationships require only a small number of predictors, 

OLS regression methods may be the most appropriate approach. 

o OLS regression modelling can utilise non-linear transformations of 

variables, as long as model parameters are linear.  

o OLS regression is, however, the most time-consuming of the above 

techniques in terms of application.  

o Although strictly linear, an OSR approach greatly reduces the number of 

models required, as it is largely immune to multi-collinearity issues and can 

be applied with the same predictors over a given region, rather than for 

individual sites.  

o OSR also includes a preliminary spatial analysis stage (in that is conducts 

PCA as a first step), so results should reflect the need for either a large-

scale aggregate index, or a smaller-scale aggregate as determined by 

climate variability. 

o OSR generally will not utilise very (spatially or statistically) small 

components of variance however, so if climate conditions at a single station 

are particularly useful as predictors, but all others are not, performance will 

suffer.  

o A collection of individual ANN models, developed for every relevant set of 

climate predictors (i.e. for every climate site) does not exhibit this problem, 

and when looked at as a distribution it can be seen whether one or many 

models/sites are statistically relevant. The issue of a ‘one site or many’ 

approach is discussed further below (Section 7.4.2). 

o However, the ANN models that produce the highest levels of skill may not 

be the most appropriate, as such models often greatly underestimate 

variance, and are thus prone to high errors.  
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o The ANN approach is capable of implicit non-linearity, and when applied 

with a selection of basis functions it can be seen whether there is a 

discrepancy in skill between linear basis functions and non-linear basis 

functions. In the above discussion it can be seen that non-linear methods 

often return similar levels of skill, so a relatively simple distinction can be 

made between linear and non-linear models. 

o Cubic basis function neural networks often return high levels of skill, but 

may also possess the greatest errors. Either Gaussian (less flexible) or 

Multi-quadratic (more flexible) approaches may offer substantially less 

error for a small reduction in skill.  

 

7.4 Upscaling model structure 
 

 It can be seen that appropriate functional forms are determined largely by the 

socio-economic activity and region under consideration. In this Section the issue of 

climate sensitivity is explored further, as the models discussed above are analysed in 

terms of their predictors (where models exhibit relatively high levels of skill). This 

study is interested in the forms of climate variability that produce the greatest change in 

socio-economic activities (i.e. the most appropriate predictors and their weightings) 

(Section 7.4.2), and the locations that, when climate extremes occur at them, such 

activities are most sensitive to (Section 7.4.1). 

 

7.4.1 Spatial sensitivities 
 

 The division between countries and socio-economic indicators for which local 

climate at every applicable site can be utilised to analyse national socio-economics, and 

others where only one or two sites are useful, is explored further through the use of 

OLS (Tables 7.4-7.6) and ANN results. Where ANN models perform relatively well 

(Section 7.3.2-7.3.4), ANN skill values are shown as map plots of all models calculated 

(Figures 7.20-7.22). However, for the regions of highest skill, errors may be high 

(Section 7.3.2-7.3.4). Spatial issues are less relevant to OSR methods, as they 

automatically discriminate between the large-scale (country wide) or small-scale (a 
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small number of stations) aggregation of predictors through PCA (Chapter 4.2.1 and 

Chapter 7.2.2). 

Agriculture 
 

This section concerns Table 7.4 (OLS regression results), and Figure 7.20. 

 

Results for Citrus Yield models (Figure 7.20) show that although national 

aggregates of climate are generally inappropriate, high levels of skill may be gained 

when using multiple climate sites. Models for central Spain, southern Italy, Paganella 

(in northern Italy), and north-west Greece all produce relatively high levels of skill. The 

Linear Spanish neural network model shows regional sensitivity consistent with the 

agricultural regions most associated with Citrus growing, as do Italian models (World 

Book, 2006). However, Italian Yields also display sensitivity to climate conditions in 

the south, where summer and spring temperatures (Table 6.2) are high (Chapter 3.4.2). 

