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4. Optimal detection methodologies

In this chapter, current optimal multi-variate statistical approaches to detection and

attribution are introduced. No attempt is made to develop further any previously

published detection methodologies. Rather, the aim is to provide the information

necessary to understand the analysis in subsequent chapters. Univariate (Stage I)

approaches are not discussed as they have extremely limited scope in yielding either

unambiguous detection or attribution (Santer et al., 1996, chapter 1). Nor are the

principles behind pattern correlation techniques (Santer et al., 1993, 1995), although

the linkage between these and optimal regression is discussed. The principal

limitations of the optimal detection methodologies currently employed are also

discussed. Section 4.1 introduces the components necessary for an optimal detection

exercise, along with some of the assumptions common to all approaches. In Section

4.2 the optimal regression approaches of Allen and Tett (1999) (henceforth AT99)

and Allen and Stott (2001) (henceforth AS01), proposed independently by Levine

and Berliner (1999), are outlined, and their limitations and potential applications

discussed. These methodologies are concentrated upon as they are the detection

algorithms implemented in chapters 5, 6, and 7. Section 4.3 briefly describes other

multi-variate detection approaches pursued to date, couching them where possible in

terms of the classical regression approaches detailed in section 4.2. The principal

results of, and caveats that apply to, all of these methodologies have been discussed

previously in chapter 1, hence solely the technical details of detection are focused

upon here. Section 4.4 concludes.

4.1 The basics of climate change detection

Climate change detection can only ever be addressed as a statistical problem,

whereby probabilistic statements are made as to the most likely causes of recently

observed climate change. It will never be possible to prove absolutely all the causes

of recently observed climate change as the Earth�s climate system is highly complex.
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Not only is the system highly complex, it is also poorly observed and crudely

modelled (see chapter 1). There are numerous forcings that can affect the evolution

of the climate system, only a few of which (albeit the most likely major candidate

forcings) have been considered to date in climate models. Furthermore, the

atmosphere is coupled to the oceans, the cryosphere and the biosphere. Small

perturbations to any component of this coupled system will cause the climate system

to vary, sometimes in preferred modes (NAO, ENSO, QBO for example) � these

variations are termed �natural internal variability� or �noise� in detection studies, and

exist on all space and time scales. The detection of the physical manifestation of any

large-scale forcing (such as anthropogenic CO2 emissions due to the combustion of

fossil fuels) upon the global climate system is, therefore, some form of statistical

�emerging signal in noise� problem. To quantify the likelihood of any forcing

signal(s) (e.g CO2) influencing the global climate system, three components are

required in any detection study:

• An observational realisation of the spatio-temporal evolution of a climate

parameter such as near-surface temperature.

• A modelled realisation of the spatio-temporal response of that climate parameter

to the candidate forcing signal(s).

• An estimate of the spatio-temporal natural variability structure of that climate

parameter (with no external forcings upon the climate system), from which to

claim significance of any statistic.

Those modelled and observed datasets used in the current thesis are discussed in

detail in chapter 1. In all detection approaches to date, the observations are compared

to the model-derived signals to yield a statistical indicator of their similarity. The

model-derived signals are also compared to model estimates of natural internal

climate variability. These can be derived from either a section(s) of model control

run (run with no external forcings), or an estimate based upon intra-ensemble

variability. This allows for an estimate as to the natural variability of the statistic,

from which to claim whether or not the observed result is significantly different to
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that expected by chance alone. Therefore, any claim of signal detection is critically

dependent upon the adequacy of the model control estimate of natural internal

variability. Assumptions must also be made regarding the veracity of both the

observations and the model-derived signals. Most of these assumptions can be

directly assessed and quantified through the application of sensitivity studies (Tett et

al., 1999, Gillett et al., 2000a, for example). Additionally, there are many other

studies which have considered the realism of both observed and modelled variables

and the spatial and temporal scales at which both the models and the observations are

adequate (Stott and Tett, 1998, Gillett et al., 2000, Johns et al., 1997, NRC, 2000, for

example).

Most recent detection studies have employed an �optimal� detection methodology in

an attempt to maximise the chances of a successful outcome. A number of different

approaches have been proposed in these optimal detection studies. The rationale

behind all such approaches is to rotate the searched-for model-derived signal(s) and

the observations in such a way as to maximise the SNR. Those regions of phase

space where the signal(s) is (are) dominant over climate noise due to natural

variability (estimated from a segment of model control) are given higher weighting

in the detection algorithm. Conversely, those regions of phase space where the noise

is dominant over the signal(s) are given lower weighting. This is seen most easily

when considering a very simple hypothetical system that can only vary in two

dimensions (the true climate system varies in an infinite dimensional phase space).

Figure 4.1 illustrates graphically how rotation increases the SNR in this hypothetical

system (after Hasselmann, 1976, see Mitchell and Karoly et al., 2001). Rotation of

the signal is invariably carried out with respect to a realisation of natural variability

from a model control run as suitable observational datasets do not exist, either being

potentially polluted by the searched-for signals, or containing residual uncertainties

(Jones and Hegerl, 1998). There is an associated increase in uncertainty involved in

the optimal detection statistic if the estimate of natural variability in the climate

parameter is (grossly) incorrectly diagnosed within the model control. Importantly, it

has been shown that this can only ever lead to a conservative statistical error under
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an optimal detection approach (AT99, see section 4.2.1, Hasselman, 1997, Hegerl et

al., 1997).

AT99, AS01, and Levine and Berliner (1999) have shown that the optimal detection

approach of Hasselmann (1997) can be couched in terms of multi-linear regression.

This is the approach employed in this thesis and hence concentrated upon in this

chapter. Hegerl and North (1997) have further shown how a number of independent

approaches that have been taken to optimal detection, including that of Hasselmann

(1997), are broadly comparable (see section 4.3 for more details of these

methodologies, and how they relate to the regression approach outlined in section

4.2). A regression approach has advantages over these other optimal detection

approaches in terms of being able to explicitly quantify model signal amplitudes in

the observations. The residuals of the regression can also be compared to

independent realisations of natural variability as a consistency test. By quantifying

signal strength in a meaningful manner, it potentially becomes possible to constrain

future climate projections under a transient forcing (Allen et al., 2000, 2001). A

multiple linear regression approach is also the Uniformly Most Powerful (UMP)

detection statistic (Levine and Berliner, 1999) in a classical frequentist statistical

approach, although more powerful Bayesian alternatives may exist. Optimal multi-

linear regression approaches can be shown to be a special case Bayesian approach

(Allen et al., 2001), whereby the prior probability density function is uniform

(although the proof is not detailed here, it is useful to note the equivalence).

Incorporating a Bayesian statistical approach might increase the power of future

detection algorithms (Berliner et al., 2000). Two variants of the multiple linear

regression technique have emerged, Ordinary Least Squares (henceforth referred to

as OLS) (AT99, Levine and Berliner, 1999, see section 4.2.1), and Total Least

Squares (henceforth referred to as TLS) (AS01, see section 4.2.2). Most published

studies to date using a multi-linear regression approach have considered results from

OLS regression.
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There are numerous potential viewpoints on how exactly the detection and attribution

problem should be treated in a statistical framework (Levine and Berliner, 1999). It

should be noted that if the climate system is treated in the wrong framework then

potentially erroneous results could ensue unless adequate �safety checks� are

performed upon the results. Levine and Berliner (1999) characterise the approach of

regression as taking an ensemble-stochastic view, rather than an intrinsic-stochastic

view, which they argue is the truly valid approach. In an intrinsic-stochastic view the

observations are assumed to be made up of a number of components:

• The true signal.

• Uncertainties due to ensemble effects. A small, finite number, of model

ensemble members are started under imperfectly known initial conditions,

adding uncertainty to the estimated signal. The signal estimate will consist of

both the true signal and an additional residual noise term.

• Operational uncertainties whereby all estimates are ascribed probability

distributions, since the model is not a perfect representation of the real world,

and the observations are recognised as only a representation of the true variable

values.

