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4 Modelling climate extremes 
 

4.1 Introduction 
 

In addition to the ‘pattern’ of Mediterranean climate (Chapters 2 and 3), one of 

the major themes of this study is the cause of extreme climate conditions across the 

Mediterranean. As discussed at the end of Chapter 3, correlation studies alone are not 

enough to prove a causal mechanism for any particular form of extreme climate. To that 

end, a further two statistical downscaling techniques have been employed, enhancing 

the weight of evidence for links (or the lack of such links) between hemispheric-scale 

atmospheric circulation and regional (station-scale) extreme climate across the 

Mediterranean. Although it is very difficult to statistically verify a causal link between 

one factor and another, the ability to replicate predictands from a set of predictors is one 

quality that causality implies (Wilks, 1995).  

 

Climate analysis through statistical downscaling is also useful because it allows 

for an assessment of the amount by which one factor may contribute to another, 

inherent in the distribution of coefficients or weights. Both of the statistical modelling 

methods in use throughout this study can be used to directly downscale from the former 

large-scale circulation to the latter regional scale and have been selected to provide two 

very different approaches to the statistical downscaling problem. Having ensured the 

quality of the available data (Section 3.2.1), discussed its properties (Section 3.3), and 

made decisions about the effective use of several predictors and predictands in Chapter 

3.7, this Chapter can go on to discuss the statistical downscalling process. Section 4.2 

provides information regarding the method and structure of both statistical models, and 

provides an introduction to the applicable theories and equations used (rather than a 

deeply technical discussion of linear vs. non linear modelling or neural networks in 

general). Section 4.3 assesses the performance of each model, and Section 4.4 provides 

a discussion of results, including recommendations for future use concerning both 

methods. 
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4.2 Downscaling model structure 
 

The methods used in this study are both multivariate direct downscaling 

techniques, and have a number of common requirements. These are discussed below, 

before this chapter continues to describe the two model methodologies. In all cases, the 

downscaling models are run for the target period (1958-2000) for each season 

separately, so as to avoid the largely solar-dependent effect of a seasonal cycle. The 

predictors mentioned below take the form of the seasonally dependent indices of 

circulation and principal components (Chapter 3.3.2, 3.3.3). Predictands are then the 

indices of climate extremes, discussed in the previous chapter (3.3.1).  

Standardized anomalies 
 
 Forcing agents that act on very long time scales may alter long-term patterns 

evident in temperature or precipitation, or dynamically limit the range of values at a 

particular station (Chapter 2). As seen in the previous chapters, altitude, latitude, and 

proximity to coastlines may all change the mean climatic response at any given location 

(Chapters 2 and 3). Having already described these features, it is evident that without 

explicitly (mathematically) stating model parameters that account for geographic 

variation, we may unduly attempt to fit consistent but spatially-variable behaviour to the 

(physically less connected) predictors provided. Assimilating physical data required for 

a comprehensive analysis is highly time and resource intensive, and in many cases the 

appropriate data are simply not available over the region or period required (e.g. 

Mediterranean land use data). In these instances, and where such geographical factors 

remain largely constant over the period under consideration (i.e. the last 40 years), it 

can be wise to reduce the station data to a more easily spatially comparable form that 

focuses on variations or anomalies between the mean and the range. In this fashion, 

variations in behaviour from station to station can be more easily assessed in an 

objective fashion. In climatology, station data are frequently ‘normalised’ using 

standardized anomalies (Wilks, 1995). These subtract the mean of the data and then 

divide by the appropriate standard deviation. As this study is interested in relating 

variations of hemispheric predictors to regional stations in a comparable fashion, both 

predictors and predictands have been normalised.  
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Calibration and verification 
 
 When constructing a statistical model to relate one set of factors to another, the 

level of generalisation of the model must be taken into account. If the model has been 

too tightly constrained to the data used for construction then it will be incapable of 

providing useful results when applied to other data of the same type. If the data are too 

generalised then the statistical model will not provide useful results even for the original 

data set. A solution between these cases of over- and under-fitting must be found. To 

test for this condition a subset of data (in this case a sub-period of the available 40 

years) are reserved for model testing. Models are constructed, or ‘calibrated’, based 

upon the data set without the reserved set and then tested, or ‘verified’, only upon the 

reserved (verification) data. In this fashion the skill of the model is assessed based upon 

independent data not included in its construction. If the model is either under-fitted to 

the generalised relationship, or over-fitted to a specific data set, then skill will suffer.  

  

 A particularly robust form of the calibration and verification approach is to 

‘cross-validate’ relationships derived from statistical models (Efron, 1983; Michaelson, 

1987). This method involves repeated calibration and verification tests, reserving data 

as part of a moving window. This window may be any size, and may overlap from 

iteration to iteration (although the calibration and verification windows remain distinct), 

but more commonly it is held as one observation with all other (n-1) observations left in 

the calibration period (the ‘leave-one-out’ method). This procedure allows for effective 

verification of small data sets, such as those used for this study. In this study all models 

are tested using these approaches.  

 

4.2.1 Orthogonal Spatial Regression (OSR) 
 

Orthogonal Spatial Regression (OSR) is a technique adapted from surface 

pressure reconstruction (Jones et al., 1987), dendroclimatology (Briffa et al., 1986; 

Briffa et al., 1983), and climate forecasting (Hayden and Smith, 1982). It relies on the 

construction of a correlation or covariance matrix (see Eqn. 3.18) and its subsequent 

manipulation. In terms of the reconstruction of tree-ring data, the levels of skill 

provided by OSR are analogous to those provided by canonical regression (Cook et al., 
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1994). In OSR each variable to be included in the downscaling model, predictor (input) 

or predictand (output), is normalised (see above), and then subjected to principal 

component analysis (see Chapter 3.3), a method that reduces the dimensionality of a 

dataset (Wilks, 1995) and also avoids some of the issues that arise from strongly inter-

correlated predictors (Briffa et al., 1983). The principal components found by this 

method are retained while the cumulative product of the relevant eigenvalues are greater 

than 1. This leads to the rejection of roughly 1/3 of the available components, with the 

remainder explaining around 95% of total variance. This automated discrimination 

procedure, an alternative to that utilised for the previous PCA study (Chapter 3.3), is 

called the PVP criterion (Guiot, 1985) and allows for a more simple discrimination than 

‘scree’ plots, although a greater number of components are retained. The resultant 

‘candidate predictors’ (c) and basic predictands (p) are then regressed onto each other to 

form a principal component (PC) regression (Eqn. 4.1).  

 

 

 

 

(4.1) 

  

Where b*cp represents the regression coefficient between the candidate predictor 

components (
  

� 

! cj ) and the predictand components (upj) for each predictand (p) over 

time (j). An asterix is used in the above to denote a set that has had some members 

reduced (using the PVP criterion above). Due to the orthogonality (see Chapter 3.3) of 

the candidate predictor set there is no need to employ a stepwise regression technique 

(Wilks, 1995), as commonly included in multivariate climate modelling (Jones et al., 

1987). However, based upon their significance in the regression, some further 

components are rejected. Where the standard t-test value for any given component is 

less than 1, that component displays less than marginal significance and is removed 

from the OSR model (Briffa et al., 1983). 

 

Equation 4.1 can be rewritten to more easily show the relationship between 

predictors (y) and predictands (x) if the appropriate equations for the principal 

component analysis are substituted, and the resulting additional terms are absorbed into 

the coefficient d:  
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(4.2) 

d can be enumerated as the product of the eigenvectors (enm) from the predictor (βcj ) 

and predictand (upj) PCAs (Eqn. 3.21) and the regression coefficient b (Eqn. 4.1), that 

exists between them. 

OSR summary 
 

The regression model that exists as a result of equations 4.1 and 4.2 has a 

number of distinct intrinsic qualities: 

 

o The OSR is strictly linear and cannot compensate for nonlinear processes.  

o If using the covariance matrix (as this study does), each regression is 

variance based, rather than centred around the means of a data set (a product 

of using the correlation matrix). This approach is statistically more 

appropriate for studying the tails (or extremes) of a data set and provides 

information additional to that gained from a correlation study (Section 3.6) 

o Separate OSR runs are required for each season at least, and may be more 

appropriate for each month (Jones et al., 1987). However, as each of the 

STARDEX indices (Section 3.3) are calculated seasonally, this temporal 

resolution must be used here.  

o As a function of the eigenvector core of this method, the correlation between 

components (i.e. collinearity between candidate predictors) is minimised. No 

additional pre-selection criterion is required (Jones et al., 1987).  

 

 In addition to the dendro-climatological applications for which OSR was 

originally conceived, the method has also been recently (and successfully) applied to 

the reconstruction of gridded monthly pressure data from historical station records since 

1780. In this application, results are better when the climate is more coherent (i.e. in 

winter compared to summer) (Jones et al., 1999b). Dependence of performance upon 

the spatial coherence of climate is common to statistical downscaling methods (Haylock 

et al., 2006). Recent studies have attempted to reconstruct NAO and SOI indices from 
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wind-field data, and found a similar division in skill between summer and winter 

seasons (Jones and Salmon, 2005). This is the first study that applies the OSR technique 

as a form of statistical downscaling, rather than reconstruction.  

 

4.2.2 Artificial Neural Networking (ANN) 
 

Artificial neural networks (ANN) first appeared in 1943 (McCulloch and Pitts) 

as an attempt to theorise computational systems that would mimic the structure of the 

human brain. The resulting networks form relational maps of artificial ‘neurons’, 

providing convolutions of linear (and more recently, non-linear) functions between 

input and output (Harpham, 2005) that are free from a priori assumptions regarding the 

data employed, and produce a particularly efficient method of pattern classification and 

function approximation (Haykin, 1999). The latter feature has led to ANN deployment 

in a number of meteorological and climatological studies (Navone and Ceccato, 1994; 

Tangang et al., 1998; Silverman and Dracup, 2000) including dendroclimatology work 

(Woodhouse, 1999), and statistical downscaling studies such as the one conducted here 

(Hewitson and Crane, 1992; McGinnis, 1994; Hewitson and Crane, 1996; Cavazos, 

1997; Cavazos, 1999; Harpham and Wilby, 2005). Although Trigo (2000b) have found 

that an ANN approach to statistical downscaling for Portugal compares favourably with 

a simple linear approach, few studies provide a direct comparison between ANN 

performance and that of linear regression methodology over a specific target region 

(Trigo, 2000b) as done in this chapter. Haylock et al. (2006) compare downscaling 

methods over the United Kingdom, finding that neural networks represented the inter-

annual variability of climate better than other statistical methods (i.e. Cannonical 

correlation analysis, multiple linear regression), and dynamical models including 

HadRM3, but that internal biases lead to a systematic underestimation of extreme 

climate. A number of additional recommendations for statistical downscaling the 

climate of sub-regions of the Mediterranean and other European sub-regions can be 

found on the STARDEX (2006) website, including work that shows ANN methods 

generally performing comparatively well, particularly in terms of Iberian rainfall 

indices (Goodess et al., 2006). 
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Neural networks are constructed as collections of ‘artificial neurons’, themselves 

composed of ‘synapses’ (connecting links, each of which possesses its own strength, or 

‘weight’), ‘junctions’ (that sum combinations of inputs provided by synapses), external 

bias (to affect the net output of a junction), and ‘activation functions’ (that condition 

junction output amplitude to within predefined limits), as shown in Figure 4.1.  

 

In mathematical terms the output of a single neuron, after activation, can be 

written: 

  (4.3a) 

 
Where: 
 

 

 

 

(4.3b) 

Here, j represents the number of inputs (x), affected by synaptic weights wk1, 

wk2,…wkn leading to neuron k. The output of the summing junction (uk) and the bias (bk) 

applied to neuron k, give the ‘induced local field’ (u+b). The final output of the neuron 

k (yk) is given by the induced local field term, multiplied by a limiting (‘activation’) 

function (
  

� 

! ). 

 

Activation functions (
  

� 

! ) can be step threshold functions, sloped linear functions, 

or sigmoid functions (among others), and are generally configured to give output (y) 

between 0 and 1 or –1 and 1 (Haykin, 1999). As can be seen from Equation 4.3, the 

ANN is essentially a more flexible variant of a regression system. Figure 4.1 represents 

a multi-layer perceptron, containing multiple nodes, and in this case Equation 4.3 can be 

rewritten to give the output at y1 (Harpham, 2005). 
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Figure 4.1: A Multi-Layer Perceptron. Interlocking neurons in a multi-layer 
neural network (Haykin, 1999) 
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(4.4) 

Each term is described above, with the exception of zj. The z term represents the output 

from each node in the hidden layer of Figure 4.1 (given by yk in Equation 4.3a). 
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Neural networks seek appropriate weighting values between input and output. 

This process is iterative, and continues until the network minimises the error (or cost 

function) between output signal and expected values over the training period, having 

gained an optimum set of weights through a training algorithm, such as error back-

propogation (Rumelhart and McClelland, 1986). Just as with other forms of numerical 

modelling, networks may be under- (too few nodes, too few hidden layers) or over- (too 

many nodes, too many hidden layers)- fitted, and there are approaches to both problems 

(see below). An absolute limit to the number of nodes exists, however, that is equal to 

the number of predictors entering the network. A summary of these issues is given by 

Harpham (2005).  

Radial Basis Function Neural Networks 
 

The majority of neural networks in active use (Gardner and Dorling, 1998; 

Harpham, 2005) are of the Multi-layer Perceptron (MLP) type (described above). This 

study uses a similar one-hidden-layer ANN known as a ‘Radial Basis Function’ (RBF) 

neural network (Powell, 1987; Light, 1992). This method overcomes several of the 

drawbacks inherent in simple MLP models (Harpham, 2005), such as the difficulty in 

assigning the appropriate number of layers or nodes: there is only one hidden layer, and 

the number of nodes are constrained by the number of inputs to the RBF model. The 

paradigm associated with the RBF neural network is also more appropriate for mapping 

input onto output in a multi-dimensional space, as illustrated below.  