Greek Citrus Yields are most sensitive to conditions in the north-east, consistent with 

both growing region (World Book, 2006), and low spring temperatures (Chapter 3.4.2), 

which may negatively affect Citrus Yield (Chapter 6.4.2).  

 

Grape Yield results (Figure 7.20) illustrate a wide range of regionality. For 

Spain, the majority of stations show strong links with Grape Yield, for Italy, only one 

(Paganella, in northern Italy), and for Greece, a number of stations, largely in the south-

east (consistent with growing region) (World Book, 2006). Paganella is the most 

northern, and highest, station within the climate data set (Table 3.1). It has been shown 

that climate model skill for Paganella is high for multiple seasons, indices, and models 

(Chapter 4.3.3). It may be that due to its position, the climate at Paganella is particularly 

representative of large-scale mean climate throughout northern Italy. This would 

explain the high levels of skill found when modelling Grape yield with Paganella 

climate data, and also the relatively poor estimation of variance, which may be 

determined by regional variations in climate. Greek Grape Yield has been shown (Table 

6.2) to be (positively) sensitive to autumn dry periods (PCDD) and spring high 

temperatures (TX90), both of which are higher in the south-east than the north-west. 

For Spain and Italy, Maize Yield performance displays similar regionality. As the 

regions generally associated with Maize are not associated with Grape, it seems likely 
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that large-scale (national) climate is more important to Yield sensitivity for both Spain 

and Italy. 

 

For both Potato and Wheat Yields, the OLS approach outperforms ANN 

methods (Section 7.3.2), and it can be seen (Table 7.4) that although skill is high 

throughout Greece (both Wheat and Potato) and Portugal (Wheat), predictors are 

otherwise more useful when drawn from single sites. For Wheat Yields, climate 

conditions at Alicante (eastern Spain) and Forli (north eastern Italy) are useful as 

predictors. Both of these regions of sensitivity are consistent with regions of Wheat 

farming. Frequent summer rainfall may benefit Wheat Yield (Chapter 6.4.2), and for 

Spain such conditions are generally a result of easterly flow into the Iberian interior 

(Chapter 3.4.2). The economy of Alicante is largely agricultural (Britannica, 2006), 

wheat is a major local crop (World Book, 2006), and the region is positioned such that it 

is likely to receive easterly rainfall when it occurs. Cold but dry conditions during 

winter and spring are conducive to good Italian wheat yields (Chapter 6.4.2), and Forli 

is northern, largely sheltered from westerly flow, and within the largely agricultural 

Emilia-Romagna region of Italy (Britannica, 2006). 

Electricity Consumption 
 

This section concerns Table 7.5 (OLS regression results), and Figure 7.21. 

 

For Winter Commercial Consumption, Neural networks produce high levels of 

performance for both Greece and France (Figure 7.21). It is clear that, in the former 

case, Electricity Consumption influences regional skill, rather than regional climate 

variability. For Greece, the greatest levels of skill are gained using stations close to (or 

located within) large cities (i.e., Athens and Thessaloniki). However, the greatest levels 

of skill for French Winter Commercial Consumption are not found using predictors 

representative of conditions within large cities (Bordeaux and Marseille), but those 

nearby (Agen and Montelimar). Winter temperatures for Agen and Montelimar are 

consistently lower than those for coastal (and highly urbanised) Bordeaux and Marseille 

(Chapter 3.4.2), and it may be that regional performance illustrates sensitivity to inland 

(more rural) conditions, in a similar fashion to the displacement of sensitivity seen 

above for Italy and crop yield.  
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 OLS methods show greater Winter Commercial Consumption skill in Italy, 

Portugal, and Spain (Table 7.5), and although skill is high throughout both Portugal and 

Spain, results for Italy are good only when using climate predictors from Porretta Terme 

(north-eastern Italy). Porretta Terme is close to Bologna, the capital city of the northern 

Emilia-Romagna region. Winter temperatures for Rome tend to be mild, but winters in 

the region surrounding Bologna can be very cold (Chapter 3.4.2). 