• Unexplained noise.

The regression algorithms proposed by AT99 and AS01 (see section 4.2) explicitly

account for ensemble effects only (hence ensemble-stochastic), but propose a

consistency check on the residuals, which would identify, although not necessarily

ascribe causes to, gross errors arising from the latter two sources. How one views the

system is, therefore, in practice unlikely to greatly affect the results of those optimal

regression studies that contain a consistency check on the residuals.

Optimal detection algorithms to date have only generally considered changes in the

first order statistics of variables (Levine and Berliner, 1999). That is, these studies

have made distributional assumptions about the searched-for atmospheric

parameters. The approach is to assume that natural variability has a fixed
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distribution, and that a transient forcing elicits a change solely in the mean of the

distribution (shifting the entire distribution by a value equal to the change in the

mean), without impacting upon the higher order statistics. However, it should be

noted that there is no physical or theoretical reason why higher order statistics of

variables should remain stationary under a transient climate change. Timmerman

(1999) outlines a potential optimal detection approach using variance and skewness

(second and third order statistics respectively) characteristics, and applies this to a

study considering potential non-stationary ENSO characteristics. There is no reason,

at least in theory, as to why the optimal regression approach outlined in section 4.2

could not be advanced to consider such statistics. However, it is highly unlikely that

HadRT upper air temperatures (Parker et al., 1997) are a suitable candidate variable

for such a study, both due to the relatively short observational record available, and

remaining observational dataset uncertainties (chapter 2). Furthermore, the sampling

error, for a given sample size, will be larger for higher order statistics, so the small

sample HadRT dataset would seem to be inadequate. Advancement of such an

approach is therefore left to others.

4.2 Detection seen as optimal regression

4.2.1 Ordinary Least Squares Regression

4.2.1.1  The basic regression model

AT99 and AS01 apply the general statistical definition of multi-linear regression as

follows. The basic equation to be solved is:

y = Xβ + ν                                                                                                             (1)

Where: y is a realisation of the observations (a column vector of rank l).

           X is a set of n response patterns to plausible forcing mechanisms, each of rank
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              l, denoted as the columns of the (n×l) array.

           β is a row vector containing the amplitude estimators (n multipliers) of the

  columns of X in y.

           ν is a rank l column vector of the climate noise (residuals)

It is not necessary for y to be the raw observations, so long as X, y and ν are treated

identically within the procedure. For example, in previous studies using an OLS

regression algorithm, looking at near-surface temperatures (Tett et al., 1999, 2001,

Stott et al., 2001), a space-time approach has been undertaken, whereby the input

vectors are treated from a 3-D discrete latitude, longitude, time array. Decadal

averages are taken and converted into a spherical harmonic coefficient (SHC)

representation truncating at wave-number 5 such that each decade consists of 25

values (Stott and Tett, 1998 provide a justification for this cut-off value). This SHC

representation of each decadal average is then used as input to the OLS regression,

stacked in time, to yield a space-time input diagnostic vector. The reader is directed

to Tett et al. (1999, 2001), and Stott et al. (2001) for further details of this pre-

processing. In principle, there is no reason why alternative forms of pre-processing

cannot also be employed to yield the input vectors. Those pre-processing algorithms

employed in this thesis are described in chapters 5 and 6.

 Under an OLS regression approach, the climate noise covariance, which is required

to undertake the optimisation, is given by:

( )T
NC ννε≡                                                                                                              (2)

where ε is the expectation operator. CN is generally unknown, as the climate system

has not been observed in sufficient detail on the multi-centennial to millennial

timescales that are required to derive an accurate estimate of multi-decadal natural

internal climatic variability important in detection studies. Any such observationally

based estimate would also likely contain externally forced variability due to solar

variations, volcanic eruptions, and more recent anthropogenic influences, amongst

others. Although these effects could be estimated (e.g. by climate modelling), and

removed (Jones and Hegerl, 1998), it is highly unlikely that the corrections will be



104

perfectly known, especially previous to the most recent 30 years. Therefore, the

variability in the resulting dataset will not solely be due to natural variability, and CN

must invariably be estimated from a segment of model control run, the assumption

being that the model is a reliable estimator of natural internal climate variability.

In the true climate system natural internal variations are not WHITE (independent,

identically distributed) noise in either space or time. The system exhibits distinct

correlations (covariance), whereby it tends to have preferred modes over a large

range of space and timescales. If this were not taken into account, the resulting

estimates of β from (1) would be both highly inefficient (as the rotation would be

sub-optimal), and have strongly biased error estimates (AS01). The regression can be

optimised by noting that the best linear unbiased (BLUE) estimator of β can be found

by introducing a pre-whitening operator, P, whereby the transformed noise estimate,

Pν, appears to be WHITE in nature such that:

( ) IPPCPP T
N

TT ==ννε                                                                                          (3)

where I is the identity matrix. The BLUE estimator for β varies less between

experimental realisations than any other linear unbiased estimator. It is also the

solution that minimises the variance in the solution. That is, if one were actually able

to repeat the entire experiment with new observations and model predictions, the

BLUE estimator would vary less between these repeat experiments than any other

unbiased linear estimator (AT99). This pre-whitening procedure could also be

considered in terms of SNR, or an explicit Bayesian treatment. Differences, however,

are effectively a matter of interpretation, rather than fundamental approach (AT99).

These different approaches to optimisation may yield very different tools for

subsequent consideration of the results. The OLS regression approach advocated by

AT99 has advantages over those optimal techniques used previously (see Hegerl and

North, 1997, and section 4.3), as it assumes that the pattern is correct (with an

uncertain amplitude). Previous approaches have been unable to distinguish between

the influence of pattern and amplitude upon detection results (Levine and Berliner,

1999). In the presence of a finite ensemble size, there will be uncertainty in the

pattern as well as the amplitude of the signal responses (Barnett et al., 2000). Hence
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the OLS regression approach is only an approximation, especially in the case of

small population ensembles and weak signals (AS01). Furthermore, it makes the tacit

assumption that the climate system is linear on the time and space scales considered,

such that any model derived climate response to a forcing is able to be directly

linearly scaled to fit the observations.

The BLUE estimator is satisfied if 1−= N
T CPP , provided such an inverse exists (i.e.

CN is not under-sampled and therefore non-invertible), and the Gauss-Markov

theorem (Mardia et al., 1979) may be invoked as Pν is indistinguishable from white

noise. To prove that the best (lowest variance) linear unbiased estimator for β is

BLUE, the following merit function must be minimised (AS01):

( ) ( ) ( ) ννβββ ~~~~~2 PPPyPXPyPXr TTT
=−−=                                                             (4)

where ~ indicates the best-guess values, and (4) aims to minimise the residuals in the

observations (geometrically viewed as minimising the squared differences in the y

direction (dependent variable in classical terms) � hence OLS). The minimum

condition, r2
min, is satisfied assuming:

( ) ( ) yFyCXXCXPyPXPXPX T
N

T
N

TTTTT ≡== −−−− 1111~β                                       (5)

Where:

( ) 111 −−−= N
T

N
TT CXXCXF                                                                                           (6)

FT is the term that extracts the BLUE signal estimator from the observations (y). This

is the OLS regression solution applied to the transformed (pre-whitened) variables

PX and Py (AT99). FT is called the BLUE estimator in classical regression literature

(Mardia et al., 1979), but for consistency with previous detection studies, AT99

suggest that the m rows of FT should be termed the "distinguishing fingerprints".

