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3. An intercomparison of modelled and observed fields

Before proceeding to a rigorous quantitative detection and attribution study using the

optimal detection methodologies as described in chapter 4, it is pertinent to undertake

a degree of model validation. This chapter summarises the results of such an exercise

using HadCM2 and HadCM3 model data and the HadRT radiosonde record, and

discusses the possible use of certain variables as input diagnostics in subsequent

detection and attribution studies. Intercomparisons are made at various temporal and

spatial scales. In section 3.1, the methodologies used in this chapter are described.

Section 3.2 gives results from an intercomparison of the fields derived from the two

versions of the Hadley Centre model and the observed HadRT fields. The diagnostics

are considered in terms of increasing complexity, from global-mean temperatures to

fully 4-dimensional fields (longitude, latitude, height, time). Section 3.3 discusses the

potential for using the full global radiosonde temperature fields, as well as likely

suitable input variables for the later, more formal, quantitative detection and

attribution studies. In section 3.4 the principal results of this chapter are summarised.

3.1 Method

3.1.1 Model data treatment

HadCM2 and HadCM3 are both fully 4-dimensional (x, y, z, t) coupled GCMs (see

section 1.3 for more details). The model temperatures on pressure levels fields are

available as annual (December to November years) and, for HadCM2, seasonal

values. Both models have a horizontal atmospheric resolution of 2.5° Latitude by

3.75° Longitude. Therefore, the first step in any intercomparison is to re-interpolate

these data to the resolution of the HadRT observations (5° x 10°), implemented by

bilinear interpolation (Press et al., 1992). A different interpolation technique could

have been used, but this is very unlikely to have a first order effect upon subsequent

results, especially at the large spatial scales considered in formal detection studies. It

is best to reinterpolate the models to the observational grid both because the model

fields are complete, unlike the observations, and the interpolation is to a coarser grid.
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Santer et al. (1999) and Allen and Tett (1999), amongst others, state that for any

meaningful comparisons to be undertaken between datasets, they must exhibit the

same spatio-temporal sampling characteristics, otherwise they could yield spurious

results. Therefore, the interpolated model fields are sub-sampled to the available

HadRT data mask. Spatio-temporal masking also means that additional variance

introduced due to missing data can be implicitly taken into account when estimating

natural variability. Trivially, missing data will inflate the variance for any given

point in the dataset and, therefore, sub-sampling must be important in estimating

trend significance.

Both Hadley Centre models have been run a number of times for each perturbation

experiment under identical forcing, but with different initial conditions (sampled

from the control run), to form an ensemble of possible responses (Tett et al, 1999,

2001, Stott et al., 2001). In this chapter, and the remainder of this thesis, these

ensemble members are averaged to form an ensemble mean response. This has the

advantage of enhancing the signal-to-noise ratio (Allen and Tett, 1999). It is,

therefore, expected that the observations will exhibit greater variability than the

model fields with which they are being compared.

In both models there are five ensemble average fields that are broadly comparable in

terms of the forcings applied. The following are the model equivalent forcings with

HadCM2 quoted first; GSO≡ANTHRO, GS≡TROP-ANTHRO, G≡GHG, LBB≡SOLAR,

and VOL≡VOLCANIC (Tett et al., 1999, 2001, Stott et al., 2001, see also chapter 1).

In addition, HadCM2 contains a further solar ensemble (SOL), and HadCM3

contains a NATURAL ensemble that combines the effects of SOLAR and VOLCANIC.

In most subsequent analysis and figures the anthropogenic ensembles are

emphasised, although results from other forcings are also referred to. In all

comparisons, V2 (see chapter 2) of both HadRT2.1 and 2.1s are used, although the

statistics, and areas of significance in the Figures, quoted in Section 3.2 relate solely

to the HadRT2.1s fields. The use of both HadRT versions in the qualitative

comparisons provides a visual estimate as to the uncertainty associated with the

observations and their treatment within the troposphere.
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The HadRT radiosonde temperature record is available for the period 1958 to present

as anomalies relative to 1971-90 climatological values. These climatological

averages include periods of missing data and, therefore, the sub-sampled model

fields are used to calculate normalised values for each individual ensemble member