 

 For Winter Residential Consumption, and both Commercial and Residential 

Summer Consumption, it is clear that regional sensitivities are much less important, as 

both ANN (Figure 7.21) and OLS methods (Table 7.5) show high skill across very large 

areas for countries where they perform well.  

Excess Mortality 
 

This section concerns Table 7.6 (OLS regression results), and Figure 7.21. 

 

Italian Excess Winter Mortality shows regional skill in northern Italy (Figure 

7.21), and specifically for the coldest Italian regions (Chapter 3.4.2) considered in this 

study (i.e. Paganella, Turin, and Lazzaro), rather than regions consistent with a large 

population. Spanish Excess mortality appears sensitive to westerly circulation, which is 

an important factor in Spanish winter climate (Chapter 4.4.2). However, climate data is 

not available for the Madrid region of Spain (Table 3.1), and results are also consistent 

with a regional sensitivity that increases toward the Spanish capital. Portuguese Excess 

Winter Mortality performance is high throughout the country (Table 7.6). Without more 

data concerning the central region of Spain, it is difficult to assess whether Excess 

Winter Mortality is more sensitive to climate variability, or regional demographics. 

 

For spring, the sensitivity of Excess Mortality is clearly related to the 

distribution of population (Figure 7.21), as model performance is greatest when using 

predictors consistent with large cities (i.e., Barcelona and Rome).  

 

Summer Excess Mortality model performance is high throughout Greece (Table 

7.6), as for all other seasons but winter. It is evident that Greek Excess Mortality is 



Chapter 7: Modelling climate impacts  
 

 470 

sensitive to climate conditions across the country in a linear fashion. Successful Spanish 

and Italian models are non-linear, however (Section 7.3.4), and in the former case 

sensitive to conditions in the south-east (the warmest region in Iberia) (Chapter 3.4.2), 

and near Barcelona (Figure 7.21). Italian skill is (again) relatively high for Rome. 

 

Predictors representative of Rome’s climate also produce high levels of skill for 

an Autumn Excess Mortality model (Figure 7.21). However, levels of skill associated 

with Turin (another highly populated region of Italy) (Britannica, 2006), are higher, 

possibly due to the link between Autumn mortality and rainfall (Chapter 6.4.4), which is 

generally heavier in the north of Italy than the south (Chapter 3.4.2). For Autumn, skill 

is also high throughout Portugal (Table 7.6). Although it may be a function of the close 

proximity of the Portuguese climate stations considered within this study (Table 3.1), 

OLS results generally show levels of skill consistent between Portuguese regions. 

 

The skill shown by Elderly Excess Mortality models seems more consistent with 

regional climate variability than population density (Figure 7.21). This study does not, 

however, consider the regional distribution of population by age.  Sensitivities are high 

for southern Greece (the warmest region under consideration) and Paganella (possibly 

representative of northern Italian climate variability).  

 

7.4.2 Model predictors 
 

As for the statistical downscaling models developed in Chapter 4, the 

weights/coefficients associated with the predictors used by the most successful 

econometric models (Section 7.3) are of interest to this study (summarised in Table 

7.7). However, although coefficients may offer insight into the socio-economic 

sensitivity to given climate predictors (Table 6.2) only Electricity Consumption models 

have been shown to produce particularly high levels of performance in terms of both 

skill and variance. In some cases Electricity Consumption models show high levels of 

skill for both linear and non-linear approaches (Section 7.3.2). The following discussion 

is limited to linear model coefficients for ease of comparison.    