 

The RBF modification changes the overall approach of the network from a 

stochastic model to a high dimensionality curve-fitting approximation: essentially a 

‘best-fit’ methodology. From Cover (1965), we can assume that any set of binary (i.e. 

dichotomous) data in a two-dimensional space will possess a plane that separates the 

dichotomy into homogenous groups. When used for pattern classification (a problem 

that machine learning is commonly applied to) RBF networks seek to find the 

appropriate plane, and the higher the dimensionality of the network, the more likely it is 

to achieve success (i.e. a close approximation). This illustrates the capability of RBF 

networks to use a nonlinear transformation to map a nonlinear problem into a linear one 

through high-dimensional ‘hidden space’.  Rather than the separation problem, the 

current issue of statistical downscaling is more similar to filtering/interpolation, where a 
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multidimensional plot of output as a function of input possesses a representative plane 

(Haykin, 1999).  

 

RBF networks interpolate surfaces (of the required dimensionality) by inserting 

a conditioning (linear or non-linear) arbitrary ‘basis’ function (Eqn. 4.5) into the 

junctions of the hidden layer shown in Figure 4.1, while the second layer shown retains 

the structure detailed in equations 4.3 above. If the network has a single output the 

hidden layer nodes then become the function F(x): 

 

 
(4.5) 

Where 
  

� 

!  represents N arbitrary radial basis functions with known data points at 

their centres (Powell, 1988), and ||x-xi|| the Euclidian distance between the input vectors 

and those functions.  For a desired response (d), such that F(xi)=di the problem can be 

restructured in terms of matrices, so that the desired response vector (x) becomes the 

product of the linear weight vector and the interpolation (N-by-N) matrix:  

  (4.6) 

This then gives: 

  (4.7) 

 

And if 
  

� 

!  is a non-singular matrix the weightings of the network can then be solved: 

 
  (4.8) 

 

As long as 
  

� 

!  is non-singular and the data points distinct, this equation is valid 

for multiple outputs in the generalised form, gained by linear superposition of the basis 

functions used above. However, there is a further modification (Eqn. 4.9) of this 

equation (Moody and Darken, 1989; Broomhead and Lowe, 1988) that limits under-

fitting and enhances the speed of computation. In this scheme, the number of basis 

functions required decreases (to many less than the number of input vectors), basis 

function centres are freed from initial constraint and are determined by training, and 
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biases (Figure 4.1) are introduced that modulate the average basis function values 

towards the average target values.  
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Where x represents elements xi in the d-dimensional input vector (Harpham, 2006). 

 

Michelli’s theorem (1986) informs us that there are numerous functions that can 

be used to produce non-singular matrices in this context, detailed in Bishop (1995), and 

below: 

 

o Linear: ( ) xx =!  

o Multiquadratic: ( ) ( ) 2122 !" += xx  for !"> x and 0#  

o Inverse Multiquadratic:  

o Cubic: ( ) 3
xx =!  
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o Thin Plate-Spline: ( ) ( )xxx ln
2=!  

 

With terms for constants (c) and a ‘basis width’ (
  

� 

! ), that determines the 

smoothness of the interpolation function.  The appropriate use of basis function is 

explored further in Section 4.2.3 and 4.4.1. 

Training RBF Neural Networks 
 

When ‘training’ RBF networks to the appropriate architecture, there are two 

variables that must be optimised, the centres of the basis functions (unsupervised) 

discussed above, and the synaptic weights of the model (supervised). All other values 

are either selected initially (such as the basis width variable), or are reflexive (with 

iteration). The centres of basis functions are determined with the use of an unsupervised 

k-means clustering approach. This hybrid training method has advantages over entirely 
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supervised methods, such as error back propogation (Harpham, 2005). The k-means 

method maintains a high training speed, is not as vulnerable to local minima in error 

surfaces as error back propagation, and also aids the interpretability of the basis centres. 

The disadvantage of the k-means method is that the cluster configuration is constrained 

by the order in which inputs are ‘shown’ to the RBF model, in turn dependent on initial 

seed values. Given sufficient time / processing power, a large number of randomised 

seeds, or a heriarchical clustering method, could be used to overcome this problem and 

find optimal clustering. Lacking the appropriate resources, comparisons between RBF 

models are best served by a consistent order of input selection. 

 

The K-means clustering algorithm used for this study divides input vectors into 

k-groups with maximised homogeneity, the centres of the resulting input clusters are 

then used to locate the basis function centres in the regions of input space where there 

are significant volumes of data. Determining both the number of clusters and the centre 

of each cluster requires iterative experimentation (Anderberg, 1973). Inititally there are 

k clusters, where k is the number of input vectors, and each vector determines the centre 

of one cluster. Each vector is then reassigned to the cluster with the nearest centroid, 

after each change in the set of inputs the centroids are updated. The reassignment 

process is repeated for every iteration until the structure of each cluster remains 

unchanged after one whole cycle.  

 

Here, optimal weights are constructed using singular value decomposition 

(SVD) to solve for the weights matrix disussed above. SVD (Golub and Van Loan, 

1996) represents a particularly robust method used with many other forms of statistical 

climate modelling (Wilks, 1995). If the matrix (  

� 

!) is a real NxM matrix then it 

possesses orthogonal matrices: 

  

 

and 

  

� 

V = [v
1,
v
2
,...,v

M
] 

such that 

 

(4.10) 



Chapter 4: Modelling climate extremes 
 

 215  

    

� 

U
T
!V = diag("

1
,"

2
,...," k ),    

� 

K =min(M,N) 

where 

 

 The   

� 

!  values are termed the singular values of the matrix   

� 

!. The MxN pseudo-

inverse of this matrix is then: 

  

 

 

(4.11) 

  

� 

!
+ is an NxN matrix that can be expressed as singular values of   

� 

!  such that: 

  

 

 

(4.12) 

For a radial basis function neural network:  

  

 

 

(4.13) 

Where W is the linear weights matrix, T is the target output vector, and   

� 

! is the 

interpolation matrix. 

 

RBF summary 
 

Given the above, Radial Basis Function Neural Networks are distinct from other 

forms of climate modelling in that: 

 

o ANNs make no a priori judgement on the data employed (Haykin, 1999) 

o Due to the neuronal weighting system, ANNs do not suffer overly from the 

use of ‘too many’ irrelevant or redundant predictors, as they are weighted to 

zero. Conversely, the more predictors that are used, the higher the 

dimensional limit of the network, and, as illustrated by Cover (1965), the 

more likely it is to find appropriate surfaces. Networks are often utilised 

with hundreds of predictors, rather than tens, although there exists no 
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specific rule for a network’s ideal size (Bishop, 1995; Haykin, 1999; Sarle, 

2000). 

o Neural networks can suffer from over-fitting. However, the radial basis 

function neural network limits this problem, and the modification supplied 

by Moody and Darken (1989) limits it further. Sarle (2000) states that a 

number of training cases 30 times the number of weights in the network 

reduces the likelihood of over-fitting, but in climatology such volumes of 

high-quality data may not be available. In these cases, robust forms of 

validation are essential. 

o RBFs offer a range of solutions to non-linear problems. An example of this 

is the ‘exclusive or’ problem, where a network produces a desired response 

if one predictor or another possesses a given value, but not if both possess 

that value (Haykin, 1999). RBFs are capable of solving this problem, 

although it cannot be solved by any linear perceptron (Haykin, 1999).  

o If appropriate algorithms are used, RBF neural networks need only optimise 

values associated with the hidden layer, and do not need to produce a time-

consuming full non-linear ‘best-fit’. 

4.2.3 Model sensitivities 
 

Given the above types of models (OSR and ANN) it then becomes necessary to 

determine appropriate starting conditions and whether or not multiple variants (i.e. 

distinct forms of model application with different model structure, or predictor sets, 

etc.) are required. A number of factors may act to influence the ability of each approach 

to skilfully reproduce climate predictands. In order to identify the most appropriate 

configuration(s), a sensitivity test is therefore required. Often, the choice of model 

starting conditions is subjective, a more objective approach is utilised here. In this test 

each statistical downscaling model parameter is altered over a range larger than that 

normally used by the statistical downscaling model to see how end results are affected. 

In all instances the quantity tested for is model skill. Model skill measures the ability of 

any given model to replicate observed data, and here is measured by the correlation 

coefficient (r, Section 3.3.4) between observed and modelled series (Wilks, 1995). The 

following factors can be altered to give variations upon the models detailed above, and 

may affect model skill: 
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o In the case of OSR, the specific combinations of predictors (up to 23) and 

predictands (up to 14) used may have an effect upon model skill.  

o The season of testing may also have an effect upon skill (Section 4.2.1 and 

4.2.2) 

o There are no other conditions to adjust in the OSR model except the t-test 

level for correlation rejection. To ensure good validation results for both 

temperature and precipitation a value of 1.0 has been selected (Briffa et al., 

1983) and will not be altered.  

o The RBF ANN cannot be improved in skill by removing predictors or 

predictands. The number of nodes used in construction is, however, limited 

by the number of predictors available.  

o However, the order in which predictors are presented to the RBF model may 

have some effect upon the clustering algorithm. This is determined via the 

use of a seed value for randomisation. As discussed in the section above, this 

seed value will be held constant to aid repeatability at the expense of 

optimisation, and will not be altered (Harpham, 2005). 

o The basis function chosen for each neural network is likely to have a 

substantial effect upon RBF model performance. 

o Intrinsic to this selection is the choice of an appropriate basis width.  

o Finally, in addition to the theoretical limits placed upon the number of nodes 

used in the network (Section 4.2.1), an explicit limit can be imposed (this is 

referred to as ‘early stopping’).  

 

So that changes in the above are traceable (i.e. any alteration of model skill can 

be directly attributed to the change in a single parameter) both approaches are initially 

set to arbitrary starting conditions. The OSR model is set to utilise all available 

predictors and predictands. The RBF neural network is constructed with a linear basis 

function (the most simple of those available), an arbitrary basis width of 10 (as all data 

is normalised, although the linear model does not require this variable, it is required 

when testing differences between functions), and no early stopping. All model runs are 

initially cross-validated as described in Section 4.2. 
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As a very large number of model runs are required to conduct a comprehensive 

sensitivity test, the number of stations have been limited for this part of the study to 

those shown in Figure 2.2 (Bordeaux, Montseny Turo, San Javier, Paganella, Pisa, 

Prizzi, Calarasi, Tripoli, and Ierapetra). These selected stations (see Table 3.1) provide a 

wide range of altitudes (0-1706m), latitudes (35.0°N-46.1°N), and longitudes (0.8°W-

27.4°E).  

OSR sensitivity results 
 

As discussed above, there are few parameters that can be altered in the 

construction of the OSR model. It was found that rather than the number of predictors 

used for testing the sensitivity of the OSR model, different combinations of particular 

predictor indices substantially altered skill. With regard to the correlations found in the 

previous chapter (Chapter 3.6) and in the literature (Chapter 2), different sets of 

predictors were created that displayed a large range of correlations with predictands 

(both very high and very low), and although different stations required different sets of 

climate predictors, some commonality was found between stations, and particularly 

between different Mediterranean regions (i.e. west, central, eastern) for each season. 

Lower limits of skill were generally found with a single, poorly correlated climate 

predictor (with r often approaching zero). Upper limits of skill were found with climate 

predictor sets numbering between 9 and 18 varied by both season and region (Table 

4.1), to form a Regional OSR predictor set (ROSR), or with a full, Basin wide OSR 

predictor set (BOSR) (Table 4.2). The predictors in the BOSR set vary only by season, 

as dictated by seasonally differing principal component predictors (Section 3.5.5).  

 

For winter and spring, full climate predictor sets (BOSR) generally resulted in 

greater model skill (Figure 4.2). The greatest improvements in skill (over single 

predictors or a full set) using a climate predictor subset (ROSR) occurred during 

summer and autumn (Figure 4.2). In many parts of the basin (particularly the east) 

autumn and summer show similar magnitude temperatures and rainfall values, distinct 

from behaviour for winter or spring (Chapter 3.4.2 and Chapter 3.7), in addition 

summer and winter show different sets of climate predictor indices with shared 

variability and a greater degree of correlation with climate predictands (Chapter 3.5.3, 

3.6, and 3.7). Autumn and spring season OSR models were generally more sensitive to 
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changes in climate predictor sets than those for winter and summer, particularly in terms 

of the spatial coherency of results. Spring (autumn) results displayed a greater (lesser) 

spatial coherency for the all-predictors model (BOSR), and less (more) so for a 

predictor subset (ROSR). Mediterranean climate behaviour is subject to a greater range 

of influences during these seasons during a changeover from a zonal to a meridional 

circulation (Chapter 2.7 and 3.7). It can also be seen from Figure 4.2 that for both OSR 

models seasonal skill results are less coherent (occupy a greater range of values) for 

summer than other seasons, and more coherent for winter, reflecting the tendency of the 

Mediterranean climate for increasing regionality during summer (Chapter 2.7, 3.4.2, 

and 3.7). Seasonal variations in skill are discussed in greater detail in Section 4.3.2.  

 

Figure 4.2: Sensitivity test performance (r) of models. Boxes represent winter 
(dark blue), spring (green), summer (orange), and autumn (light blue) 25th-75th 
percentiles of performance (r) for all predictand indices at all tested stations, 
whiskers are limited by the 10th and 90th percentiles of performance (r). BOSR is 
an OSR model with all available predictors included, ROSR is an OSR model with 
a sub-set of predictors varied by season and region (west, central, east). LBF, GBF, 
and TPF, are Linear, Gaussian, and Thin Plate Spline function neural networks.  