As the estimate of the signal amplitudes is unbiased ( ) ββε =
~ , and the m×m

covariance matrix ( )( )[ ]T
ββββε −−

~~  is given by the inverse of the Hessian matrix:
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where V is the variance (AS01). Therefore, ignoring any uncertainty in the natural

variability estimate, CN, the variance can be rewritten as:

( ) FCFV N
T=β~                                                                                                           (8)

It should be noted that the uncertainty estimate in the solution is independent of the

observations (y) in undertaking an OLS regression approach. If ν is multivariate

normal (which it is following the application of the pre-whitening operator, P) then

this implies that:

( ) ( )[ ] ( ) ( ) ( ) 22
min

221 ~~~
m

T
rrrV χβββββββ ≈−≡∆=−−

−
                                             (9)

The regression solution can be visualised as a cloud of equally plausible solution

points each comprising of the m values of β (signal amplitudes) in m-dimensional

signal phase space co-ordinates. Confidence limits on the distribution can be found

by calculating critical 2
mχ  values, and evaluating the corresponding values of β for

the LHS in equation (9) for the m distinguishing fingerprints being considered

(AT99). The true value of β is then expected to lie within the m-dimensional limits

defined at the prescribed confidence interval. A number of confidence intervals can

be considered simultaneously to yield isopleths of a PDF (probability density

function) that the true solution lies within each bounding isopleth of the PDF. The

PDF illustrates the uncertainty in the estimates of the scaling required on the m

distinguishing fingerprints, FT, to fit the observations, y. A subset of signals can be

considered by extracting the relevant columns from X, and evaluating the LHS of

equation (9) with the reduced number of degrees of freedom (m) for 2
mχ .

Any estimate of the variance of β~  gained from equation (8) can also be used to yield

potentially useful information on model characteristics. AT99 note that knowledge of

the variance of β~  can be used to estimate the implied uncertainty in any scalar linear
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diagnostic of the climate system, φ. This diagnostic can, with trivial exceptions, be

represented as a projection of the observations onto a vector of weights, w, such that

ywT=φ . What specifically is being considered will depend upon the elements of w.

Neglecting any uncertainty in X, the variance of φ attributable to uncertainty in the

amplitude estimate β~ is given by:

( ) ( ) wXXVwV TT βφ ~
=                                                                                              (10)

The potential therefore exists to consider the best-guess values and associated

uncertainties for different solutions to φ, where φ represents for example global

means (Allen et al., 2000, 2001), or regional averages. Regression results can then be

used to advance from a relatively simple detection exercise towards considering

which model aspects are consistent with the observations and, therefore, to identify

likely model errors (AT99). Care must be taken to ensure against introducing a

common factor effect (Santer et al., 1993), whereby results from such a study are

subsequently fed back into the model, making it more like the observations for no

physically plausible reason.

The OLS regression methodology detailed above is true in the limit of an infinite

ensemble, when the estimate of X will be noise free. However, in real world

detection problems, a very small finite ensemble size is available, and hence X will

tend to bias signal amplitude estimates ( )β~  towards zero (Mardia et al., 1979, Bell,

1986), and increase the true variance in the estimator by a factor of  ≈ 1+1/m, where

m is the number of ensemble members. AT99 show how this variance factor

correction is applied to OLS regression approaches assuming that the shapes of the

columns in X are approximately constant, whilst their amplitude changes due to

sample size effects. It should be noted that this is solely an approximation, as

expectations would also be for changes in the signal shape due to finite sampling

(Barnett et al., 2000), but these changes are considered likely to be much smaller, at

least for strong signals (AT99). Stott et al. (2001) discuss how this correction factor

is only necessary when considering signal consistency and PDF isopleth limits, and

not individual signal detection.
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4.2.1.2 Accounting for uncertainty in the model control

variability estimate

The key problem in any optimal detection algorithm is that the noise covariance

array CN is unknown, and must be estimated from a model control run segment,

which almost certainly does not capture all significant modes and scales of natural

variability (Stott and Tett, 1998). Alternatively, the estimate could arise from model

intra-ensemble variability which is assumed to arise solely from natural internal

variability (Tett et al., 2001). If intra-ensemble variability is used, then the procedure

is to remove the ensemble average value and scale each value by factor ( ) mm /1− ,

where m is the number of ensemble members (Tett et al., 2001). The noise estimate

is gained by evaluating:

T
NNN YY

n
C 1� =                                                                                                             (11)

where the columns of YN represent successive independent realisations of pseudo-

observations from the control run or intra-ensemble variability. These should mimic

the available observations as closely as possible. In particular, a similar missing data

mask should be applied (AT99). Typical trend lengths considered in detection studies

are 30-100 years. Control run data generally exists for a maximum of 1000-2000

years for any model. Therefore, the columns of YN will generally contain many more

spatial elements than there are independent realisations of natural variability, even in

the spatio-temporally reduced input fields (for example SHC decadal average space

(Tett et al., 1999, 2001)) being considered. Hence NC�  is non-invertible.

Although NC�  is non-invertible, this is not a problem as 1−
NC  is not actually required

for the estimate β~  to be BLUE (AT99). The requirement is that P, the pre-whitening

operator is satisfied, hence I, the unit matrix on the RHS of (3) need not be l×l. If it is

assumed that the control run adequately samples variability in the sub-space sampled
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by the κ highest variance EOFs of NC� , then one can consider a truncated pre-

whitening operator P(κ). In such a construct, the rows of P(κ) are the κ highest

variance EOFs of the control, weighted by their inverse singular values (so as to give

weight to those regions of phase space with lower natural variability). Hence
( ) ( )T

N PCP κκ �  is equivalent to the rank κ identity matrix. Such an approach is

equivalent to using the Moore-Penrose pseudo-inverse P(κ)TP(κ) in place of 1−
NC

(AT99).

Using this method has obvious potential implications on the probable outcome,

successful or otherwise, of any detection exercise. The uncertainty estimate ( )β~V  is

critically dependent upon the choice of κ. It will decrease in amplitude with

increasing values for κ by construction, as those EOFs with smaller singular values

(explaining less of the total variance) are incorporated. However, the available model

control is not generally of sufficient length to adequately sample all modes of model

estimated natural variability on the multi-decadal timescales considered in climate

change detection. Therefore, it could be that poorly sampled EOFs, with artificially

low estimates of natural variability (singular values) are incorporated. This could

easily lead to a Type I statistical error (rejection of a valid null), if the choice of κ

leads to the inclusion of modes under-sampled in the model control run, rather than

modes with truly lower variance. These EOFs would be given unrealistically high

weighting under the optimisation procedure.

Although ( ) ( )T
N PCP κκ � is equivalent to the unit matrix, NC� ≠ CN due to the finite

length of the control segment under consideration, hence equation (3) is only

partially satisfied using this approach (AT99). Equally, the estimate P(κ) is biased

towards the section of control from which it is derived. An independent sample of

control with estimated covariance
2

�
NC  (derived in the same manner as equation (11)),

will yield diagonal elements of ( ) ( )T
N PCP κκ

2
�  which are generally <1 (AT99). This
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introduces a bias into the covariance of any estimate of β~ , such that the confidence

limits of the distribution will be artificially small, increasing the chances of a Type I

statistical error arising. These effects can be taken into account by employing

separate sections of model control run for the optimisation and hypothesis testing

components of detection (Hegerl et al., 1996, AT99). AT99 show how this is

achieved in the regression framework by replacing equation (8) with the estimate:

( ) ( )
21

�~~
N

T yFVV =β

         11
2

22

1 FYYF
n

T
NN

T=

         11 2
� FCF N

T=                                                                                                       (12)

As ( ) 0
21 =N

T yFε , equation (12) is the standard estimate of the variance of β~

obtained by summing squares over 2n realisations of 
21 N

T yF . In the limit of an

infinite control run, equation (12) will collapse to equation (8), as both covariance

estimates tend towards the true covariance of the (model) system (AT99).