It can be seen that for both winter and summer, negative relationships exist 

between temperature indices and Electricity Consumption. As temperatures increase 
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(decrease) in the western (eastern) basin (Chapter 3.4.4), winter Electricity 

Consumption is likely to decline (increase). In winter, this effect is significant for 

average temperatures (across the target region), and the occurrence of frosts (France and 

Spain). Even after considering that the range of frost day values may be up to 3 times 

the range of average winter temperature for a given location (Chapter 3.4.2), it is clear 

that Electricity Consumption is more sensitive to the latter. For summer, and French 

Consumption, indices of extreme cold are more significant than either average 

temperature (TAVG), or frost occurrence. These results, when considered along-side 

discussion in Section 7.3.3, imply that links between winter (and summer) low 

temperatures and the need for heating, are much more successfully modelled in this 

study than links between summer high temperatures and the need for cooling (Table 

6.2, Chapter 5.3.4). Further, regional sensitivities in the previous chapter are more likely 

to reflect the need for heating, than cooling. However, as (during summer) French 

Residential Consumption is sensitive to low temperatures (TMIN) and Commercial 

Consumption is sensitive to very low temperatures (TN10), it is also evident that in 

some circumstances indices of extremes may be as, or more useful, than mean 

conditions when considering Electricity Consumption. 

 

Further, it is clear that there is variation in sensitivity between sectors. For Italy, 

the average winter Residential Consumption coefficient (-8.44) shown in Table 7.7 is 

consistent with similar work conducted by Galeotti et al. (2004), but Italian winter 

Commercial Consumption shows greater sensitivity (for both averages, and values 

apparent for Porretta Terme alone). This sectoral variation also exists for France, Italy, 

and Spain, but the coefficients shown in Table 7.7 reflect variations in sensitivity to 

temperature, regardless of sectoral variations in consumption. On average, Residential 

Electricity Consumption is much smaller than Commercial Electricity Consumption for 

France, Italy, and Spain, (proportionately- 0.36, 0.27, and 0.17, respectively) (Eurostat, 

2006). Although, for a degree increase in temperature the response for Commercial 

Electricity Consumption is likely to be greater than that for Residential Consumption, 

the sensitivity of the latter is therefore likely to represent a much larger proportion of 

total sectoral Electricity Consumption than for the former. 

 

For winter, temperature coefficients for Commercial Consumption are greater 

for France, Italy, and Spain, than Portugal, or Greece. This regional variation in results 
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may reflect either acclimatisation to temperature, or differences in wealth (Chapter 

5.3.4), but a similar variation is also apparent in comparative averages of electricity 

consumption, and GDP (Eurostat, 2006), while the climate of Portugal is closer to that 

of Spain, than Greece (Chapter 3.4.2). For both Portugal and Greece, temperature 

coefficients are also greater for winter Residential Electricity Consumption than 

Commercial Electricity Consumption. It would appear that the Electricity Consumption 

behaviour for Portugal and Greece is markedly different from that of the other countries 

considered here. However, this difference is more likely to reflect socio-economic 

variation, than regional climate variability. 

 

For Greece, results show that coefficients are greater close to Athens, than for 

the Thessaloniki region, and the same is true for French values closer to Marseille, than 

Biarritz. It appears that both model skill, and coefficients, can be seen to reflect a 

sensitivity to temperature consistent with regional variations in population density, and 

that this result is common between countries that otherwise differ in their sensitivity to 

climate.  

 

7.5 Summary 
 

This chapter has shown that through econometric upscaling (Section 7.1) and 

application of the modelling techniques developed in this thesis (Section 7.2), 

successful models can be constructed for some aspects of Mediterranean socio-

economic activity (Section 7.3) that reflect underlying regional variations in sensitivity 

(Section 7.4.1). Further, that although overdispersion is generally as important an issue 

for econometric upscaling as it is for the statistical downscaling of climate (Section 

7.3), in some instances (i.e., Electricity Consumption) statistically significant, and 

distinct, climate sensitivities can be found for both mean climate, and extremes (Section 

7.4.2). Further conclusions regarding both variations in extreme climate (with respect to 

the mean) and their ramifications for the sensitivities found in this chapter, are supplied 

in the following chapter.  
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Table 7.1: Model assumptions relevant to functional form, their meaning, and how 

they have been met in this study (Gujurati, 2003; Kennedy, 2003). 