 

OSR is a naturally multivariate method, and can model relationships between 

large numbers of both dependent and independent variables. However, due to the PCA 

core of the method, skill increased when modelling a single climate predictand index 

(e.g. TMAX) over multiple stations, rather than multiple predictand indices at a single 

station (e.g. Paganella). As PCA creates orthogonal components of the original data sets 

(Section 4.2.1) OSR is unaffected by the multi-collinearity issues that often create 
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problems for regression modelling of this kind, and the multi-station approach is 

therefore entirely statistically acceptable (Chapter 1), although certain issues arise from 

its use (see below). 

ANN sensitivity results 
 

As ANN architecture has no implicit means of overcoming issues related to 

multi-collinearity, each network has been applied on a station by station basis, 

modelling all indices at one point simultaneously, before moving on to the next 

(Chapter 1). When applying neural network models, the basis function used to construct 

the network changes the model at a fundamental level, and is therefore likely to affect 

ANN model sensitivity. Multi-Quadratic, Inverse Multi-Quadratic, Gaussian, Thin Plate 

Spline, Cubic, and Linear functions were tested (as discussed in Section 4.2.2). 

However, Cubic functions were found to systematically underperform, while the 

functions that returned the greatest overall levels of skill were Linear, Gaussian, or Thin 

Plate Spline (for all seasons but summer), with Linear ANN models generally 

outperforming non-linear ANN models. A more detailed discussion of comparative 

model performance is included in Section 4.3, but only for the latter three basis function 

networks.  

 

As for the OSR climate models discussed above, seasonal skill can be shown to 

display varying sensitivities to parameter changes, including alterations to the basis 

function under consideration. The three functions with greatest overall performance are 

included in the above plot (Figure 4.2). Although they outperform Cubic or Quadratic 

models for winter, spring, and autumn, the Thin Plate Spline networks used in this study 

fail to converge (and therefore produce negligible reliable skill) for Mediterranean 

summer climate, and results are therefore not presented. Of the remaining results, 

winter and summer show the least sensitivity to change in basis function, with greater 

changes in mean skill due to a change in basis function for spring and autumn. This is 

consistent with a greater sensitivity to OSR parameters in the transition seasons, as 

discussed above. As also discussed above (for OSR climate models) the range of results 

for summer are much greater than for winter for both Linear and Gaussian models, 

Haylock et al. (2006) describe similar behaviour for the U.K. as a function of the spatial 

coherence of the seasonal climate. However, spring ANN results, although highly 
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sensitive to changes in basis function, and showing an overall greater range of results, 

are generally (for the central 75% of results) more coherent than results for any other 

season. Generally high levels of spring coherency can also be seen in the BOSR model 

(Figure 4.2). Mediterranean spring climate shows a generally less-significant trends (for 

all indices) than for any other season (Chapter 3.4.4), which may influence results. For 

each of the ANN models presented above, autumn results show a lack of coherency, 

potentially as a function of similarities between the summer and autumn Mediterranean 

climate (Chapters 2.7 and 3.7). In general, although skill is generally higher, results 

display a much greater spread for ANN models than OSR models. The higher range of 

values follows from differences in the application of each form of model, as the neural 

network models developed here consider stations separately, while the OSR models 

consider each station only as a contribution to a given factor of variance. More detail on 

seasonal differences in ANN and OSR skill can be found in Section 4.3. 

 

For those basis functions that require the use of a basis width (Section 4.2.2), 

little change in skill (around -0.01 r) occurred for very large variations in basis width 

above a value of 10 (tested 10-10,040, incremented in a logarithmic fashion, i.e. 10, 20, 

40…) for all ANN models, in all seasons. Below the starting value (i.e. 10), skill was 

found to decline, more so with very small basis widths (0.1 and below) as a function of 

the fact that all data are normalised before entering the ANN model, and that the basis 

width is determined by the order of magnitude of the data (i.e. largely between plus or 

minus 4). In terms of ANN model structure, skill was also found to be dependent upon 

the number of internal nodes within each model, limited by the number of climate 

predictors used (Section 4.2.2). By the 20th node, the skill (and associated errors) gained 

from any given ANN model had a tendency to approach a constant value, and in most 

cases values of r flattened out by the 12th node (Figure 4.3). 
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Figure 4.3: Variation of neural network skill (r, y-axis) by season with increasing 
number of nodes (x-axis) for multiple model types (all 6) and all stations (9, as 
given above). Solid lines represent upper and lower bounds of skill and the mean. 
 

ANN model testing showed no additional gain in skill through a reduced climate 

predictor set. In all cases the highest level of skill could be found with the maximum 

number of available climate predictors. These results are supported by the theory upon 

which neural networks are constructed, as inappropriate entries are simply weighted to 

zero as part of the recursive process (Section 4.2.2).  Altering the number of climate 

predictands had no discernible effect upon the results of the ANN model, although 

theory dictates that model complexity must increase for every additional predictand 

included (Section 4.2.2).  

 

During sensitivity testing it was found that both models possess issues when it 

comes to missing or null values. OSR performs array division to produce a 

variance/covariance matrix (Section 4.2.1), so excessive null values cause arithmetic 

errors. Similarly the ANN technique finds it difficult to work from an entirely or largely 

null starting point, yielding floating-point errors. The latter technique is far more 

tolerant of the null problem than the former is of missing values, but will still not work 

effectively with the 'frost days' index across the basin. There are therefore no results 

shown for ANN modelled frost days in this study.  

 

As the OSR model runs are performed on multiple stations simultaneously, even 

one station with an excessive number of missing or null values (i.e. where over 50% of 

the validation period is missing or null) can cause the model to fail. Where this is a 
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problem those stations have been removed from the predictand series used for analysis. 

In some extreme cases (frost days in the east and some summer rainfall indices) this 

results in zero skill for an entire region, or for the entirety of the basin.  

 

4.2.4 Summary and model variants 
 

In this section two very different forms of statistical downscaling have been 

presented, and tested for seasonal and internal sensitivities to model parameters. As a 

result, two optimal OSR variants and three optimal ANN variants have been constructed 

(summarised in Table 4.2): 

 

o A basin-wide OSR based model (BOSR) that uses all of the available 

predictors, applied across the entirety of the Mediterranean 

simultaneously, to one predictand at a time. 

o A regional OSR model (ROSR) that uses a limited number of 

predictors (Table 4.1) applied separately to western, central, and 

eastern regions (Section 2.2.1), to one predictand at a time. 

o A Linear RBF neural network (LBF NN) applied separately to each 

station in turn, but for all predictands. 

o A Gaussian RBF neural network (GBF NN) applied separately to 

each station in turn, but for all predictands. 

o A Thin Plate Spline neural network (TBF NN) applied separately to 

each station in turn, but for all predictands. 

 

These variants will be used for the remainder of this Chapter, and between them: 

 

o Represent both linear (OSR, linear ANN), and non-linear (Gaussian 

and thin plate spline ANN) methods,  

o Represent variance based (OSR) and surface fitting (ANN) 

approaches 

o Are applied with respect to issues of multicollinearity (Section 4.2.3) 

o Undergo rigorous calibration and validation (Section 4.2) 
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o Are applied seasonally, justified by previous studies (Jones et al., 

1987, Chapter 2.1) and varying sensitivities (Section 4.2.3) 

o Use basis functions (where applicable) limited in number by both 

non-singularity issues (Section 4.2.2) and sensitivity testing (Section 

4.2.3) 

o Use parameters (such as basis width, early stopping, etc.) and 

predictor sets identified by the sensitivity testing described in this 

section, with respect to the theory outlined in Section 4.2.2. 

 

4.3 Model performance 
 

4.3.1 Definitions of model performance 
 

Once the above sensitivities and model variants have been determined, models 

can be constructed to downscale from hemispheric-scale circulation predictors to 

station-scale indices of extremes / predictands. This Section (Section 4.3) describes 

performance differences for the models defined in Section 4.2.4 as applied to the 

climate predictors and predictands defined in Chapter 3.4.1 and 3.5.2 in an effort to 

offer a recommendation for ‘best use’ in terms of statistical downscaling. In addition, 

the internal weightings of skilful models may offer some insight into the causes of 

extreme behaviour when taken with the evidence presented in the previous Chapter (See 

Section 4.2.2). Performance is defined in this Section largely in terms of model skill, as 

utilised in the sensitivity test conducted above (Section 4.2.3). Where results, or skill, 

are mentioned in the following discussion they refer to r, categorised as representing 

moderate (significant at the 0.10 level), good/highly significant (the 0.01 level), or very 

good/very highly significant (the 0.001 level) correlations (Section 3.3.5) between 

modelled and observed time series (Wilks, 1995) (Table 3.2). Two other measures of 

performance, both also based upon the differences between observed and modelled 

data, are also used. 
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Ratio of Variance (V) 
 
 The ratio of variance is the variance of the modelled data set divided by that of 

the observed data set:  
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If modelled and observed data are identical V is equal to 1, and the closer to unity V 

becomes, the more similar the amplitudes of the observed and modelled values. As a 

ratio this value possesses no dimension. 

 

Root Mean Squared Error (RMSE) 
 
 This measure of model performance is self-descriptive, and is the average of the 

squared differences (x) between each n points of the modelled and observed data, then 

square rooted:  
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RMSE measures the average difference between observed and modelled data. If 

modelled and observed data are identical, RMSE will be zero. However, unlike the ratio 

of variance, RMSE retains the units of measurement of the initial data set, and values 

are therefore not directly comparable when assessing performance across different 

predictand indices. In cases where RMSE is compared in such a fashion it can be 

normalised by the standard deviation of the observed data, or converted to ranks. 

 

The two quantities detailed above may be related to r by the following equation 

(4.16): 
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Where E0 is the overall difference between observed and modelled means. 
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Equation 4.16 gives the ability to plot the three statistics of performance (r, V, 

and RMSE) given above on a two dimensional plot, known as a Taylor diagram 

(Taylor, 2001). Taylor diagrams (Taylor, 2001) of model performance are presented in 

Figures 4.4 to 4.13 and discussed below (Section 4.3.2). These diagrams display V on a 

radial co-ordinate, and r on the angular co-ordinate. Where points are closer to the x (y) 

axis, they show greater (less) model skill, and where they are closer to a line curving 

between the 1.0 mark on both x and y axes they show a more accurate representation of 

variance. Points further from (nearer to) the origin than the V=1.0 line show an 

overestimation (underestimation) of variance.  It follows from Equation 4.16 that 

RMSE is then the distance between any given point and a reference point, which in the 

case of this study would be the statistics of the observed data against itself (a perfect 

model), in all cases represented as a variance ratio (V) of 1.0 and a correlation 

coefficient (r) of 1.0. In Figures 4.4 to 4.13 Taylor diagrams are presented for each 

index, and for each model variant. Data points for every climate station are included on 

each plot, for each season, and are presented with a ‘perfect model’ reference point on 

the x-axis. 

 

4.3.2 Variant comparison 
 

The first comparative analysis of performance concerns an overall assessment of 

how each of the model variants replicates observed data. This analysis is then followed 

by seasonal and regional analyses. Abbreviations used throughout this section are 

detailed further in Tables 3.4 (climate predictands) and 4.2 (climate model variants).   

Overall performance 
 

It is clear from the Taylor plots (Figs. 4.4-4.13) that both OSR models (Figs 4.4-

4.7) systematically underestimate the variance (V is largely between 0.2 and 0.8) of 

each predictand index. Although the OSR method does reject a number of components 

of variance as part of the modelling process, over 95% of the predictand variance 

should be retained. The OSR models used here underestimate predictand variance more 

for the ROSR (Fig 4.6-4.7) variant than the BOSR (Fig 4.4-4.5) variant, mildly less for 

temperature than precipitation (by around 0.1), and generally less for spring than 

autumn (particularly for the BOSR variant). Underestimation of predictand variance is 
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less evident for TAVG, TMIN, TMAX and TX90 than for TN10, TNFD and HWDI 

indices. Evidently a larger number of predictors are required to capture a larger 

proportion of predictand variance, the uneven distribution of precipitation variance 

(which has a lower bound), causes greater problems for the OSR method than the more 

normally distributed temperature distribution (Wilks, 1995), and the greater range of 

both autumn precipitation and temperature values (by comparison with spring values, 

Chapter 3.4.2) has a negative effect on the OSR method’s ability to replicate 

predictands. It also seems likely that there may be different statistical distributions 

attached to measures of duration and magnitude with processes behind the former 

(length of frosts, and heatwaves) more complex than the latter (Chapter 2.4.2), resulting 

in a difference in performance. The underestimation of predictand variance is not 

uncommon to modelling methods (Wilby et al., 1998), particularly when modelling 

rainfall data, and is termed the ‘overdispersion’ problem (Katz and Zheng, 1999; 

Goodess 2000). Possible causes for this problem include inadequate representations of 

high-frequency variability in models, and inadequate representation of low-frequency 

forcings, both of which may lead to underestimation of both variance and persistence 

(Katz and Zheng, 1999; Goodess, 2000). As various low frequency forcings are 

considered within the models utilised here (e.g. the NAO, humidity, sea level pressure) 

the former explanation seems more likely.  

 

Both OSR models generally produce skill in the 0.20-0.60 range. For the BOSR 

model, Taylor plot results are roughly diamond shaped, showing that predictand 

variance estimation is relatively low where skill is either comparatively very low or 

very high. This variance/skill behaviour is less apparent for TN10 and TX90 than other 

temperature indices, and more so for precipitation indices than temperature indices. For 

the ROSR model, variance estimation mildly declines with an increase in skill for all 

temperature indices but TX90, and all precipitation indices but PREC, PINT, and PN90. 