Considering uncertainty limits due to errors in the estimate for β~ , equation (9) is

replaced by:

( ) ( )[ ] ( ) ( ) vm

T
mFV ,

21 ~~~~
≈≡−−

−
βεβββββ                                                                 (13)

a standard F distribution with m and v degrees of freedom in the numerator and

denominator, with v being the number of degrees of freedom of 
2

�
NC , and m the

number of signals under consideration. Similarly to equation (9), an m-dimensional

PDF isopleth can be plotted by evaluating the loci of points relating to a given

significance level of the F distribution (AT99). An F distribution will yield a larger

uncertainty range than the equivalent Chi-squared distribution, although given a

sufficiently large number of degrees of freedom (v), the F distribution will collapse

toward the Chi-squared distribution, such that ∞= ,
2

mm mFχ .  AT99 show that the

limit is likely to be about v=100. There is no rigorous way of ascertaining the true

degrees of freedom of the independent control section used in hypothesis testing. An
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estimate of 1.5 times the number of non-overlapping chunks is advocated following

analysis by Allen and Smith (1997). It should be stressed that this is solely an

empirically-based estimate and may not hold true in all situations.

4.2.1.3 A consistency check on the residuals

An OLS regression approach yields a useful consistency test to ensure that the results

are physically plausible, as the residuals (ν) can be checked against independent

estimates of natural variability. To date such tests have assumed multivariate

normality, which should be valid following the application of the pre-whitening

operator, P. A null hypothesis is constructed that the model adequately represents the

variability in the real world. This null explicitly must account for observational error

as well as other potential sources of error outlined by Levine and Berliner (1999),

despite these not being implicitly included in the regression model. The null is tested

in the truncated phase space defined by the first κ EOF's in which the regression has

been performed. AT99 propose a simple test of the null hypothesis whereby the

residuals of the regression:

βν ~~ Xy −=                                                                                                               (14)

would behave as mutually independent, normally distributed random (WHITE) noise

in the coordinate system defined by 1� −
NC , such that:

212 ~�~
mN

T Cr −
− ≈= κχνν                                                                                                 (15)

is distributed as the sum of squares of κ-m normally-distributed random variables

with a mean of 1. If the truncation, κ, increases such as to include model states with

unrealistically low variance estimates in the control segment used for optimisation,

then it will tend to distort uncertainty analysis in the regression. At the same time, the

component orthogonal to X will tend to increase the residuals, such that the value of

r2 increases unrealistically. A critical value of the 2
m−κχ  distribution can be chosen as

a threshold for rejection of the null hypothesis, providing a warning that the results of

the regression are likely to be suspect. The assumption is that the control variability

is adequate, and hence the test provides warning that uncertainty estimates are
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becoming unreliable (see AT99 for more details). The test should, strictly speaking,

be two-tailed as it can be argued that too good a fit to the observations (such that the

residuals are an underestimate of natural variability) should carry the same cost as

too poor a fit. In practice the test has been applied both as a one-tailed test (Allen et

al., 2000, 2001, AT99), looking for values which exceed only the upper threshold,

and a two-tailed test (Tett et al., 1999, 2001, Stott et al., 2001). There is no

systematic bias in the results between the approaches. In the present analysis the one-

tailed approach is used, as it is not desired to penalise too good a fit to the same

extent as too poor a fit of the regression model to the observations.

There are potential limitations to the consistency test approach outlined above,

especially when considering large values for κ. Remembering that the denominator

in equation (15) ( )NC�  has been pre-whitened such that each element is unity, the

hypothesis is that the numerator has a normal distribution about unity and, therefore,

that the value of the solution to (15) will oscillate randomly around unity. If the

denominator (truncation) becomes sufficiently large then introducing values

systematically >1 into the numerator (based upon unrealistic control estimates), need

not immediately trigger a failure of the test statistic. Furthermore, introducing a

single large value >>1 randomly into the numerator, will be more likely to cause a

test failure earlier in the truncation series, after which the statistic may become

consistent again as the denominator becomes progressively proportionally larger.

Although there remains scope for a more optimal approach to testing for consistency

of the residuals, the current test is felt to be adequate for the purposes of this thesis,

although its limitations should be borne in mind.

AT99 note that the consistency check should reduce to an F-test if separate sections

of control are used in the optimisation and testing procedures.

vmN
T FmC ,

1 )(~�~
2 −

− −≈ κκνν                                                                                           (16)

Results using this approach are likely to be dependent upon the estimated value of v,

the �true� degrees of freedom (see earlier discussion). Regardless of the consistency
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test employed, a truncation limit criteria for optimisation is advocated by AT99,

whereby the truncation is limited to the maximum value for κ which does not fail this

independent consistency check. Tett et al. (2001) state that the correct test to use to

remain overall conservative in approach is an F-test at the 90% confidence interval

cut-off point. Furthermore, Tett et al. (2001) show how the residuals must be scaled

to account for finite ensemble size, scaling the left hand side of (15) by a factor of

1/(1+s), whilst assuming that it maintains the same distribution, where s is defined as

( )∑
=

=
n

i
ii ms

1

2
/~β , and mi is the number of members in the ith ensemble.

4.2.1.4 Recombining input fields to yield individual signal

amplitude estimates

In certain cases, input signals must be recombined, following input to the regression

algorithm, to yield the individual signal amplitude estimates. This recombination is

undertaken under the implicit assumption that the combined signal response is a

linear combination of the individual signal responses (AT99, Tett et al., 2001). This

assumption is difficult to assess in any robust way, as orders of magnitude more

ensemble members would be required to prove the existence of non-linear

interactions between the combined and individual forcing responses (AS01). It is a

necessary assumption when the ensembles do not contain the pure signal, but rather

the signals in some combination, as is the case for the anthropogenic ensembles in

both HadCM2 and HadCM3. Taking HadCM2 fields as an example, there exist three

anthropogenic ensembles:

• G (Well-mixed greenhouse-gases)

• GS (Well-mixed greenhouse-gases plus sulphate aerosols)

• GSO (Well-mixed greenhouse-gases, sulphate aerosols, and stratospheric ozone

depletion)
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Suppose that it were desired to gain an estimate of the amplitude of the model signal

response to G and S separately. It would be necessary to undertake a consideration

of both G and GS ensemble responses:

νββ ++= GSGSGG XXy ~~                                                                                         (17)

However, GHGβ~ , the estimated strength of the G signal will be dependent on both

components of the regression. The G signal strength estimate in (17) is the additional

greenhouse response required to explain the observations above and beyond that

component in the GS signal (Tett et al., 2001):

( ) νββ +++= SGGSGG XXXy ~~

( ) νβββ +++= SGSGGSG XXy ~~                                                                               (18)

Hence the solution is:

GSGGHG βββ ~~~
+=                                                                                                      (19)

GSS ββ ~~
=            (20)

The variance in GHGβ~  is simply the sum of the variances in the two components on

the RHS of (19).

4.2.1.5 Addressing possible input signal degeneracy

Tett et al. (1999) flag a potential problem when considering results of a multivariate

linear regression algorithm such as OLS. If a signal (or combination of signals)

resembles a further signal (or combination of signals), then the input signals are

degenerate, and results from the regression are likely to be compromised.

Consideration of both signals (or combinations) will yield very different amplitudes

to those when considering solely one of the signals (or combinations) in the

regression algorithm. When considering both the degenerate signals (or

combinations), a potentially large range of signal-amplitude combinations would

yield a plausible explanation of the observations. This is likely to be a problem in the

climate change detection framework, in which any distinct climate forcings are likely

to elicit dynamic responses that will tend to reduce the differences between the
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forcing and response patterns. Tett et al. (1999) apply three simple tests for

degeneracy on the signal correlation matrix (C=X*TX*), where X* is the matrix of

optimal normalised signals considered in the regression, the columns of FT. The tests

used are from Mardia et al. (1979):

1. Threshold: the number of eigenvalues of C greater than 0.7

2. Cumulative summation: the number of ranked eigenvalues of C which explain

more than 80% of the variance of C.

3. T-test: the number of eigenvectors of C that have a significant projection onto the

observations. Significance tested by means of a t-test.