 
Assumption  Meaning 

Regressors are appropriate for the quantity under consideration, 
i.e. predictors are physically meaningful and strong statistical 
relation ships exist between predictors and predictands 
A set of relevant regressors remains constant over the target 
period, i.e. relationships are stationary 

Specification is 
correct 

The relationship between regressors and the dependent variable 
is linear. This part of the assumption may not apply for non-
parametric forms of modelling 
Model parameters should have been neither under- or over- 
estimated, otherwise the intercept/constant value may be biased.  

Errors are 
symmetric around 
zero Least squares regression based methods cannot violate this 

assumption as the mean of the error term is incorporated in the 
model constant. Normalisation methods also bypass this 
assumption. 
Independent variables and any errors in their measurement are 
drawn from the same statistical distribution over both the range 
of values and the target period. Homogeneity checks ensure that 
this is the case.  

Errors are 
homoskedastic 

Values are not auto-correlated with each other. The application 
of models independently by season minimises this problem.  
Independent variables are accurately measured. All indices of 
climate extremes have been checked for homogeneity 
Lagged values of the dependent variable are not included as an 
independent variable. Instead, lagged independent variables are 
included.  

Independent 
variables alone are 
responsible for 
variations in the 
dependent variable 

Independent variables are exogenous, and are not functions of 
the dependent variable in any way.  

Independent 
variables do not 
display colinearity 

Non-linear inter-relations are generally allowed, but otherwise 
multi-colinearity must be avoided through appropriate 
application of models, or the use of techniques such as PC-
regression.  

There are a greater number of observations than independent variables 
 
 



Chapter 7: Modelling climate impacts  
 

 474 

Table 7.2: Stations removed from Electricity Consumption analysis due to data 
availability issues. Sources are credited as ARPA-SMR (Agenzua Regionale 
Protezione Ambientale – Servizio Meteo Regionale), or FIC/KNMI (Fundación 
para la Investigación del Clima / Royal Netherlands 
 
 Country Name Code Latitude Longitude Elevation Source 

40 Italy Alghero/Fertillia 16520 4038 817 23 ARPA-SMR 
46  Ligonchio LIGONCH 4432 1035 928 FIC/KNMI 
47  Monteombraro MONTEOM 4438 1100 727 FIC/KNMI 
48  Monzuno MONZUNO 4426 1126 620 FIC/KNMI 
49  Porretta Terme PORRETT 4415 1098 349 FIC/KNMI 
50 Portugal Santarem 1320000 3924 -870 54 FIC/KNMI 
51  Pegoes 1670000 3863 -865 64 FIC/KNMI 
52  Alvega 2120000 3946 -804 51 FIC/KNMI 
53  Mora 2260000 3893 -816 110 FIC/KNMI 

54  
Penhas 
Douradas 5680000 4041 -755 1380 FIC/KNMI 

55  Portalegre 5710000 3928 -741 597 FIC/KNMI 
84 Spain Sabiñanigo 946000 4252 -35 790 FIC/KNMI 

 
 

Table 7.3: Model variants selected as a part of sensitivity testing. 
 
Method Model variant Notes 
OSR ROSR: Regional 

Predictor Set 
Regionally selected predictors (Table 6.2), 
applied to each country (France, Greece, 
Italy, Portugal, Spain) individually. 

LBFNN: Linear 
Neural Network 

Neural network 
with no 
preconditioning 

GBFNN: Gaussian 
Basis Function 

Gaussian 
preconditioning 
signal 

CBFNN: Thin Plate 
Spline Basis 
Function 

Cubic 
preconditioning 
signal 

MQFNN: Gaussian 
Basis Function 

Multi-quadratic 
preconditioning 
signal 

ANN 

IMFNN: Thin Plate 
Spline Basis 
Function 

Inverse Multi-
quadratic 
preconditioning 
signal 

12 nodes,  
Basis width =10,  
Constant starting 
seed. 

 