These other predictand indices show a relationship between skill and variance closer to 

the diamond shape given above. In the case where variance estimation declines (by as 

much as 0.2 V) with high values of skill it is likely that the OSR model’s regressive part 

is more effective than its ability to accurately capture large-scale variability, and that as 

with many other models (McAvaney et al., 2001) the mean of the temperature or 

precipitation index under consideration is being more accurately represented than the 

total variability. It can be seen that the OSR method’s theoretical basis in variance 
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calculation may give little improvement over other regressive methods in practice as 

improvements in skill reduce the variance of the modelled data.  

 

A larger proportion of precipitation indices (particularly PX5D and PCDD) offer 

very low levels of skill (near zero) than temperature indices, more so for the ROSR 

variant than the BOSR variant and more so for summer and autumn than any other 

season. Otherwise, skill levels are generally highly consistent between seasons, and 

within a given range, with no one season or predictand index obviously providing a 

much greater level of skill than any other.  Furthermore, from these plots it is difficult to 

suggest a given circumstance where, overall, the BOSR variant provides greater or 

lesser levels of performance that the ROSR variant. 

 

Skill and variance for the neural network models (Figs. 4.8-4.13) are far more 

variable between stations and seasons than the OSR models. The neural network 

variants utilised here both under- and over- estimate model variance. In the case of the 

Linear (Fig. 4.8-4.9) and Gaussian (Fig. 4.10-4.11) neural network models, 

overestimation is more of a problem for temperature indices than precipitation indices. 

For all ANN variants (but less so for the TBF variant), as the BOSR variant, 

overestimation of variance is more evident for TAVG, TMIN, TMAX and TX90 than 

for TNFD and HWDI indices, suggesting that the issue is systematic, and based around 

the inherent qualities of the predictand data. TN10 behaviour lies somewhere between 

the two groups. There is no seasonal bias in variance estimation for the former group 

(magnitude), but for both the latter temperature (duration) indices and the precipitation 

indices, autumn variances are again routinely underestimated. It is also clear that 

overestimation of variance is less of a problem for precipitation predictand indices than 

temperature indices for both the Linear and Gaussian variants. General skill for the Thin 

Plate Spline variant (Fig 4.12-4.13) is lower than for the other two (discussed further 

below), and it appears that it is much more prone to overestimation of precipitation 

indices than either the Linear or Gaussian variants. In terms of temperature indices, the 

Linear model is more prone to overestimation of variance. As all variants are prone to 

both over and underestimation the most appropriate model for use, if concerned with the 

replication of variance, is that which clusters closest and most compactly around the 1.0 

V line. As with the OSR variants, no model is ideal, but for magnitude of temperature 

predictand indices (i.e. TAVG, TMAX, TMIN, TX90) it can be seen that the Gaussian 
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model is more appropriate, while for duration indices (i.e. TNFD, HWDI), the Thin 

Plate Spline is better suited. For precipitation indices, although little coherency between 

indices is displayed, the most balanced estimator of variance is the Thin Plate Spline, as 

the other variants have a greater tendency toward underestimation.  

 

There appears much less of a discernible, consistent, relationship between skill 

and variance for the ANN variants than the OSR variants, however. For the magnitude 

group of temperature indices there is no particular relationship evident, although the 

distribution of skill is very tight for these indices (see below), which may make such a 

relationship inherently more difficult to assess. For TNFD and HWDI indices, a slight 

diamond shape is apparent in results, as discussed above. Precipitation index behaviour 

is much less consistent between variants, and where a particular 

distribution/relationship may be apparent for one predictand index and one ANN 

variant, it may not be for other indices or variants. This lack of apparent relationship 

between skill and variance estimation, where one exists for the OSR variants, may 

simply be a facet of the fact that the ANN models have been applied separately for each 

station, as opposed to collectively for each index. 

 

The difference in application between one and many stations may also 

contribute to the fact that the ANN variants are more prone to producing negligible skill 

for both temperature and precipitation indices. Although this behaviour is most evident 

for JJA TNFD in the Gaussian model (due, again, to an absence of summer frosts), 

whether or not these very low results are generally consistent to a specific set of stations 

is explored in greater detail below (Section 4.3.3).  Results for the LBF ANN (Fig 4.8-

4.9) are the least coherent of all models in terms of skill, but do show higher levels of 

overall skill than any other model (r=0.5-0.8), even for measures of extreme 

temperature duration (r=0.4-0.7) and precipitation (r=0.4-0.8). Gaussian temperature 

results are the most coherent in all seasons but summer, with winter, spring and autumn 

skill occupying a very small range for the magnitude temperature indices (around 0.1), 

and summer results much more evenly spread (0-0.8). Levels of skill for both Gaussian 

and Linear temperature magnitude indices show a consistent seasonal bias across all 

stations. Seasonal differences in skill are discussed further below. Although 

performance is generally slightly lower for the Thin Plate Spline variant than the other 

ANN variants, precipitation skill results show a much greater degree of coherency than 
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those for either the Linear or Gaussian approach (as well as less of a tendency toward 

the underestimation of variance). Overall the Linear basis function neural network 

produces a greater level of skill than either the other ANN variants, or the OSR 

approaches. However, due to a greater coherency of results the Gaussian or Thin Plate 

Spline models may be more appropriate for a given season or region. These possibilities 

are explored below. 

Seasonal performance 
 

The OSR Taylor diagram discussion regarding a lack of seasonal variability in 

results is confirmed when skill distribution (across all stations) is plotted in a box and 

whisker diagram for each season and index (Figure 4.14). This form of analysis allows 

for an assessment of the relative performance of each variant between seasons, and 

whether or not particular indices are well represented in each season for all models.  

 

For all temperature indices the majority (75%) of both BOSR and ROSR skill 

lies between 0.2 and 0.5. For rainfall indices the same clustering is evident, except 

where a significant number of stations display very low levels of skill during summer, 

autumn, or (only for PX5D, PN90, and PF90) either winter or spring. It is certainly 

evident that the OSR method has difficulty replicating Mediterranean summer (and less 

so autumn) rainfall, probably as a function of its general absence (Chapter 2.7 and 

Chapter 3.4.2). Although the range of values is very small, specific indices that show 

relatively high levels of general skill (for 75% of the distribution) include: 

 

o Winter:  

o Extreme temperatures (TX90 and TN10) for the winter BOSR 

models,  

o Average and cold (TMIN and TN10) indices for the winter 

ROSR models, 

o Heavy (PQ90, for both BOSR and ROSR) and intense (PINT, for 

ROSR) winter rainfall. 

o Spring:  

o High temperatures (TX90) for spring for both BOSR and ROSR 

variants, 
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o Average (PREC) and intense rainfall (PINT) for the ROSR 

models, dry days (PCDD) for the BOSR model. 

o Summer: 

o Average (TAVG) and low temperature indices, with relatively 

high skill for cold temperatures (TMIN) for the ROSR variant, 

and extreme cold temperatures (TN10) from the BOSR variant, 

o Average precipitation and dry day (PCDD) indices for both 

variants. Intense rainfall (PINT) for the ROSR variant.  

o Autumn: 

o Average temperature (TAVG) for the BOSR variant, 

o Persistent rainfall (PX5D) for the BOSR variant, 

o Average and intense rainfall (PINT) for the ROSR variant. 

 

 It can be seen that certain seasonal consistencies occur between the two OSR 

variants used here: for winter, low temperatures and heavy rainfall; for spring, high 

temperatures; for summer, persistent dry days. These consistencies in relatively high 

skill reflect the dominant form of seasonal climate. The Mediterranean spring climate is 

defined by increasingly large arid regions, and intense rainfall that occurs on a more 

regional basis. The former behaviour is represented more skilfully in the BOSR variant, 

and the latter by the ROSR variant.  It has already been shown that the Mediterranean 

summer would be largely arid if not for regions of intense rainfall (Chapter 3.4.2), and 

intense summer rainfall is well modelled by the ROSR variant. The regional nature of 

Mediterranean intense rainfall is also evident in the autumn ROSR model’s 

performance, while long periods of persistent rain (generally over larger areas) are well 

modelled by the BOSR model (Chapter 2.4.2 and 3.4.2). It would appear that although 

differences in skill are small, both basin-wide and regionally focussed OSR variants 

perform well when applied to the seasonally (basin-wide, or regional) dominant climate.   

 

It can be seen in Figure 4.14 that the consistency in results for each season, for 

all of the ANN variants, is much higher than that for the OSR variants for winter, 

spring, and autumn. The neural network variants display a much greater sensitivity to 

seasonal climate (as shown in Section 4.2.3), more so for temperature indices than 

precipitation indices. However, although the Gaussian variant is significantly worse at 

replicating summer climate than the Linear variant, these two basis functions otherwise 
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show a substantial similarity in their seasonal performance bias, and where between-

season relationships occur for non-summer Linear results, they are also applicable to 

non-summer Gaussian results. Summer rainfall results for both variants, while generally 

lower than those for other seasons are always higher than those using the OSR variants. 

With the exception of TX90, HWDI and PCDD skill (all connected with very high 

temperatures), the TBF variant systematically presents greater skill for all indices for 

winter, then autumn, then spring. With these caveats it can then be seen that (as above) 

certain specific indices show relatively high levels of general skill (for 75% of the 

distribution) in each season, and that they are highly consistent between ANN variants 

for most seasons: 

 

o Winter:  

o Low temperatures (TMIN) and frosts (TNFD) for all variants, 

o Rainfall (PREC) and dry days (PCDD), also for all variants.  

o Spring: 

o Central temperature indices (TAVG, TMIN, TMAX) ) and 

extreme heat (TX90) for all variants, 

o Intense rainfall (PINT) and dry days (PCDD) for all variants. 

o Summer:  

o Low temperatures (TMIN) for Linear and Gaussian variants, 

o Rainfall (PREC) for the Linear variant, dry days (PCDD) for the 

Gaussian variant.  

o Autumn: 

o Central temperature indices (TAVG, TMIN, TMAX) and 

extreme heat (TX90) for all variants,  

o Intense rainfall (PINT) for the Linear variant, dry days (PCDD) 

for the Gaussian, and rainfall (PREC) for the Thin Plate Spline 

variant. 

 

Some similarities can be seen between the above list and the influence evident in 

the distribution of skill between seasons and indices for the OSR variants. Winter 

performance is good for indices representative of the dominant climate, and similarly, 

intense rainfall is skilfully modelled for both spring and autumn, as are central 

temperatures and high temperatures. Also common to both forms of modelling are the 
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relatively high levels of skill for summer low temperatures, that of all the rainfall 

indices PREC, PINT, and PCDD offer high levels of skill, and the fact that during 

autumn, different rainfall indices require different approaches. It is interesting that 

unlike the OSR variants, PREC and PCDD indices offer the best skill during summer 

and winter, and that PINT and PCDD offer the best skill during the more transitive 

autumn and spring seasons.  

 

From the above, it can be seen that skill for the Linear ANN variant is generally 

better than other variants in all seasons, and that non-linear ANN variants out-perform 

OSR variants (with the exception of the TBF variant during summer). However, the set 

of indices of extremes that are best replicated by models is more dependent on the 

dominant behaviour of the climate itself than the form of modelling used. The results 

presented above reflect well on the models used and carry a degree of implication that 

all the variants used above have developed relationships that are in some way indicative 

of the processes evident in the underlying climate. If this is the case then it should be 

expected that skill would not only vary seasonally but also regionally, as Mediterranean 

climate processes have been seen to display distinct regionality (Chapter 3.4.2). Thus 

the following discussion concerns differences in skill between the western, central, and 

eastern basins. 

Regional performance 
 

Box and whisker plots of skill arranged by region and index are presented in 

Figure 4.15. Here the distribution represented is that of results for all applicable 

stations, for all seasons. This analysis allows for a comparison of how each model 

variant reproduces values for different large-scale regions, and whether or not certain 

indices are more accurately replicated in particular regions.  

 

As for the seasonal distribution of OSR variant skill, it can be seen that the 

differences in distribution for each predictand index between regions is relatively small 

and that no one region consistently offers greater skill than any other. However, a 

number of particularly significant results for each region can be identified: 
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o Western: 

o Very high temperatures (TX90) for the BOSR variant, no clear 

‘best’ for the ROSR variant, 

o Dry days (PCDD) for the BOSR variant, rainfall (PREC) and 

intense rainfall (PINT) for ROSR. 

o Central: 

o High temperatures (TMAX) and frosts (TNFD) for both variants, 

o Rainfall (PREC) and intense rainfall (PINT) for both variants. 

o Eastern:  

o High temperatures (TMAX) and frosts (TNFD) for the BOSR 

variant, average (TAVG) and low (TMIN) temperatures for 

ROSR, 

o Persistent rainfall (PX5D) for the BOSR variant, Rainfall (PREC) 

and intense rainfall (PINT) for ROSR. 

 

Throughout the basin, as discussed above, PREC and PINT are generally well 

modelled. The western basin connection between TX90 and PCDD is clear, as very 

high temperatures and periods without rainfall are dynamically linked (Chapter 2). The 

division apparent between skill for western high temperatures, and skill for central and 

eastern frosts, in addition to high temperatures, is likely to be a facet of the fact that (as 

discussed in Chapter 2.2.1 and Chapter 3.4.2) the eastern end of the basin experiences 

more cold (continental) winter weather than the west.  

 

Although the skill for each region is still markedly higher with the neural 

network variants than the OSR variants, the differences between skill levels for each 

region do not appear much greater in the linear ANN model.  Linear ANN model 

performance for the western region is similar to that for the eastern region. The same is 

not true for the non-linear neural networks, and in both the Gaussian and Thin Plate 

Spline variants, eastern temperature index skill is generally much worse than that for the 

west. For rainfall indices the contrast between western and eastern skill is much closer 

to that for the linear ANN variant.  Although seasonal results show a greater coherence 

for the non-linear ANN variants, regionally greater coherence is shown by the Linear 

ANN variant.  
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Indices that show particularly high (Table 3.2) general performance (i.e. for 75% 

of the skill distribution, including all stations and all seasons) include:  

 

o Western: 

o Low (TMIN) and very high (TX90) temperatures for all variants, 

o Rainfall (PREC) and dry days (PCDD) for all variants. 

o Central: 

o Low (TMIN) and very high (TX90) temperatures for all variants, 

o Rainfall (PREC) and dry days (PCDD) for all variants. 

o Eastern:  

o Low (TMIN) and very high (TX90) temperatures for the LBF and 

GBF variants, high (TMAX) temperatures for the GBF variant, 

and average (TAVG), high (TMAX), and very high (TX90) 

temperatures for the TBF variant,   

o Dry days (PCDD) for all variants. 