The results of these tests yield the maximum number of signals that can be

considered simultaneously. In the previous studies in which this check has been

implemented (Tett et al., 1999, 2001, Stott et al., 2001), the test has been performed

off-line from the regression analysis, once, with all possible columns of X* present

and at the maximum possible truncation. This is the method employed in this thesis,

although there is evidence that it may be sub-optimal, and could be better employed

within the regression analysis, rather than as an off-line calculation. Certain

combinations which sub-sample signals from X*, can be shown to pass at higher

numbers of signals than implied to be possible by the single off-line calculation on

all columns of X* (Gareth Jones, personal communication, 2001).

4.2.1.6         Signal-to-noise ratio analysis

AS01 note how OLS estimators are likely to be negatively biased, particularly in

their upper bounds, and for weak or poorly defined signals (see their Figure 1 and

accompanying text). To address this concern Stott et al. (2001) and Tett et al. (2001)

explicitly calculate SNR values, following the approach of North and Stevens (1998).

For each signal the SNR value is given by:

( ) ∑
=

=
κ

κ 1

2
2

2i N

ijj
j

ii
C
Xm

SNR            (21)

where mj is the number of ensemble members used in the calculation of the jth

signal, and κ is the truncation. Therefore, calculated SNR values will change with the
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truncation being considered. In cases where the signal is pure gaussian WHITE noise

the expected value of the SNR will be unity, and SNR values would be

approximately F-distributed about this value in a similar manner to consistency tests

on the residuals (Tett et al., 2001, see section 4.2.1.3).  Therefore, Tett et al. (2001)

advocate employing an F-test at the 90% confidence limit based upon these SNRs, to

determine whether the signals being considered are likely to be significantly noise

contaminated. If they are found to be likely to be significantly noise contaminated,

then caution should be placed in inferring firm conclusions based upon OLS

estimators, and TLS estimators should preferably be calculated as these are less

likely to be systematically negatively biased (Simon Tett, personal communication,

2001). Even in such cases, noise in the signals may effectively render the analysis

meaningless under a TLS approach (AS01, see section 4.2.2.3).

4.2.1.7     Applications of the results from OLS regressions and

               remaining uncertainties

Having implemented a regression algorithm, and checked for consistency of the

residuals with realisations of natural internal variability, two potential tests

immediately arise. The first test is that of detection: "is the realisation of the signal

amplitude in the observations significantly different to that expected by chance?".

This can be verified by considering the lower limit of the probable (univariate)

distribution at a given confidence interval [generally the 90% level in detection

studies (AT99, Hegerl et al., 1996, Stott et al., 2001, Tett et al., 1999, 2001, Barnett

et al., 1999)]. If this lower limit is greater than zero then the signal is said to be

detected. It should be noted that in this definition detection is solely statistical in

nature, it does not a priori imply that the signal is important in explaining trends in

the atmospheric variable being considered over the detection period.

The second test is one for consistency: "is the model-predicted signal consistent with

the observations?".  If this is true then the uncertainty limits in the signal amplitude

estimates will encompass the value of unity at the prescribed confidence interval
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(Stott et al., 2001, Tett et al., 2001). In the single-signal ensemble case, these limits

are scaled by ( )m/11+  ,where m is the number of ensemble members, to account

for uncertainty introduced by the finite ensemble size. For a greater number of input

signal ensembles, the uncertainty is increased by the product of their individual

scaled signal uncertainty estimates (Tett et al., 2001). Stott et al. (2001) show how

the univariate confidence limits are distinct from the limits of any multivariate PDF

isopleth due to these considerations. A signal can still be detected even if the

multivariate PDF isopleth encompasses the origin in the signal dimension, as

univariate confidence limits are smaller than the corresponding multivariate limits.

Attribution, as discussed in chapter 1, involves the consideration of all hypothesised

causes and plausible combinations of causes until only one remains. Strictly

speaking, this yields an infinite population of potential forcing mechanisms to be

considered. In practice, it is sensible to limit consideration to a small number of

physically plausible mechanisms (AT99). The first step in attribution must be a

check for consistency as outlined above. If the signal, or combination of signals, is

inconsistent with the observations (i.e. the n-dimensional PDF does not encompass

unity in all n dimensions at some critical value) then it cannot be considered to be an

adequate representation of the recently observed climate system. The causes of

recent climate change are generally attributed to the most parsimonious explanation

which does not fail this criteria (Tett et al., 1999, Stott et al., 2001). However, the test

in attribution is effectively one of non-rejection of a null hypothesis of consistency

with the observations. Due to the asymmetric nature of the statistical system,

rejection of the alternative hypothesis at a confidence level P does not imply

acceptance of the null at a confidence level of 1-P (Levine and Berliner, 1999). Any

such claims are likely to be significantly overestimating the significance of the

statistical acceptance of the null.

Considerable uncertainties can remain in results from detection studies employing an

OLS approach. The primary caveat that must be applied is that the algorithm does

not explicitly take into account noise in the estimated fingerprints. Using ensemble
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average fields to estimate the columns of X in the OLS approach will give potentially

significant non-zero noise in the signals if the ensemble size is small, or the signal is

weak. This is likely to impact most greatly upon the upper limits of the PDF

distribution, which are underestimated using an OLS approach (AT99). AS01

illustrate this by showing how, in reality, OLS involves estimating the ratio of the

amplitudes of the observations and the model-simulated response. If the signal

incorporates noise, then the denominator (model amplitude) could be overestimated

introducing an underestimate in the signal strength estimator, especially for weak

signals where noise can become dominant. For a complete explanation of this bias

the reader is directed to Figure 1 of AS01, together with accompanying text. The

TLS algorithm detailed in the next sub-section (AS01) overcomes this problem. A

further possible avenue to constrain uncertainty is to increase ensemble size such that

the "distinguishing fingerprints" contain a purer realisation of the true signal (AT99,

AS01, Barnett et al., 1999).

Secondly, there is uncertainty associated with the pre-whitening factor, P, in that it is

an estimate based upon a finite sample from control and/or intra-ensemble

variability. If another choice of control run were used, then the expectation is that P,

and hence the results of the regression, would be different to some extent. Assuming

the model control variability is adequate, i.e. not exhibiting systematic biases, this

can be considered to be essentially a random error.

A further, potentially more worrying, problem is if the signal were associated with a

change in the higher order statistics of the modes onto which it projected, due to

climate non-linearities (see Palmer, 1999 for a discussion of this), then this would not

be included in the regression. AS01 address the concern by use of a hypothetical

example based upon a simple Lorenz attractor example. They illustrate how over

long time periods, greater than that of the exponential error growth timescale of the

system, such a bimodal chaotic system is indistinguishable from a normally

distributed system, as expected from a consideration of the Central Limit Theorem.

In the example given (AS01), the response is also not in the direction of the forcing
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applied, but this is not important, assuming that the model adequately captures those

factors important in explaining the system response. In view of the fact that detection

studies are essentially tests of model adequacy, even if the model does not achieve

this it should not be a problem, as one would reject the model as a plausible

explanation of climate changes, so it can only lead to conservative errors. The real

world system is much more chaotic than the simple example given in AS01, and can

be viewed as a multiple potential well (with multiple rather than two preferred states)

system (Corti et al., 1999). However, the same considerations should yield the same

conclusion as that for the idealised conceptual example of AS01, although it is not

possible to rigorously test this. The climate system is, therefore, likely to be able to

have OLS regression tools applied to it if the timescales considered are adequately

long, even though on shorter timescales the system exhibits distinct non-linear

chaotic characteristics (Corti et al., 1999, for example).