relative to its 1971-90 climatological temperatures. This enables direct comparisons

to be made with the observations. The masks are not exactly coincident, as the

HadRT data are available on a higher (monthly) time resolution, but they are felt to

be sufficiently similar. All subsequent results and analyses relate to these normalised

model data rather than the absolute temperature values, as a consideration of patterns

of change is desired here rather than absolute values. Therefore, any bias in the

model absolute values will not be accounted for in this analysis. Both HadCM2 and,

to a lesser extent, HadCM3 exhibit a noticeable tropospheric cold bias (Pope et al.,

2000).

3.1.2 Diagnostics used in the intercomparison

The simplest comparison possible is that between global-mean modelled and

observed temperature series. For the purposes of such a comparison, the annual

global-mean temperatures on pressure levels are averaged via a simple calculation.

Weighting is given according to latitude to compensate for decreasing gridbox areal

coverage with increasing latitude, and an annual global-mean temperature series for

each pressure level derived. These series are then visually compared to derive

qualitative similarities and differences in the trends. As stated previously (see chapter

1), the use of such univariate diagnostics is of debatable value in any quantitative

detection study as unambiguous detection or attribution is not possible under such an

approach. Therefore, no attempt is made to assess the significance of any similarities

or differences seen in this analysis in a rigorous quantitative manner.

To make comparisons easier for more complex analyses, decadal mean values are

calculated, thus reducing the noise inherent in the annual timeseries. In the

construction of decadal mean series, criteria must be implemented for the inclusion

or rejection of individual grid-box series. In this chapter, a decadal average value is
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calculated for any given grid-box if more than five years contain data in any given

decade, and there is no more than two consecutive years break in data availability.

These criteria are essentially arbitrary in nature, being a trade-off between data

coverage and the higher variance due to low temporal sampling concentration.

Furthermore, in this chapter the criteria of the number of months required for the

calculation of seasonal and annual values in the HadRT dataset is not taken into

account, only V2 being used (see chapter 2). Two decadal datasets are constructed, a

four-decade case covering the period 1958-1997, and a three-decade case over a

sliding window from 1958-1987 to 1967-1996. The four-decade case has advantages

in terms of trend length, which has been found by various authors to be critical in

detection studies (Barnett et al., 1998, amongst others). However, the start and end

periods of the HadRT record have poorer spatial sampling, as illustrated by Figure

3.1, and particularly poor representation in certain regions, which could have an

impact on the results. Using a sliding three-decade window would have the

advantage that the effect of the choice of start year can be factored into any analysis.

A last decade minus first decade analysis is considered in the comparisons here. This

has the drawback that the transient nature of any change over the period under

consideration will not be considered. It also reduces the data coverage slightly, as

individual grid boxes may not necessarily contain data in both the first and last

decades of any period. However, there are advantages to using a difference analysis.

Firstly, the period over which the series are normalised is contained within the

comparison. If two divergent trends are normalised over a mutual period then, during

the normalisation period, both series will tend around zero and, therefore, yield

spuriously high correlations. Using a first decade minus last decade analysis ensures

that the trend end points are considered, thus reducing any chances of spuriously

claiming a correlation when none exists. Furthermore, expectations are that such an

analysis will yield a stronger signal. For the three-decade case, the period 1963-1992

is used in this analysis, as it yields the greatest areal data coverage of all possible

three-decade periods considered.

Increasing the dimensionality of the problem from a consideration of global-mean

values, zonal-mean (latitude-height) diagnostics are considered. In this comparison

the first decade minus last decade diagnostic is used. As was the case for global-
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mean temperatures, the comparison is limited to be solely qualitative in nature; no

attempt is made to rigorously quantify the level of agreement between zonal-mean

fields. A fixed-signal optimal detection exercise is carried out using zonal-mean

temperature fields in chapter 5, complementing previous such studies (Allen and

Tett, 1999, Tett et al., 2001 for example).