 

This set of indices is even more consistent between regions than for the OSR 

variants. Although the indices listed above differ from those evident for the OSR 

variants, they are still among those highlighted by the seasonal analysis as generally 

well represented. Less agreement between variants occurs for the eastern region due to a 

systematic difference in the response to eastern climate (and generally lower skill), as 

evident for all temperature indices. 

 

One notable conclusion to come from the discussion of regional performance is 

that, although non-linear ANN methodologies generally produce lower (higher) skill 

than the linear method ANN (OSR variants) presented here, they are particularly poor 

when applied to eastern basin temperature indices. However, from the above it can be 

seen that for each variant the expected variation in skill with location is generally not as 

large as the seasonal variation, when results are compared for large regions. In fact, the 

regional response is surprisingly consistent in terms of the indices that are best 

represented. The following section explores the possibility that climate model 

performance varies for smaller regions than those explored above.  
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4.3.3 Regional comparison and physical dynamics 
 

The results presented in Section 4.3.2 suggest that the model variants applied 

here (Table 4.2) are replicating some measure of seasonal variability, but that (on a 

relatively large scale) differences in performance between climate predictand indices 

and seasons are greater than differences in performance between regions. This section 

discusses model performance (in terms of skill- r) at station-scale resolution, for each 

index, variant, and season (Figures 4.16-4.55), in an attempt to assess whether or not 

this is the case, and to assess whether differences in the level of skill apparent for 

particular regions are consistent with differing regional climate mechanisms. Where 

‘spatial coherence’ is referred to below, it regards the degree to which performance is 

the same from one region to the next. As it has already been found that seasonal 

differences in skill may prove substantial this analysis is conducted on a season-by-

season basis.  

 

As in the overall performance part of Section 4.3.2 there are a number of 

stations that return negligible levels of skill. This part of the analysis allows for the 

isolation of these stations and an assessment as to whether or not they are consistent 

between indices or variants. Where negligible results are consistent for a given index 

across all variants predictability is inherently low or the required predictors are entirely 

missing from those described in Chapter 3.5 and subsequently utilised in the models. 

Where negligible results are consistent across all indices for a given variant (but not 

others) that particular approach is unsuitable for the given station.  

Winter 
 

This part of the analysis concerns Figures 4.16-4.25.  

 

It is immediately clear from the performance of Mediterranean areas used in the 

previous section (west, central, east) sub-regional differences in performance are much 

greater for the BOSR variant than the ROSR variant in terms of temperature, and 

generally greater for the OSR models than any of the ANN variants. It is also apparent 

that sub-regional differences in performance are much larger for the TNFD and HWDI 

indices (for all variants) than those that represent measures of magnitude.  
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Although levels of both skill and spatial coherence differ between the BOSR and 

ROSR variants, similar regional patterns for temperature performance can be seen in 

both (Figs 4.16 and 4.18). The BOSR variant shows consistently good or very good 

performance across Portugal, most of Italy, and the western coast of Greece for all 

temperature indices. Performance is largely moderate for eastern Greece and central 

Iberia for all temperature indices but TMIN and TX90 (both displaying good levels of 

performance in those regions). Poor or very poor performance occurs for the north 

(TMIN, TMAX, TN10) and north west (TAVG, TMIN, TNFD) of Iberia and southern 

France (TAVG, TMIN, TMAX, HWDI, TNFD) for most temperature indices. For 

winter temperatures negligible skill for the OSR variants can only be seen for the BOSR 

frost model (Fig 4.16) at the following stations: Salamanca, Valencia, Alicante, Seville, 

Alcantarilla, San Javier, Jerez De La Frontera, Zamora, Coruna, Sabiñanigo, Montseny 

Turo (all Spain), Alghero (Sardinia), Nis (Yugoslavia), Ierapetra, Kythira, and Skyros 

(all Greece). The majority of these stations are located in the warmer southern part of 

the basin, or near coasts, where frosts rarely occur. 

 

 With the exception of northern Italy, performance is generally highest for low 

latitude stations on western coasts. The two circulatory phenomena that link these 

locations are eastward flow from the Atlantic and the subsequent transport of air made 

relatively warm by the sea (Chapter 3.4.3), and flow north and eastward from Africa of 

the kind that produces omega-wave heatwave conditions (Colacino and Conte, 1995) 

during summer (Chapter 2.4.3). Northern Italy is not subject to either of these 

influences, but is the one location that experiences the same kind of land-ward warming 

flow travelling into Europe from the Mediterranean that may develop under extreme 

conditions into a Vb storm track (Section 2.3.1; Ulbrich et al., 2003; Caspary, 2004). 

There is a substantial amount of sub-regional variation within BOSR temperature index 

performance, as the regions that show poor skill are distinct from those that show good 

or very good performance. For the ROSR variant, however, a generally higher level of 

skill produces a greater degree of spatial coherence for temperature, as although patterns 

of performance are similar, where skill is poor for the BOSR variant, it is generally 

moderate for the ROSR variant. 
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ANN variant results for temperature predictand indices (Figs. 4.20, 4.22, and 

4.24) show a high degree of spatial coherence, and the Gaussian variant does not show 

the difference between eastern and western skill seen in Figure 4.15. Skill is generally 

very high across the majority of the basin for all indices except HWDI, which displays 

only moderate or high skill in similar locations (northern and eastern Spain, southern 

France, eastern Italy, and south eastern Greece) for all variants. These regions are the 

same as those for which moderate or poor skill is found with the OSR variants, as 

described above. Temperature predictand index performance for ANN variants differs 

from that for OSR variants in one other respect, two stations show consistently 

negligible skill across all temperature indices and variants: Nis in Yugoslavia and 

Sabiñanigo in northern Spain. The ANN method is clearly not appropriate for these 

stations, and greater skill for all temperature indices can be found using the ROSR 

variant. Otherwise the most effective method (in terms of skill) for all winter 

temperature indices, is the Linear ANN variant.  

 

When spatially disaggregated, winter precipitation indices (Figs 4.17, 4.19, 4.21, 

4.23, 4.25), do not perform as well as temperature indices, for all model variants. The 

difference in performance between temperature and precipitation indices is smaller for 

ANN variants than OSR variants, but spatial coherence is greater for OSR variants due 

to large regions of poor skill. For rainfall indices the BOSR model (Fig. 4.17) displays 

only a small degree of spatial variation, showing moderate to good skill only for 

northern Iberia and southern France (PREC, PQ90, PINT, PF90, PX5D) and central 

Greece (PQ90, PF90, PX5D). These areas are either within the Mediterranean region 

most affected by the NAO (Chapter 2.2.3, Chapter 3.6), or in the lee of the Balkan 

mountains (affected heavily by westward tracking Mediterranean cyclones, Chapter 

2.3.2). Elsewhere skill is poor or very poor. For the OSR variants negligible winter 

precipitation results show regions of consistency between indices including Salamanca, 

Valencia, Catalonia, central northern Italy, Sardinia, Nis, Calarasi, and Izmail. 

Generally far fewer of these negligible stations appear for the ROSR variant (Fig 4.19) 

than the BOSR variant. As for temperature, spatial patterns of performance are similar 

for the ROSR variant (Fig. 4.19), which displays slightly higher levels of skill. However 

where BOSR skill is moderate for the areas described above, it is good for the ROSR 

variant, which therefore displays a greater degree of sub-regional variations in 

performance.  
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The pattern of ANN rainfall performance is common for all ANN variants (Fig. 

4.21, 4.23, and 4.25) and is generally higher for PCDD than other indices, for the north 

west of Iberia and southern France, than the south east of Iberia, and higher for the 

North west of Greece than the south west. This contrast in performance is more evident 

for Linear and Thin Plate Spline variants than the Gaussian variant. But for all three it is 

clear that there are definite sub-regional differences in rainfall performance that are 

similar to those evident for the OSR variants in the west and east. As for temperature, 

Nis and Sabiñanigo consistently provide negligible levels of skill for all precipitation 

indices and the greatest levels of skill are generally provided by the Linear ANN 

variant. 

Spring 

  
 This part of the analysis concerns Figures 4.26-4.35 

 

As for winter temperature performance, a substantial difference in the spatial 

coherence of results is noticeable between those from the OSR variants (Figs. 4.26 and 

4.28) and those from the ANN variants (Figs. 4.30, 4.32, 4.34). Again, spatial coherence 

is much greater for the ANN variants than the OSR variants due to high levels of skill in 

most locations. As for winter, differences between regions are more noticeable for 

measures of duration (TNFD, HWDI), than magnitude. However, in contrast to the 

results for winter, and if disregarding those stations for which TNFD results are very 

poor, it is the ROSR variant (Fig. 4.28) that shows less spatial coherence than the BOSR 

variant (Fig. 4.26) for spring, with the former showing relatively high levels of skill 

across the basin. 

 

The ROSR variant shows three distinct spatial patterns of skill for temperature 

predictand indices (Fig. 4.28). For TNFD, HWDI, TMAX, and TN10 skill is generally 

very good across the western coast of Iberia, northern Italy, and Sardinia, either 

moderate or good to the east of Iberia, and poor for the south of Italy and Greece 

(although less so for TN10). Performance for these indices generally declines toward 

the south east of the Mediterranean, where Atlantic influence is weaker and the 

European influence is more relevant (Chapter 2.2.1). TX90 is the one index that shows 
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only moderate results for northern Italy, in addition to southern France (both northern, 

mountainous regions), although skill is good to very good elsewhere. For TAVG and 

TMIN skill is good to very good in all locations except the north west of Iberia (shown 

in Chapter 3.4.2 to poses a climate generally unlike that for other nearby locations), the 

south east of France  (subject to the cooling but infrequent Mistral wind), and the south 

west of Greece (highly affected by occasional regenerated Mediterranean cyclones) 

(Chapter 2.3). For spring these regions show neither distinctive average patterns of skill 

(Fig. 3.4), or trend behaviour (Fig. 3.14), and the one predictor that influences all three 

regions more than others (SHM PC1) is present in the predictor set (Table 4.1), but 

localised effects on climate may introduce a level of unpredictability. The BOSR 

variant shows generally better skill in most locations, and a resultant reduction in 

variations between performance for the central and eastern basins, however, for TMIN, 

TN10 and TX90 skill is just as poor for northern Iberia and southern France. These 

regions display poor to negligible skill (Table 3.2) for both winter and spring OSR 

variants, and may be poorly represented by the OSR method. 

 

As for winter, both Linear (Fig 4.30) Gaussian (Fig. 4.32), and Thin Plate Spline 

(Fig. 4.34) performance is highly spatially coherent for all temperature indices and 

regions except for TNFD and HWDI, where skill is moderate or good for those 

locations where both OSR variants show weakness. The number of stations that show 

negligible skill across all indices and variants, however, is larger than that for winter, 

and includes: Bastia (France), Montseny Turo, Sabiñanigo, Zamora, Ponferrada (all 

Spain), Trevico, Pescara (both Italy), Nis (Yugoslavia), Naxos (Greece). For these 

stations (during spring) the most appropriate variant presented here is the BOSR 

variant, otherwise the linear ANN provides better performance in all locations. The one 

exception to the above is the TNFD index throughout the southern Mediterranean, 

where the ROSR model gives greater skill.  

 

Also as discussed for winter, spring precipitation (Figs. 4.27, 4.29, 4.31, 4.33, 

and 4.35) is generally less well represented than temperature. The ROSR variant (Fig. 

4.29) shows better performance in all locations for all precipitation indices than the 

BOSR variant (Fig. 4.27) with the exception of eastern PX5D, where skill is negligible 

for the ROSR model. As for winter, regions of comparatively good performance are 
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similar in most instances, but show greater levels of skill in the ROSR model, which 

therefore displays less in the way of spatial coherence. Regions of high skill are 

generally toward the north of Iberia, Italy, and Greece, within the path of strongest 

spring-time jet stream influenced flow (Chapter 2.2.2), but otherwise show little 

consistency between indices.   

 

ANN variants show a similar relationship to that for winter, with the Linear 

variant (Fig. 4.31) providing generally better skill, and all variants displaying the same 

locations of negligible performance for both temperature and rainfall indices. Similar 

spatial patterns of skill are also evident in all three variants, although they are most 

visible for the Thin Plate Spline variant, as the relatively greater skill in the other two 

variants increases spatial coherence. As for winter, the greatest levels of performance 

can be found across northern Iberia, southern France, northern Italy and (less so) the 

north west of Greece. These are similar regions to those shown for the OSR variants 

(although much larger in scale), and are all influenced heavily by westward flow during 

spring (Chapter 2.2.2).  

Summer 
 

This part of the analysis concerns Figs. 4.36-4.43. 