If the model exhibits systematic biases in its estimate of noise properties, then this

can influence the results. There are two conceivable systematic biases: an overall

deficiency in the estimate of natural variability; and error in the models ability to

capture specific modes of variability, especially important when either the modelled

or true signal projects strongly onto any such mode (AS01). If the overall variability

estimate from the control is incorrectly diagnosed, then this will lead to obvious

complications in that the confidence limits both for detection and consistency checks

will be inaccurate (Allen et al., 2001). If it is grossly underestimated then the

consistency test on the residuals will fail, whereas if it is overestimated then the

uncertainty limits will be overestimated. Therefore, in terms of detection this can

only ever lead to a conservative error. If a particular real world climate mode is

either not included in, or mis-represented by, the control, then there is a potential cost

involved in the pre-whitening (optimisation) operator. If the model-predicted

signal(s) project(s) strongly onto this mode, then this component will either not be

considered, or be incorrectly weighted in the regression algorithm, with obvious

implications. This can only ever be conservative, as either the searched-for signal

will be sub-optimal, or the consistency check on residuals will identify that the
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residuals from the regression are unrealistic, if the mode is grossly misrepresented in

the control realisation. Gillett et al. (2000a) show how deficiencies in the model

simulations of the Arctic Oscillation do not affect the principal results of previous

OLS detection studies (Tett et al., 1999) considering the near-surface temperature

record for HadCM2.

4.2.2 Total Least Squares regression

4.2.2.1 Accounting for the presence of noise in the signal estimates

Under OLS regression, an ad hoc scaling correction is applied to the results, to

account for the likely presence of noise in the signals due to the finite ensemble size

available. Total Least Squares (TLS) regression advances this to implicitly account

for noise in the columns of X, the model predicted signals, as well as y, the

observations, in the regression algorithm. AS01 illustrate how this is, mathematically

speaking, the correct methodology for ascertaining amplitude estimates in the

presence of uncertainty, through a hypothetical example (see their Figure 1 and

accompanying text for more details).

Returning to the basic underlying OLS regression model (1), this is replaced in the

TLS algorithm by:

( )∑
=

+−=
m

i
yixi i

Xy
1

νβν           (22)

Hence the sole underlying difference in the TLS regression approach is that an extra

noise-term has been added to the independent predictor variables in the regression.

An assumption in currently implemented TLS algorithms is that the noise variance in

both the individual columns of X (the signals, which are scaled if necessary to

account for ensemble averaging effects), and the vector y (the observations), arises

solely from natural variability (νx = νy). This natural variability is estimated from a

model control run which, as for the OLS approach, is assumed to adequately



121

represent the leading κ modes of variability within which the regression is

implemented (AS01). The assumption that the noise in each column of X is identical

to that of y, and hence real-world variability, yields (c.f. (3)):

( ) κννε IPP TT
xx ii

=                               (23)

( ) κννε IPP TT
yy =                          (24)

Only if these equations hold true, and both pre-whitened observed and modelled

fields appear to be WHITE, can TLS tools be applied to the climate change detection

problem. Therefore, if X, or y, contain non-negligible error terms, expectations are

for potentially highly biased estimators to result under a TLS approach. If any such

errors can be quantified in a meaningful manner then they could in theory be

incorporated, at least to some extent, as an additional covariance matrix within the

regression (AS01). Following the analysis in chapter 2, it is likely that the HadRT

record used in this thesis contains at least some residual errors, not all of which are

likely to be negligible. Nor are they likely to be easily accurately estimated in any

quantitative manner. Therefore, TLS tools may not be applicable to at least some

upper air temperature diagnostics based upon HadRT records. If the columns of X

are ensemble average values, then the expected noise variance can simply be scaled

up to enable a direct comparison with y, for which, at least in applications to date,

there can only ever be one member. Identical scaling is then applied to the results of

the TLS regression (AS01).

As in the OLS solution, consideration in the TLS approach is limited to the leading κ

modes of variability, as estimated from a finite section of model control. Because

there is no longer any distinction between the columns of X, and y, under a TLS

approach, they can be treated simultaneously within the regression. If m′ ≡ m+1 then

the m′ × κ matrix:

[ ]PyPXZ ,≡                                 (25)

is defined as the pre-whitened observed values of X and y where P, the pre-whitening

operator, is defined in exactly the same manner as for the OLS solution (3). It should
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be noted that, although these values will be pre-whitened, they will still be noise

contaminated (AS01).

The multi-linear regression model proposed by AS01 implies that there must be a

value Ztrue, for which the columns of Z are linearly related. Therefore, a solution-set

must exist, whereby there is a combination of coefficients on Z which is an internally

consistent explanation, and hence perfectly recreates the observations such that (22)

becomes:

( ) 0=−= VYZVZ true                      (26)

where Ztrue is the true, non-contaminated model signals and observations, V is a

vector of coefficients of rank m′ (the multipliers of each column of Z), and Y is the

m′ × κ matrix of true (pre-whitened) noise contamination (residuals) in the model

and observed variables (AS01). As all the elements of Y are normally distributed

with unit variance (as the input has been pre-whitened), the maximum likelihood

estimator of V, V~ , the best-guess signal and observed coefficients in the TLS

regression model, is found by maximising:

( )YYtrconstL T ~~
2
1

−=                                    (27)

where L is the likelihood estimator, const = a constant (an arbitrary value to enable

the derivative of L to be realised), TRUEZZY ~~ −= (the best estimate residuals), and

0~~ =VZ TRUE (satisfying (26)) (AS01).

The rows of the residuals, Y~ , are uncorrelated with the coefficient estimates, V~ , and

therefore the solution to (27) is equivalent to minimising:

VYYVr TT ~~~~2 =                                                                                                           (28)

The trivial solution of 0~ =V  must be avoided in any approach (AS01). To avoid bias

in any constraint placed upon the result of (28), the standard normalisation of

1~~ =VV T  is employed (AS01). The standard normalisation can only be employed as

there is effectively no distinction between individual columns of Z under the TLS

approach. Applying this constraint to (28) yields:
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( ) ( )VVVZZVVr TTT ~~1~~~ 22 −+= λ                                                                               (29)

where λ2 is a Lagrange multiplier (AS01).

Minimising r2 in (29) can be shown to be equivalent in geometric terms to finding the

m-dimensional plane in an m'-dimensional space such that the sum of squared

distances from the plane to the κ points defined by the rows of Z is minimised

(AS01). Hence the terminology of a Total Least Squares solution.

Differentiation of (29) with respect to V~ gives an eigen-equation yielding the

stationary points of r2 (AS01), whereby:

( )
( ) 0~~
~

2
2

=−=
∂
∂ VVZZ

V
r T λ                                                                                          (30)

and the curvature matrix is given by:

( )
( )

IZZ
V

r T 2
2

22

~2
1 λ−=
∂

∂                                                                                               (31)

r2 is therefore minimised by minimising the Lagrange multiplier term, such that

λ2=λ2
min, which from (31) is gained by finding the smallest eigenvalue of ZTZ, with

corresponding eigenvector V~ (being the vector normal to the best fit m-dimensional

plane) (AS01). This can be shown to be the best (lowest variance) unbiased estimator

in geometric terms. Implementation is achieved by consideration of the singular

value decomposition Z=QΛRT such that, after sorting, '
~

mRV = , the eigenvector

corresponding to the smallest eigenvalue, Λ (AS01).

The m'th element of the resulting solution vector, V~ , corresponds to the best-fit

scaling parameter on the observation vector, y. AS01 therefore suggest that for

analysis purposes, the coefficients are translated into the more familiar pattern-

amplitudes yielded in the OLS solution, by finding the ratios '
~/~~

mii VV=β . The actual

values of V themselves are physically meaningless being geometrically a

representation of the angles of the plane in the m-dimensional phase space described
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by the TLS solution. At the minimum gained from (31) the distribution on these β~

estimates, assuming the noise estimate from the model control is accurate (or at the

very least adequate), is approximately χ2:
22

min
2

min mr −≈= κχλ                                         (32)

This distributional assumption holds true provided that κ>>m. This relationship

provides for the construction of a consistency test on the residuals that is directly

analogous to that of the OLS approach (15) (AS01).

Analysis of uncertainty in the best-guess estimate of the signal amplitudes, β~ , is

more complicated than that employed in the OLS approach (AS01). Returning to the

singular value decomposition Z=QΛRT, the diagonal matrix Λ2 contains the ranked

eigenvalues of ZTZ, and the columns of R contain Ri, the corresponding

eigenvectors. Hence equation (31) can be re-written as:

( )
( ) ( ) TRR
V

r 2
min

2
2

22

~2
1 λ−Λ=
∂

∂                                                                                        (33)

In the limit of a high SNR, it is reasonable to treat the pseudo-inverse of (33) as a

standard covariance matrix on V~ , whilst in the presence of weak signals this may not

hold true (AS01). Because the normalisation constraint on the coefficients, V~ ,(29)

introduces a non-linearity into the system, the merit function r2 is not quadratic.

Realistic PDF isopleths can be derived by plotting surfaces of V where

( ) ( ) 2
min

22 rVrVr −=∆  evaluates to a constant value. As for the OLS model the

solution evaluates, at least approximately, to a chi-squared distribution (AS01):

( ) ( ) 22
min

22
m

TT VRIRVVr χλ ≈−Λ=∆               (34)

Subsequently, a confidence interval is chosen, and those vectors of V for which

( )Vr 2∆  is equal to the critical 2
mχ  value are evaluated to form an isopleth by

evaluating the relevant values for the LHS of (34).

AS01 show how such a mapping is computationally realised by firstly defining a set

of points on an m-dimensional sphere of radius 2
critr∆ , the critical 2

mχ  distribution:
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2

1

2
crit

m

i
i ra ∆=∑

=

                                                 (35)

For each of the points on the sphere, a value bi is then computed such that:

2
min

2 λλ −
=

i

i
i

a
b                                             (36)

If the bi provide the weights on eigenvectors 1 to m in R used to generate V, then

(34) must be satisfied. The weight on Vm' is provided by the normalisation constraint:

1
'

1

2 =∑
=

m

i
ib                                                        (37)

If 2
critr∆  is too large, bm' will be calculated to be either zero or imaginary, and the

confidence interval will be boundless in at least one dimension. This implies that the

signal coefficients, V, are unconstrained to rotations through 360° in some plane at

the specified confidence interval (AS01). This is likely to be the case when the

signals are either weak and poorly constrained by the model, or highly degenerate. It

should be noted that this approach will tend to yield isopleths which are far from

ellipsoidal. Therefore, although some signals in a multiple input-signal case may be

unconstrained, other signals may still be well constrained under the TLS approach

(AS01).

4.2.2.2 Accounting for uncertainty in the control estimate of

natural variability

Up until this point in the TLS algorithm an implicit assumption has been that natural

internal variability is perfectly known, based upon the finite section of model control

used to define the pre-whitening operator, P. As in the OLS approach, there is reason

to believe that this is not the case. Therefore, two separate segments of control

should also be used for optimisation and significance testing respectively in the TLS

approach (AS01). AS01 further note that in taking into account noise in all variables,

the estimation algorithm has become non-linear. Therefore, it is no longer valid to

realise a series of β~ -like estimates from the columns of 2
�Y , the independent control
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estimate, as was the case in the OLS algorithm (12), to provide a confidence interval.

AS01 state that each 2
iλ  represents the signal-to-noise ratio in the corresponding pair

of singular vectors of Z:

i
T

N
TT

i

i
TT

i
i QPCPQ

QZZQ
�

1

2 =λ                                 (38)

Where Qi are the left singular vectors of the singular value decomposition of Z. In

this equation the denominator will be unity if the µ columns of 1
�Y , the first control

segment used to estimate NC� , have also been employed in the derivation of P, the

pre-whitening operator. As in the OLS algorithm, relying upon these λ estimates for

uncertainty analysis may be misleading if TYY 11
�� ( )NC�  is rank deficient, which in the

limit of a very long control run it invariably will be. Poorly-realised state-space

directions will be given artificially high weight by the pre-whitening operator since

IPCP T
N =� . This will artificially inflate the differences between eigenvalues and,

therefore, reduce estimated uncertainties (AS01).

As for the OLS approach, the solution is to replace the segment of control, NC� , used

for optimisation (pre-whitening) with an independent realisation of natural

variability, 2
�

NC , when realising confidence intervals (AS01):

i
T

N
T
i

i
TT

i
i QPCPQ

QZZQ

2

2

�
� =λ                                              (39)

As 2
�

NC  is independent of P, any systematic bias in P will apply to both the

numerator and denominator in (39), whereas it will only apply to the numerator in

(38) (AS01). This avoids any systematic bias in the calculation of the confidence

region, whilst having no effect upon the best guess estimates β~ , and V~ . As is the

case in the OLS algorithm, the check for residual consistency must be changed such

that:

( ) ( ) 2,
2
min

2
min

�� νκκλ mFmr −−≈=                           (40)

and (34) becomes:
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( ) ( )
2,

2
min

22 ��� νλ m
TT mFVRIRVVr ≈−Λ=∆                       (41)

Again, confidence limits are realised by calculating values for the LHS of (41) for

critical values of the appropriate F-distribution.

4.2.2.3 Remaining problems

In TLS regression there is an important caveat to consider, whereby if the true signal

amplitude is weak or close to zero, then the confidence bounds on the estimator, β~ ,

will tend to become infinitely large (AS01). This may appear counter-intuitive at

first, however in such a case there is no reason for β~  to prefer any orientation in the

β phase space, as both model and observed signal amplitudes will tend to zero.

Orientation in this case is essentially arbitrary in the TLS solution, and the ratios

'
~/~~

mii VV=β  can, therefore, take any value. Thus, a near infinite pattern-amplitude

implies that, because a TLS approach incorporates noise in the signals, the true

response-pattern may be close to zero in all directions. For stronger signals the main

difference in results compared to an OLS approach will be both a higher best-guess

signal amplitude, and substantially increased upper bounds to the uncertainty

distribution (see AS01 for a theoretical justification). If the upper bound is

sufficiently uncertain, then the results will essentially be meaningless. As the

orientation of the plane ( )V~  passes through 90° in any signal direction, the value of

the amplitude estimate ( )β~  goes from +∞ to -∞, and then progressively smaller

negative finite numbers. There is little effect upon the lower bounds, which are the

important component in detection exercises, although care must be taken within any

analysis to avoid confusion when the upper-bounds are unconstrained, and therefore

negative (Peter Stott, personal communication, 2001).

AS01 contend that an argument ensues as to whether the extra mathematical

complication of the TLS approach is justified above and beyond the OLS algorithm,

results of which are also easier to interpret. Two points are important for
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consideration as to why TLS should, at least in some cases, be considered. Firstly,

attribution requires the rejection of all other plausible signals (or combinations

thereof) until only one remains. Therefore, as OLS regression systematically under-

estimates the upper bounds of the uncertainty range, in the limit of an infinite

ensemble, reliance on OLS may lead to an ambiguous claim of attribution. Secondly,

Allen et al. (2000, 2001), have advocated the use of regression to constrain model

projections of future climate change, and illustrated this with regard to global mean

near-surface temperatures. If, as is the case in OLS regression, the upper bounds of

the amplitude uncertainty range are systematically and significantly underestimated,

at least for the small ensemble sizes normally available, then the use of such an

algorithm may underestimate the upper confidence limit on the constrained

projections. Such an approach could, therefore, lull end users of the data into a false

sense of security regarding the likely amplitude of a worst-case scenario prediction.

4.3 Other multi-variate detection approaches

Numerous other approaches have been advocated in climate change detection and

attribution studies. Hasselmann (1997) provided the motivation for the development

of the OLS solution detailed in the previous section (AT99), and in turn the

motivation for Hasselmann (1997) came from previous studies. Here a number of

these individual approaches are very briefly described, and where possible presented

in terms of the OLS regression methodology defined in the previous section. The

similarities are stressed to illustrate that all approaches originate from the same

population of potential approaches, and how the regression approach is indeed the

most powerful of these (Levine and Berliner, 1999).