 

Although, as above, both OSR variants show similar spatial patterns of 

temperature predictand index performance (Fig. 4.36, 4.38), unlike the analyses for 

spring and winter, west, central, and eastern regions do not universally show one OSR 

variant as better than the other. For the western region, the ROSR variant (Fig. 4.38) 

provides higher levels of skill, while for the central and eastern regions, the BOSR 

variant (Fig. 4.36) gives better results.  This difference can only be due to the 

appropriateness of the selected predictors. Evidently the western summer climate of the 

Mediterranean benefits from a reduced predictor set (Table 4.1), and the eastern and 

central summer climates benefit from the use of all the predictors available. Both 

models show good performance throughout the western basin with the exceptions (as in 

spring) of central and northern Iberia, and south-western France, and also (different to 

spring), northern eastern Greece (a region heavily sheltered from western flow). The 
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region of poor to moderate skill for the first two of these areas is substantially larger for 

the BOSR variant than the ROSR variant.  The reverse is true for northern Greece, 

where the ROSR variant is more skillful. One or two stations in southern Italy 

(generally Monte Scuro and Prizzi) provide poor performance for each index for one or 

the other of the OSR variants, but only for both variants with TNFD and HWDI. With 

the exception of these two stations, skill is generally better for Italy with the BOSR 

variant. Negligible results, as for previous seasons, are evident with the BOSR TNFD 

plot (Fig. 4.36), and more so for the warm southern region than elsewhere, although the 

generally poorly performing stations of Sabi’anigo and Nis both also show negligible 

skill.   

 

Also as for previous seasons, the only substantial regional difference for the 

ANN variants (Fig. 4.40, 4.42) is between those stations that show high or very high 

levels of skill, and those that show negligible skill. For summer, however, substantial 

differences in the number of negligible stations occur between Linear (7) (Fig 4.40), 

Gaussian (between 7 and allstations depending on index) (Fig. 4.42), and Thin Plate 

Spline variants (all stations) (not shown). In the former case only Bastia, Clermont-

Ferrand (France), Sabiñanigo, Leon (both Spain), Pegoes, Mora (both Portugal), and 

Nis (Yugoslavia), give very poor performance. For the Gaussiaan variant no skill is 

returned for the TNFD index at all, very few stations in southern Greece show skill for 

any index but HWDI, the same is true for Portugal except for TN10, and in addition to 

Nis and Sabiñanigo, Valencia (Spain) and Tarbes (France) show no skill for any 

temperature index. As this non-linear method is very poor at representing summer 

temperature predictand skill in many locations it is less surprising that the Thin Plate 

Spline variant fails completely. It is evident that, rather than providing additional skill, 

large parts of the Mediterranean summer climate are not well represented by the non-

linear methods utilised in this study. It has also become clear that eastern performance 

is poor in the previous set of plots (Fig. 4.15) due largely to poor performance in the 

summer models, rather than those for any other season. 

 

As might be expected, concerning the comparative volume of summer rainfall in 

the Mediterranean (Chapter 2.2.1, Chapter 3.4.2) and the aggregated results in Figure 

4.14, skill for summer rainfall is generally poor but less so for PREC and PCDD than 
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other indices (Fig. 4.37, 4.39, 4.41, 4.43).  Also as for other seasons, the same regions 

of comparatively good skill exist across all variants, with the Linear ANN variant 

providing the best performance except in those regions where skill is negligible, in 

which cases the ROSR variant is the best approach.  

 

Regions of relatively high skill are similar to those for the preceding seasons and 

include southern France, north eastern Spain, and northern Greece. For PREC, PCDD 

and PX5D, summer results are also generally higher for coastal locations that face the 

Gulf of Genoa (i.e. eastern Spain, southern France, and western Italy), regions that (in 

addition to the northern areas listed previously) experience more summer rainfall than 

the rest of the Mediterranean. BOSR (Fig 4.37) and ROSR (Fig 4.39) variants both give 

generally very poor (or negligible) skill for the south of Greece, more so for the ROSR 

variant than the BOSR variant, and more so for the PX5D index than others. PQ90, 

PF90, and PN90 also give very poor or negligible skill for the majority of the western 

basin for both OSR variants. In contrast with previous seasons, and despite a similar 

ANN pattern between temperature and precipitation indices (as in previous seasons) the 

ANN variants (Fig 4.41, 4.43) generally produce less negligible skill than the OSR 

variants.  For summer rainfall and temperature indices the Linear ANN (Fig 4.41) 

produces the best level of skill in almost all instances. Where both the LBF and other 

ANN methods fail, however, the ROSR gives better skill in the central and western 

regions, and the BOSR gives better skill in the west. 

Autumn 
 

 This part of the analysis concerns Figs. 4.44-4.53. 

 

As indicated in Figure 4.14, autumn temperature predictand skill is lower for the 

OSR variants (Fig. 4.44, 4.46) than the ANN variants (Figs. 4.48, 4.50, 4.52). The 

differences, however, are less noticeable for TN10, TNFD, and HWDI indices, and the 

degree of regionality in results is much greater for these indices (and the OSR variants 

in general) than for others. The spatial coherence of performance is generally much 

smaller for autumn than other seasons, as is the level of consistency in spatial patterns 

between indices, as reflected in the differences in best performance given in the 
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seasonal and regional overview analyses (Section 4.3.2). The patterns shown by the 

BOSR variant (Figure 4.44) are, however, similar to those for the ROSR variant for 

most indices (Figure 4.46), as they are for other seasons. For both variants, higher levels 

of skill are generally found for: 

 

o TAVG and TMAX: Northern and eastern Iberia, southern France, 

central Italy, northern and western Greece 

o TMIN: western Iberia, northern and western Greece 

o TN10: Portugal, Sardinia, northern and southern (but not central) 

Italy, most of Greece (except Aginio, Kozani, Ioannina, and Larissa) 

o TX90: Western Iberia, eastern coastal Spain and northern Italy 

o TNFD: North eastern Spain, southern France, northern Italy and 

northern Greece. 

o HWDI shows a pattern more similar to TX90 for the BOSR variant, 

and more similar to that for TNFD for the ROSR variant.  

 

But there is no consistency in indices as to which variant produces better skill. 

Instead, for western TAVG, TN10 and TX90, the BOSR variant is generally more 

appropriate, for central and eastern TAVG, TMIN, TMAX, TNFD and HWDI, the 

ROSR variant gives generally better performance. It is clear that although summer 

climate is generally the least consistent from region to region, the mix of influences 

evident for autumn (with similar magnitude indices to summer, but a distribution closer 

to spring) (Chapter 3.4.2) produces a greater degree of variation in OSR model 

performance between indices and regions than for other seasons. 

 

As mentioned above, ANN results are consistent and highly spatially coherent 

for TAVG, TMIN, TMAX and TX90, but less so for the other predictand indices. For 

these, high levels of skill can be found (consistently between TN10, TNFD and HWDI 

for all variants) for southern Spain, north eastern Spain/southern France, northern Italy, 

Sardinia, and north western Greece. In the west of the basin, skill is greatest near 

Mediterranean facing coastal regions and the moderating influence of the Mediterranean 

sea.  In the case of the central and eastern regions, the contrast in skill is due to a 

complete lack of skill in the east or south east consistent to all indices and ANN 
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variants. In the west, those stations that provide negligible temperature predictand skill 

in summer also do so for autumn. In the central and eastern regions, areas of negligible 

skill are larger for the LBF variant (Figure 4.48) than in any other season, and are 

smaller only than summer areas for the GBF variant (Figure 4.50). For TAVG, TMIN, 

TMAX and TX90 the linear variant produces the best skill except for those regions 

described as negligible, however, for those regions the ‘best’ of the two OSR methods 

varies from index to index, as above.  

  

For rainfall indices, modeling variants (Figs. 4.45, 4.47, 4.49, 4.51, 4.53), do not 

behave in the disparate fashion described for temperature indices. Levels of spatial 

coherence are similar for both OSR variants and for all three ANN variants, but are very 

different between the two different modelling methods. Regions of relatively high skill 

are, however, common to all five variants. The highest levels of skill can again be found 

for those areas most influenced by the Atlantic, and westerly flow across the western 

Greek coast. In addition, for most indices and the ANN variants, skill is at least 

moderate for south eastern Spain, a region subject to strong easterly flow (Chapter 

3.4.2). Rainfall results show a similar level of skill and pattern in autumn to that for 

other seasons, with the greatest similarlities between winter and autumn. The Linear 

ANN variant (Fig 4.49) is the best choice for most regions. Where it provides little skill, 

so do other ANN variants, and the most appropriate choice is the BOSR model (Fig 

4.45). However, all five variants produce negligible skill for the south east of Greece for 

PQ90, PF90, and PN90, as for summer.  

 

4.4 Discussion of results 

 

4.4.1 Recommendations for use 
 

 This chapter discusses and explores the performance of two very different 

climate modelling techniques and five variants on those techniques.  Between them they 

encompass linear and non-linear methods, differing methods of predictor selection, and 

differing forms of application. From the results of the previous sections a number of 
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recommendations for the appropriate use of these methods have been identified and are 

summarised below. 

 

OSR recommendations:  
 

o A methodological advantage lies in the OSR method, in that it may be run 

on multiple indices and stations without the need for consideration of multi-

collinearity (Section 4.2.2).  

o However, the components of variance based method provided by the OSR 

model results in reconstructed data with a restricted variance. This is more 

evident for precipitation indices than temperature indices (Section 4.3.2).  

o Furthermore, the OSR method offers very poor performance for rainfall 

indices for all seasons and regions (Section 4.3.3), this may be due to the 

fact that rainfall behaviour across the basin varies over very short distances 

(Chapter 3.4.2), providing a very large number of components of variance, 

all of which apply only for relatively small regions. 

o OSR performance is good for rainfall indices only where they are all 

influenced by one or two major forms of strong circulation and the rainfall 

response is spatially coherent (Jones et al., 1999b). In the case of the target 

area this region is where Atlantic sourced flow is dominant (Chapter 2.2, 

Chapter 3.4.2, Chapter 4.3.3).  

o The use of pre-selected groups of predictors did, in some cases, improve 

model skill. It is evident that too many predictors may over-complicate the 

OSR method and reduce accuracy (Section 4.3.3). However, if the predictor 

set varies on too small a spatial scale the advantage gained from an 

immunity to multi-collinearity of spatially distributed indices (e.g. average 

temperature for multiple locations) may be lost. The balance between a need 

for an appropriate set of predictors, and the need for a uniform set for a 

given region is a difficult one to assess. 

o Performance is not consistently better for one OSR variant or the other, but 

instead varies based on season, region, and in some cases, the climate index 

under consideration (Section 4.3.3).  It is not always the case that a pre-

selected predictor set improves model performance.  



Chapter 4: Modelling climate extremes 
 

 247  

ANN recommendations: 
 

o ANN methods provide several major methodological advantages. They 

make no prior assumptions about the distribution of the data, consider each 

predictand individually, may self-select the relevant predictors, and are 

capable of non-linearity (Section 4.2.2). 

o The basis function width required of a given Neural Network model is 

largely driven by the range of the data considered, and should be larger than 

the range of data by an order of magnitude. Thus, for normalised data, a 

width of around 10 is required (Section 4.2.3).  

o For some kinds of data, ‘early stopping’ (Section 4.2.3) may allow for a 

reduction in Neural Network processing time with little reduction of skill.   

o Further, despite the ‘no prior judgement’ advantage, temperature indices still 

gave better results than precipitation predictand indices when modelled with 

the ANN method (Section 4.3.2, and 4.3.3). 

o ANN variants generally both over and under-estimate variance for all 

predictand indices. However, levels of accuracy are slightly higher regarding 

the variance of the rainfall predictands when compared against OSR 

methods (Section 4.3.2).  

o The spatial coherence of results is much greater for neural network methods 

when applied to temperature than for the OSR methods. However, this is 

almost certainly a reflection of the fact that each neural network run 

optimises its results for every station, whereas the OSR methods optimise 

their results based on the replication of variance across all stations (Section 

4.2.4). Spatial coherence of results is greater for OSR precipitation 

applications only because model skill is generally very low, and it is greater 

for the ANN temperature applications only because model skill is generally 

very high (Section 4.3.3).  

o This may mean that dynamically driven regions of high or low performance 

are lost or ‘tuned-out’ by the neural network methods, but accurately 

reproduced by the OSR methods. Where this detail was not lost through very 

high or very low performance it can be seen, however, that both models 

show similar (if not entirely common) patterns in their performance.  
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o With certain exceptions (see below) relationships between the ANN variants 

remained consistent, if one performed better in a given season, so did the 

other two, where one variant performed relatively well, the same patterns 

could generally be seen in the performance for all variants.  

o One exception to the above involves stations that consistently (between 

indices, and in some cases seasons) returned zero or near-zero skill for ANN 

model application. These regions were generally more numerous for rainfall 

indices than temperature indices, and more numerous for non-linear 

networks than the linear variant.   

o For the majority of instances, however, non-linear basis function ANN 

variants did not provide a greater level of skill than the linear variant, nor did 

they dramatically improve the estimation of predictand variance (Section 

4.3.2 and 4.3.3). In almost all cases the Linear variant produced the greatest 

degree of Neural Network model skill. 

Overall recommendations: 
 

o Overall, the linear neural network produces the greatest level of skill for all 

seasons and most indices.  

o However, as there are some stations for which skill is consistently poor, e.g.: 

Bastia, Clermont-Ferrand (France), Sabiñanigo, Leon (both Spain), Pegoes, 

Mora (both Portugal), and Nis (Yugoslavia) for summer, and Sabiñanigo and 

Nis for winter, and as these stations are also inevitably poorly represented by 

the other neural network models as well, in some cases the OSR approach 

may be more appropriate (Section 4.2.3).  

o The choice of appropriate OSR approach may vary by season or region.  

 

4.4.2 Model weights and the causes of extreme climate behaviour 
 

When examined in fine detail, the structure of the models discussed in this 

Chapter can be seen to vary from application to application. Each model run may give 

individual predictors different ‘weights’, i.e. may assign a greater degree of importance 

to one predictor over another. Where a skilful model consistently considers a specific 
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predictor important for the replication of a specific predictand, trends of the two 

variables are significant and physically consistent (Chapters 3.4.4, 3.5.4, 3.5.7, and 3.7), 

correlations between them are significant (Chapter 3.6), and physical, synoptic, 

processes can be identified that support purely statistical relationships (Chapters 2.2.3 

and 2.3.1), a weight of evidence for causality may be presented.  