The pattern correlation approaches of Santer et al. (1993, 1995) can be shown to be

sub-optimal versions of the regression algorithm (Mitchell and Karoly et al., 2001).

Considering a single signal in the OLS regression approach, the solution is:

1
1

1

1
1~

XCX
yCX

N
T

N
T

−

−

=β        (compare to (4))           (42)



129

The uncentred correlation statistic C(t) (Santer et al., 1995) can be written in similar

terms, adopting array notation, and incorporating an extra term in the denominator

(Mitchell and Karoly et al., 2001):

11

1

11

1)(
IXX
IyX

XX
yXtC T

T

T

T

≡=           (43)

In both cases, X1 is a column vector containing a single model signal realisation. So

C(t) is simply the unoptimised version of the regression algorithm, whereby the n×n

covariance matrix is an identity matrix. Similarly, the centred statistic R(t) can be

denoted in matrix notation (Mitchell and Karoly et al., 2001):
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−−

−
=           (44)

Here U is an n×n matrix with elements ui,j=1/n which remove the spatial means from

the observed and modelled series. Both measures (43 and 44) are constrained to lie in

the interval �1 to 1 and, therefore, cannot be employed directly to estimate the signal

amplitudes.

Pattern correlation approaches are limited to considering a single signal, or a single

combination of signals with pre-determined weights. This means they are less

powerful than those optimal regression techniques that can consider multiple signals

simultaneously. For both the R(t) and C(t) statistics, no effort is made to optimise the

data by reference to the SNR values and, therefore, the approach is likely to have a

large cost (be highly inefficient) when attempting to detect an emerging signal in a

noisy background (AT99, AS01). An advantage is that it does not depend on the

model providing an adequate realisation of natural climate variability in defining the

signal, and, therefore, should be seen as complementary to optimal approaches. If the

model control estimate is grossly inadequate then the pattern correlation technique

may be more efficient than the optimal regression algorithms discussed in section

4.2. However, for both these pattern correlation statistics, significance is still

estimated with reference to model control data and, therefore, a statistical cost

function remains if the control is inadequate at the scales considered. Previous

correlation approaches which have considered near-surface temperatures have
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considered the raw fields (Santer et al., 1995, Wigley et al., 1998). There is evidence

that at least HadCM2 underestimates natural variability at scales below 2000Km

(Stott and Tett, 1998). Therefore, the confidence limits may be systematically

underestimated in applications of the pattern correlation approach to date, increasing

the chances of a Type I statistical error arising. This could be circumvented by

truncating the input fields in space, but has not been attempted to date.

Bell (1982) was the first to advocate a formal optimal detection approach, taking into

account knowledge of the climate system covariance. In the algorithm proposed by

Bell (1982), each term is given a weight such that the SNR is maximal under the

constraint of the weights summing to unity )�( 1 XCw n
−= α , with a constant factor

multiplier, α. It is assumed under this approach that the weighted observations are a

linear combination of the weighted signal and noise, with the signal assumed to be of

both the correct pattern and amplitude; ν+= Xy . There is strong evidence that

neither of these assumptions is true, especially in the case of weak signals (AS01)

and, therefore, that this approach is highly sub-optimal, and could lead to erroneous

conclusions. The algorithm can only consider a single signal at a time and evaluates

the statistic:

2ν

y             (45)

If this statistic is above a certain threshold, the signal is detected at the specified

confidence interval.

Hasselmann (1997) details an optimal detection methodology whereby a series of

fixed signals are derived from the difference between a present day and a late 21st

Century realisation of climate change. Fingerprints are constructed by stipulating an

orthogonality constraint in the multiple signal case before proceeding to detection in

applications of this methodology (Hegerl et al., 1997), which can lead to problems in

interpretation (AT99). In the limit of noisy signals, this is likely to have a cost

function appended. However, the use of a 21st Century difference field mitigates this

effect, as the derived signals are effectively noise free. The methodology implicitly
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assumes that the climate response pattern is not transient, being solely a linear

multiplier of the searched-for signal response(s), which is (are) a (some) fixed

pattern(s). Optimisation is carried out with respect to the spatial covariance matrix as

estimated from a model control run. Pattern congruence tests are then used to derive

the detection statistics. The statistic couched in terms of the regression algorithms

discussed in section 4.2 can be shown for a single signal to be:

X
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=            (46)

where X� on the LHS is the best guess signal amplitude. However, the absolute

amplitude of the signal in the observations cannot be calculated as this statistic

incorporates information both on the signal pattern and its amplitude through the

extra term in the RHS of (46) when compared to (4). The statistic can be calculated

for consecutive observational dataset time slices over a moving window, and trends

evaluated and compared to those arising by chance from an independent control run

to assess the significance.

Finally, North et al., (1995) detail a methodology that undertakes optimisation in

both space and time to elicit the size of the signal in noise contaminated data. The

signal is optimised by integrating over both space and time incorporating a kernel,

yielding a signal based upon the filtered data. To date only single signals have been

considered, although extension to a multiple signal approach is straightforward

(Hegerl and North, 1997). The kernel is defined such that the mean square error

between the signal estimate and original signal is minimised. Optimisation is

therefore implemented with a no bias constraint. Optimisation occurs in space-time

EOF space, where the EOFs represent the orthogonal components of the space-time

lagged covariance matrix. The final product can be shown to be directly comparable

to Hasselmann (1997) if data are discrete, which they invariably are (Hegerl and

North, 1997). A by-product of this methodology is that SNRs can be explicitly

calculated. Stott et al. (2001) show how it is possible to employ such an approach

using OLS regression tools.
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4.4 Conclusions

All detection studies to date that consider some form of pattern similarity can be

shown to be directly related (Hegerl and North, 1997, Levine and Berliner, 1999,

AT99, Mitchell and Karoly et al., 2001). The differences between these

methodologies are both in terms of their complexity, and the tools that can be applied

to the output. In this thesis the preferred statistic is a form of least squares regression

as outlined in section 4.2, either Ordinary Least Squares (OLS, 4.2.1), or Total Least

Squares (TLS, 4.2.2). Regression has advantages over the alternative methods in

terms of being able to estimate signal amplitudes directly and, therefore, make

meaningful statements about both signal detection and consistency (AT99, Tett et al.,

2001). It is also more flexible than other approaches in terms of both the number of

signals able to be considered, and the fact that these can be easily recombined to

yield their individual components. Importantly, both OLS and TLS regression

algorithms provide for a test on the residuals that should flag when the results are

(grossly) unrealistic. The regression approach can also potentially be used to

constrain future projections in a meaningful manner (Allen et al., 2000, 2001).

Levine and Berliner (1999) further show how regression is the uniformly most

powerful statistic for detection purposes under a classical frequentist statistical

approach.

The regression approach can be shown to be a special case Bayesian statistic,

whereby the prior probability is uniform (Allen et al., 2001). To date there has only

been one published study which has used a Bayesian framework in a multi-variate

climate change detection setting (Berliner et al., 2000), and even then in a highly

idealised exercise. Efforts are underway elsewhere to apply Bayesian analysis

(Gareth Jones, personal communication, 2001). Although it is recognised that this is

a likely and desirable advancement in future detection studies, it has not been

covered in any detail in this chapter, as it is not employed in this thesis.
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Figure 4.1 (after Hasselmann, 1976, and Mitchell and Karoly et al., 2001) Figure

showing a simplified rationale for rotation of signals in climate change detection

studies. The ellipse shows the 95% distribution of natural variability in the parameter

in the simple two dimensional space. The black arrow indicates the original signal,

the red arrow the rotated signal such that SNR is maximised. Although the red arrow

(OC) has a lower absolute magnitude than the black arrow (OB), searching in this

direction of phase space is more likely to yield a positive detection result as OC/OCn

is of greater magnitude than OB/OBn. In the true climate system detection algorithms

rotation is performed in n-dimensional space (where n is a large number).