 

From the above section (4.4.1) it can be seen that in the majority of cases the 

Linear neural network variant most skilfully reproduces the climate predictand indices 

under consideration (Chapter 3.4.1). The weights for this model have been extracted 

and plotted in Figures 4.54-4.59. These weights are presented for each predictand, for 

each season, and for each index for the western, central, and eastern regions. 

The western Mediterranean 
 
 A link that satisfies all of the above conditions exists between the NAO and 

western precipitation indices for both winter and autumn. A link is also suggested 

between temperature indices and the NAO by the literature (Chapter 2.2.3), correlations 

(Chapter 3.6), and the regions of greatest skill (Section 4.3.3). This link is found for 

frost days and very high temperatures during winter (two indices which do not correlate 

well), and for all temperature indices except frost days during autumn. The dry days 

index shows no link to the NAO, but has been shown to vary in a different fashion to 

other precipitation extremes (Section 4.3.3). Although a link exists between high 

temperatures and consecutive dry days, it is at its weakest during winter (Tables 3.5-

3.8).  

 

Also evident for winter, are links between both the 4th SLP principal component 

(an extended Icelandic low component) and 4th SHM principal component (indicative of 

flow across the Mediterranean from the mid-Atlantic) and cold temperatures (TMIN, 

TN10). For autumn SLP PC4 (again indicative of an extended Icelandic low), can be 

linked to cold temperatures (TMIN, TN10, TNFD). It seems likely from the above, and 

previous discussion (Chapter 2.2.2), that Atlantic flow is highly important for western 

Mediterranean extreme climate behaviour (particularly extreme cold and rainfall), and 

that different expressions of that flow may be linked to different forms of extreme 

climate. For autumn, links can be seen between the 3rd Z500 component (representative 
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of the NAO centres of action), and extreme rainfall (PF90 and PCDD) in both 

correlations and weighting. 

 

With certain exceptions (e.g. dry days during winter), the NAO is a powerful 

driver of extreme climate (particularly precipitation) behaviour in the western basin for 

winter, autumn, and possibly spring. Furthermore, the more northerly Atlantic centre of 

action (the Iceland low) persistently shows an influence upon cold extremes when it is 

extended toward the Mediterranean. 

 

 During winter, significant links have been discussed (Chapter 2.3.2) and shown 

(Chapter 3.5.3) between the MOI and the NAO. From the weightings shown in Figure 

4.46 it can be seen that modelled links between the MOI and winter climate are 

strongest for prolonged heat (HWDI) and indices of extreme cold (TMIN, TN10, 

TNFD). It has been suggested in the literature (Chapter 2.2.3) that during winter the 

MO functions as an extension of the NAO, and certainly the results shown here are 

consistent with a link between North Atlantic pressure systems and the MO. The MOI 

also appears as a western Mediterranean predictor for extreme cold (TN10) during 

summer. Correlations exist between these variables, and Maheras et al. (1999b) state 

that in one of its two (non-seasonal) phases the MO may draw cold air down from 

Europe. Maheras and Kutiel (1999) show that the MO may bring either unusually high 

or low temperatures, depending on its phase. 

  

The Atlantic Blocking Index (ABI) is shown by model weights (Fig. 4.54) to be 

important for prolonged cold (TNFD) during the western Mediterranean winter, and for 

extreme high temperatures during summer (TX90), in both cases correlations (Chapter 

3.6) offer supporting evidence. Dynamically, as the ABI measures the strength of a 

blocking pattern in the Atlantic, and therefore the relative strength (or weakness) of 

westerly flow, it seems reasonable to suggest links for both of these factors, as they are 

dependent on stationary or near-stationary circulation systems (Chapter 2.4). Different 

forms of European blocking are important for both summer high temperatures (EBI, 

TMAX and TX90) and winter dry spells for very similar reasons. During winter, SLP1 

represents a deep European depression and a resulting Winter Dry weather type (Corte-

Real et al., 1998a). Both model weights (Fig. 4.55) and correlations indicate a link 
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between the 1st SLP component and winter PCDD. The 3rd Z500 component also 

represents a form of blocking in both winter (Euro-Atlantic blocking) and autumn 

(Siberian blocking) and is shown by both correlations and model weights to be 

important for temperatures during both seasons and precipitation during autumn. In the 

latter season, the effect upon temperature and precipitation is likely to be mitigated by 

the NAO circulation through an extended Icelandic low as correlations between the 3rd 

Z500 component and the NAO index are highly significant (Table 3.12), and centres of 

action are similar for both.  

 

During spring the most heavily weighted predictor is the NSCP for all 

predictand indices. Significant correlations exist between a large number of predictand 

indices and the NSCP (Chapter 3.6), but the available literature does not discuss 

impacts of the NSCP upon the western basin climate (Chapter 2.2.3). Also showing 

strong links with spring climate, however, is the 5th SLP component, which represents 

pressure centres roughly analogous to those that create the NSCP. In addition, for 

winter, the 2nd SLP component (an east Atlantic pattern / north Atlantic depression 

component, also with similar pressure centres) is weighted heavily for all extreme 

temperature indices. The NSCP is cited as affecting both temperature and precipitation 

(Kutiel et al., 2002), but until now its influence has only been explored for the eastern 

Mediterranean climate (Kutiel and Benaroch, 2002). A reasonable amount of statistical 

evidence is presented here for influence in the western Mediterranean, and the NSCP’s 

potential as a major driver for spring-time (and possibly winter) western Mediterranean 

climate should be explored further.  

 

African influences can be seen during winter, summer, and autumn. A link is 

suggested by weights, correlations, and literature (Section 2.2.2) between north east 

African influences and climate in the western basin. African uplift (indicated by SHM 

PC4) shows links to both very high temperatures (TX90) and high levels of rainfall (all 

indices) during winter. For summer, the same African extension (SHM1) can be linked 

to increased high temperatures (TX90) in the west, as suggested by Colacino and Conte 

(1995). An autumn diversion of Atlantic flow to the north may allow for the intrusion of 

African influence, as links between the 3rd SHM component and both HWDI and PCDD 

are also apparent. African influence is not, however, the only potential driver of 
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prolonged summer hot and dry conditions, as small pressure or humidity gradients 

across the basin (Z500 PC7, and SHM PC4) can also be connected to persistent dry 

days (PCDD) and high temperatures (TMAX). 

 

Although the SOI shows model weights for summer and autumn temperature, 

there are very few significant correlations, and for temperatures in the western 

Mediterranean, there is very little in the way of supporting literature. 

The central Mediterranean 
 

For the central Mediterranean, links between extremes of climate and Atlantic 

influence are noticeably less supported by the evidence assessed here, particularly for 

winter, when few relationships occur in the literature, correlations, trends, or model 

weightings.  It is generally suggested by the literature that strong relationships with the 

NAO are confined to the western end of the Mediterranean (Chapter 2.2.3). The results 

shown here support previous work. Statistical links can only be found for winter with 

winter warm spells (HWDI), and for summer with both high temperatures (TMAX, 

TX90, HWDI), and the volume of rainfall (PREC), all of which have been shown to 

exhibit both strong weightings and significant correlations. For autumn, low 

temperatures (TMIN, TN10) can also be statistically linked to variations in the 2nd Z500 

component (as for the west). The latter of these two connections seems plausible given 

the discussion of western Atlantic influence given above (regarding autumn cold 

weather and the 2nd Z500 component), but the summer linkages need further 

investigation. 

 

Far more important in the central basin than the west, is the Southern 

Oscillation. For winter, links have been shown for low temperatures (TMIN, TN10, 

TNFD) and the frequency of rainfall (PINT, PF90, PCDD). Although little in the 

literature details Italian SOI influence, teleconnections have been found with both 

eastern coastal Spanish rainfall (Rodo and Comin, 2000), and Turkish precipitation 

(Kadioglu et al., 1999). 

 

Blocking activity is as important in the central Mediterranean as it is in the west, 

although less so during winter and summer, and more so during autumn and spring. 
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Euro-Atlantic blocking (indicated by Z500 PC3) displays influences in the central 

Mediterranean similar to those in the west, with winter average and low temperatures 

(TMIN, TN10), and summer high temperatures (TMAX), and rainfall amounts (PQ90, 

PCDD). Similarly the Winter Dry pattern (indicated by SLP1) can be linked to 

persistent winter temperature extremes (TNFD and HWDI), and a lack of rainfall 

(PCDD). However, Atlantic pressure centres mainly influence spring climate, in terms 

of temperature indices (TAVG, TMIN, TMAX, TX90), the number of rainfall events 

(PN90), and periods without rainfall (PCDD). More persistent conditions (TNFD, 

HWDI) are also influenced, although more by blocking in the north Atlantic (SLP PC2), 

than elsewhere. European blocking shows links to the same climate indices during 

spring. During autumn European blocking links are evident with both high 

temperatures, and the occurrence of heavy rainfall (PQ90, PF90, PX5D).  

 

As for Euro-Atlantic Blocking, the NSCP shows similar influence in both the 

west and central Mediterranean, for all temperature indices, mostly during spring. The 

5th component of spring Z500 and the 1st component of autumn Z500 both strongly 

resemble the NSCP pattern and can be linked to rainfall indices during spring in the 

former case and autumn in the latter. It may be that the influence of the NSCP is wider 

than previously suggested.  

 

 African influences are less supported by statistical evidence for the central basin 

than the west- the only factors that repeatedly appear in the correlations, trends, and 

weightings are winter SHM PC2 and PC4, and their effects upon extreme rainfall. Only 

in the latter case do loadings plots (Fig. 3.29) suggest a dynamic link, and it is the 2nd 

component of SHM that shows the strongest weightings for both extreme high 

temperatures (TMAX, TX90) and the majority of rainfall indices (PINT, PF90, PCDD, 

PN90, PX5D). 

 

As for the western summer regime, central Mediterranean high temperature 

extremes may also be linked to low pressure gradients across the Mediterranean and 

continental pressure systems. The 5th and 7th summer components of Z500 can be linked 

to average (TAVG) and high (TMAX, TX90) summer temperatures, as can the 2nd 

summer component of SLP, which suggests a weakened Atlantic circulation. For the 
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central basin, however, the extended warm season is evident in the fact that Z500 PC6 

(also representing a small pressure gradient across the Mediterranean) also affects high 

temperature (TMAX and TX90) indices. 

The eastern Mediterranean  
 

For the eastern basin, the Atlantic influence on extreme climate evident in west 

and central basin is almost entirely absent. Although teleconnections have been found in 

previous studies in both Turkey and the Middle East (Chapter 2.2.1), any Atlantic 

influence of the Greek climate is generally not apparent in this study. For winter, the 

only Atlantic influenced predictor to show a substantial statistical link is the 1st Z500 

component (Fig. 3.27), which is highly significantly correlated with the NAO, but also 

displays high levels of variance throughout the Mediterranean basin and the Arctic 

circle. As for the NAO in the western basin, links can be found between Z500 PC1 and 

the majority of winter rainfall indices. As for Atlantic influence in the central basin, 

links can also be found between Z500 PC1 and indices of extreme high temperature 

(TMAX, TX90) during winter.  

 

During autumn, however, both the SOI (for all indices but those representing 

extreme cold), and the MOI (for all indices, but more so for very high temperatures than 

very low temperatures) have been found to be much more important (Figs. 4.58 and 

4.59). As mentioned above (and in Chapter 2.2.1), links between rainfall and the SOI 

for the eastern basin are not new to this study, although the suggestion that it may have 

a strong effect upon extreme climate for the Balkan peninsula is a novel finding. The 

MOI is partly defined by pressure changes in the eastern Mediterranean, so an empirical 

link may be easily justified, and is referred to by Maheras et al. (1999b). Also 

representing the large-scale pressure regime in the east, a strong Asiatic low (Z5007) 

may be important for spring dry days (PCDD) and temperatures (Chapter 2.2.2, 2.2.3), 

although in the latter case its influence is not as important as that of the MOI. 

 

 The NSCP is generally cited as having a strong affect upon the eastern 

Mediterranean (Kutiel and Benaroch, 2002, Kutiel et al., 2002). In this study it has been 

found to possess links with autumn extreme cold (TN10 and TNFD) and heavy rainfall 

events (PN90), and summer extreme heat (TX90). The former combination of heavy 
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rainfall and low temperature, is suggested by Kutiel et al. (2002) as a reflection of the 

negative phase of the NSCP.  

 

 For the East Atlantic, blocking shows little to no influence, much as Atlantic 

circulation is found to be unimportant. As for the central Mediterranean, however, 

European blocking shows strong statistical links for spring. During spring the EBI 

influences all precipitation indices, although the heaviest weightings/ strongest 

correlations are those for heavy and intense rainfall (PQ90, PINT), and all temperature 

indices except those concerning duration of event. Persistent extremes are instead linked 

to the 2nd Z500 component, north eastern European blocking, which may also influence 

spring rainfall. The 3rd Z500 component (indicative of a deep European depression) 

shows statistical links with the same indices. As the blocking of meridional weather 

systems is obviously important for the spring climate, it also seems reasonable that 

continental pressure systems (SLP PC1) might influence spring temperature and 

rainfall, as suggested by the statistical links drawn from this and the previous chapter. In 

seasons other than spring, summer depressions to the north of Europe (indicated by SLP 

PC3) may be linked to the number of rainfall events (PN90 and PCDD) and measures of 

temperature magnitude. Although there is no evidence for influential blocking action 

during winter, a low variance humidity field (SHM PC6) is very important for both 

winter temperature and precipitation indices, although less so for frost days (uncommon 

for most of the eastern stations) or very high temperatures, rainfall intensities, or 

persistent dry days. 

 

 Much like the climate of the western basin, the east is heavily influenced during 

summer by incursions of African air. This form of circulation is best represented by the 

SHM components (Figs. 3.35), which in the east also affect spring climate. During 

summer, incursions of southern sub-tropical air from both the west and east can be 

linked to rainfall indices and low summer temperature indices (TMIN, TN10), and a 

flow of dry air from northern Africa to Turkey (SHM PC2), shows a possible effect 

upon heatwaves (HWDI). During spring, the SHM PC3 (Asian influence) can be linked 

to dry days (PCDD), and north east African uplift (indicated by SHM PC4) may 

influence most forms of spring rainfall and extreme low temperatures (TN10). 
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4.4.3 Conclusion 
 

In this chapter two different statistical downscaling methods have been applied 

to Mediterranean climate extremes. In both cases, and for all variants of those methods, 

the extreme climate patterns described in the previous chapter have had a substantial 

effect in terms of the regions, seasons, and indices, which have been most skilfully 

modelled: 

 

o Temperature indices are (in almost every case) more successfully modelled 

than rainfall indices (Section 4.3.3).  

o In terms of both skill and variance performance, there is a definite split 

between most measures of temperature extreme magnitude, and those of 

extreme duration. Very low temperatures (TN10), however, are replicated 

with performances closer to the latter group. Generally measures of 

magnitude are more skilfully and more coherently represented than measures 

of duration (Section 4.2.3, and 4.3.3). This may be due to the fact that the 

influences responsible for the latter forms of extreme behaviour are more 

complex than those for the former (Chapters 2.4.2 and 2.4.3). 

o Both techniques are highly sensitive to the season under consideration, 

although seasonal sensitivities vary between the OSR variants and are 

largely consistent for the ANN variants (Section 4.3.2). The number of 

stations that were very poorly reproduced (i.e. generated negligible skill), 

however, were generally higher for summer and autumn than winter or 

spring (Section 4.3.3). 

o Taking regions of negligible skill into account, it is difficult to pick (in terms 

of both the average level of skill produced, and the range of performance) 

one season for which each variant gives the best performance across the 

entirety of the area considered in this study. It is much easier to select certain 

indices that are well represented for all variants in any given season. These 

are generally reflective of the dominant form of seasonal climate, with the 

exception of summer low temperatures (TMIN), which are generally well 

modelled, and Mediterranean dry days (PCDD) and rainfall intensity 

(PINT), which are relatively well modelled for most seasons and variants. 
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o Autumn and eastern performance results are less consistent between model 

variants than other seasons or regions. In the former case this seems likely to 

be a reflection of a more complex range or seasonal climatic behaviour 

(Chapter 3.4.2). In the latter case it is due to a large number of regions where 

Neural Network models returned negligible skill.  

o Autumn and summer rainfall shows particularly poor performance for the 

south east of Greece for all indices and model variants. It seems likely that 

either the lack of precipitation in the area is negatively affecting skill 

(Chapter 3.4.2 and Section 4.3.3), or the appropriate predictors for this 

region are not included in the models. 

 

Of the two methods applied in this study (in most cases but with certain 

caveats), the neural network method may be the most successful. The addition of 

particular forms of non-linearity to such a model may not, however, increase skill or 

overcome certain inherent flaws (the inability to successfully model certain locations), 

and may introduce new ones (the inability to successfully model summer climate). In 

the process of developing a neural network downscaling model, a means of 

discriminating climate predictors useful for the simulation of climate predictands has 

been constructed. In this way an additional statistical test for links between 

hemispheric-scale circulation and station-scale extreme events has been conducted. 

Although the ability to replicate one set of data from another does not alone imply 

physical causality, a number of different investigative methods have been employed up 

to this point, and a weight of statistical evidence accrued, supported by empirical 

evidence within the climatological literature (Chapter 2.4). Section 4.4.2 discusses 

potential causes for extreme climate behaviour given the literature reviewed in Chapter 

2, shared variance, regions of influence or trends found in Chapter 3, and possible 

reasons for teleconnection, as discussed in both chapters. Whereas many of these factors 

are known to influence mean climate, little work up until now has been concerned with 

whether or not they are appropriate for use in the study of extreme Mediterranean 

climate, and if appropriate, during which seasons and for which regions. Having 

considered both the patterns and causes of extreme Mediterranean climate, the next 

three chapters are concerned with the potential impacts of extreme events on socio-

economic sectors of activity that are known to be affected by mean climate.  
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Table 4.1: Climate predictors used for the reduced predictor set OSR variant. All 
other models use the predictors shown in Table 3.16. Acronyms used below are 
shown in Table 3.11, PC predictors (SLP, Z500, SHM) are defined in Table 3.17. 
 

WEST CENTRAL EAST  
DJF MAM J JA SON DJF MAM J JA SON DJF MAM J JA SON 

NAO X X X X X X X X     
SOI    X    X   X  
MOI X X X X X X X X X X X X 
NSCP  X X  X X X X X X  X 
SHI  X   X X   X X   
ABI X X  X X X X X  X X X 
EBI X X X X X X X X X X X X 

X X X X X X X X  X X X 
X  X X X  X X   X X 
 X X X X X X X X X X X 

SLP 

  X X       X X 
  X  X         

X X   X X  X X X   
X   X X        
 X X   X X X  X X  
 X X X  X X X     
 X X X  X X     X 
 X X   X X X     

Z500 

 X X   X X      
 X X X X X  X X X X X 

X    X  X  X X X  
X X X X X X X X X X   
X X X X X X X  X X  X 
        X    

SHM 

X    X    X    
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Table 4.2: Model variants selected as a part of sensitivity testing. 
 
Method Model variant Notes 

BOSR: Basin 
Predictor Set 

All available predictors, applied for the 
whole region, one index of extremes 
modelled at a time. 

OSR 

ROSR: Regional 
Predictor Set 

Seasonally and regionally selected 
predictors, applied to each sub-region 
(west, Central, East), as above. 

LBFNN: Linear 
Neural Network 

Neural network 
with no 
preconditioning 

GBFNN: Gaussian 
Basis Function 

Gaussian 
preconditioning 
signal 

ANN 

TPFNN: Thin Plate 
Spline Basis 
Function 

Thin plate spline 
preconditioning 
signal 

12 nodes,  
Basis width =10,  
Constant starting 
seed. 
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Fig 4.4 

 
Figure 4.4: BOSR temperature predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.5  

 
 

 
Figure 4.5: BOSR precipitation predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.6 

 
Figure 4.6: ROSR temperature predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.7  

 
 

 
Figure 4.7: ROSR precipitation predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.8 

 
Figure 4.8: LBF ANN temperature predictand index Taylor diagrams (Section 
4.3.1). Representing the estimation of variance (V) on the radial axis and the 
correlation coefficient (r) on the angular axis for every station, colour coded by 
season. 
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Fig 4.9  

 
 

 
Figure 4.9: LBF precipitation predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.10 

 
Figure 4.10: GBF temperature predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.11
  

 
 

 
Figure 4.11: GBF precipitation predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.12 

 
Figure 4.12: TBF temperature predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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Fig 4.13
  

 
 

 
Figure 4.13: TBF precipitation predictand index Taylor diagrams (Section 4.3.1). 
Representing the estimation of variance (V) on the radial axis and the correlation 
coefficient (r) on the angular axis for every station, colour coded by season. 
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BOSR: 

 
ROSR: 

 
LBF: 

 
GBF: 

 
TBF: 

 

Fig 4.14 

 
Figure 4.14: Seasonal box and whisker plots of model skill (r) distribution (all 
stations) for all climate model variants by predictand index. Seasons are, from left 
to right, winter (dark blue), spring (green), summer (orange), and autumn (light 
blue). 
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Fig 4.15
  

 
BOSR: 

 
ROSR: 

 
LBF: 

 
GBF: 

 
TBF: 

 
 
Figure 4.15: Regional box and whisker plots of model skill (r) distribution (all 
relevant stations, all seasons but summer) for all model variants. Stations are 
western (blue) between -10° and 6° latitude, central (green) between 6° and 20°, 
and eastern (orange) between 20° and 30°. 
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Fig 4.16 

 
Figure 4.16: BOSR winter temperature performance, calculated as model skill (r). 
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Fig 4.17
  

 
 

 
Figure 4.17: BOSR winter precipitation performance, calculated as model skill (r). 
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Fig 4.18 

 
Figure 4.18: ROSR winter temperature performance, calculated as model skill (r). 
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Fig 4.19
  

 
 

 
Figure 4.19: ROSR winter precipitation performance, calculated as model skill (r). 
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Fig 4.20 

 
Figure 4.20: LBF winter temperature performance, calculated as model skill (r). 
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Fig 4.21
  

 
 

 
Figure 4.21: LBF winter precipitation performance, calculated as model skill (r). 
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Fig 4.22 

 
Figure 4.22: GBF winter temperature performance, calculated as model skill (r). 
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Fig 4.23
  

 
 

 
Figure 4.23: GBF winter precipitation performance, calculated as model skill (r). 
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Fig 4.24 

 
Figure 4.24: TBF winter temperature performance, calculated as model skill (r). 
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Fig 4.25
  

 
 

 
Figure 4.25: TBF winter precipitation performance, calculated as model skill (r). 
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Fig 4.26 

 
Figure 4.26: BOSR spring temperature performance, calculated as model skill (r). 
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Fig 4.27
  

 
 

 
Figure 4.27: BOSR spring precipitation performance, calculated as model skill (r). 
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Fig 4.28 

 
Figure 4.28: ROSR spring temperature performance, calculated as model skill (r). 
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Fig 4.29
  

 
 

 
Figure 4.29: ROSR spring precipitation performance, calculated as model skill (r). 
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Fig 4.30 

 
Figure 4.30: LBF spring temperature performance, calculated as model skill (r). 
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Fig 4.31
  

 
 

 
Figure 4.31: LBF spring precipitation performance, calculated as model skill (r) 
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Fig 4.32 

 
Figure 4.32: GBF spring temperature performance, calculated as model skill (r). 
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Fig 4.33
  

 
 

 
Figure 4.33: GBF spring precipitation performance, calculated as model skill (r). 
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Fig 4.34 

 
Figure 4.34: TBF spring temperature performance, calculated as model skill (r). 
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Fig 4.35
  

 
 

 
Figure 4.35: TBF spring precipitation performance, calculated as model skill (r). 
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Fig 4.36 

 
Figure 4.36: BOSR summer temperature performance, calculated as model skill 
(r). 
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Fig 4.37
  

 
 

 
Figure 4.37: BOSR summer precipitation performance, calculated as model skill 
(r). 
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Fig 4.38 

 
Figure 4.38: ROSR summer temperature performance, calculated as model skill 
(r). 
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Fig 4.39
  

 
 

 
Figure 4.39: ROSR summer precipitation performance, calculated as model skill 
(r). 
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Fig 4.40 

 
Figure 4.40: LBF summer temperature performance, calculated as model skill (r). 
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Fig 4.41
  

 
 

 
Figure 4.41: LBF summer precipitation performance, calculated as model skill (r). 
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Fig 4.42 

 
Figure 4.42: GBF summer temperature performance, calculated as model skill (r). 
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Fig 4.43
  

 
 

 
Figure 4.43: GBF summer precipitation performance, calculated as model skill (r). 
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Fig 4.44 

 
Figure 4.44: BOSR autumn temperature performance, calculated as model skill 
(r). 
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Fig 4.45
  

 
 

 
Figure 4.45: BOSR autumn precipitation performance, calculated as model skill 
(r). 
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Fig 4.46 

 
Figure 4.46: ROSR autumn temperature performance, calculated as model skill 
(r). 
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Fig 4.47
  

 
 

 
Figure 4.47: ROSR autumn precipitation performance, calculated as model skill 
(r). 
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Fig 4.48 

 
Figure 4.48: LBF autumn temperature performance, calculated as model skill (r). 
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Fig 4.49
  

 
 

 
Figure 4.49: LBF autumn precipitation performance, calculated as model skill (r). 
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Fig 4.50 

 
Figure 4.50: GBF autumn temperature performance, calculated as model skill (r). 
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Fig 4.51
  

 
 

 
Figure 4.51: GBF autumn precipitation performance, calculated as model skill (r). 
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Fig 4.52 

 
Figure 4.52: TBF autumn temperature performance, calculated as model skill (r). 
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Fig 4.53
  

 
 

 
Figure 4.53: TBF autumn precipitation performance, calculated as model skill (r). 
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Fig 4.54 

 
Figure 4.54: LBF ANN climate model predictor weights for the western region and 
temperature predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for TAVG are 
normalised by the overall winter TAVG mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
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Fig 4.55
  

 

 
 
Figure 4.55: LBF ANN climate model predictor weights for the western region and 
precipitation predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for PREC are 
normalised by the overall winter PREC mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
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Figure 4.56: LBF ANN climate model predictor weights for the central region and 
temperature predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for TAVG are 
normalised by the overall winter TAVG mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
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Fig 4.57
  

 

 
 
Figure 4.57: LBF ANN climate model predictor weights for the central region and 
precipitation predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for PREC are 
normalised by the overall winter PREC mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
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Fig 4.58 

 
Figure 4.58: LBF ANN climate model predictor weights for the eastern region and 
temperature predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for TAVG are 
normalised by the overall winter TAVG mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
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Fig 4.59
  

 

 
 
Figure 4.59: LBF ANN climate model predictor weights for the eastern region and 
precipitation predictand indices. Box and whisker bars include weights for all 
western stations (between -10°  and 6°  latitude), and are shown individually for 
winter (dark blue), spring (green), summer (orange), and autumn (light blue), and 
each predictor (as shown on the x-axis). For ease of comparison all values are 
normalised seasonally (e.g. all winter predictor weight values for PREC are 
normalised by the overall winter PREC mean and standard deviation). See Tables 
3.4 and 3.11 for acronyms. 
 
 