A further increase in the dimensionality leads to a consideration of temperatures on

various pressure levels. Available HadRT pressure levels are the WMO standard

reporting levels: 850hPa, 700hPa, 500hPa, 300hPa, 200hPa, 150hPa, 100hPa, 50hPa,

and 30hPa. The intra-ensemble variance is used to construct a realisation of the noise

due to internal climate variability for grid-box temperatures at each pressure level.

Estimates of this variance are made for both HadCM2 and HadCM3, and are treated

independently since the variance is likely to be model-dependent. The noise estimate

is used to determine those areas of significant disagreement (on a grid-box basis)

with the observed trends, using a high threshold of ± 3σ to guard against spurious

rejection. The assumption under this approach is that the model perfectly captures the

response to all forcings important in explaining the observations. Therefore,

assuming a normal distribution due to natural internal climate variability, only one

percent of the grid boxes should fail this test. This is unlikely to be the case even if

the model were to perfectly capture all the important forcings. HadCM2 has been

shown to underestimate near-surface temperature variability at scales below 2000

kilometres (Stott and Tett, 1998). Expectations are that this will also hold true for

upper air temperatures, and that HadCM3 will exhibit similar characteristics.

However, the rank of agreement should provide a robust indication as to similarities

between modelled and observed fields.

Additionally, to provide an indication of overall field similarity, a root mean squared

difference (RMSD) statistic is used to provide a quantitative realisation of the overall

field similarity at each pressure level. Such a statistic is sub-optimal, in that it does

not take into account spatial auto-correlation effects and, therefore, will likely give

artificially significant results (Wigley et al., 2000). In the method used here, this is

not expected to be important, as all the fields considered are likely to exhibit similar
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spatial auto-correlation structures, although this assumption is not tested in any

explicit manner.

For both statistics a null hypothesis of �no change� field is constructed whereby all

grid-box data points are set to zero. The same tests are applied to this field as they

are to the modelled fields. If the tests provide better results for the modelled runs

than for this null hypothesis field, then it is concluded that the model provides a

degree of skill in predicting the observed changes relative to �no change�. For

RMSD statistics, this approach is likely to be highly conservative, as the �no change�

null hypothesis field employed in the comparison is perfectly spatially auto-

correlated (and therefore likely to yield a spuriously low RMSD value). This would

be an unobtainable result in the real world, at least on annual to multi-decadal

timescales.

Finally, in an attempt to discriminate in the height dimension, consideration is

extended to changes in tropospheric lapse rates utilising the same two simple

statistical measures as for temperatures on pressure levels. Three lapse rates are

considered: an entire troposphere (300-850hPa); an upper troposphere (300-500hPa);

and a lower troposphere (500-850hPa) lapse rate. Expectations are that considering

lapse rates will reduce noise due to the effects of missing data, as the troposphere is

well mixed on annual timescales and, therefore, temperatures on individual pressure

levels within the troposphere will tend to co-vary for any given point in Latitude-

Longitude space. In the current analysis, lapse rate calculations only consider

information from the two pressure levels quoted, being a simple upper level minus

lower level calculation, and do not consider any intervening levels. Lapse rates will

only provide any useful information if the troposphere, or the portion thereof

considered, exhibits differential rates of temperature change with altitude.

Significance of the grid-box similarity and RMSD statistics for temperature on

pressure levels and lapse-rate diagnostics is estimated by creating synthetic estimates

of physically plausible model and �no change� fields. For these purposes a 1200-year

chunk of the HadCM3 control, run with no changes in prescribed external forcings, is

employed. Independent segments of the control are extracted, yielding a total of 36

three-decade segments and 27 four-decade segments. Each control segment is
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converted to anomalies in the same manner as the other model fields. These

segments are then added to the ensemble mean fields, scaling by one over the

number of ensemble members to account for ensemble size effects, to create a series

of synthetic realisations. These synthetic realisations are then treated in exactly the

same way to provide a range of grid-box similarity and RMSD values consistent with

HadCM3 predicted natural internal variability for each ensemble. Collins et al.

(2001) note how HadCM3 may generally underestimate this natural variability when

compared to the observations, at least in a zonal-mean sense, especially within the

stratosphere and mid-latitude Northern Hemisphere troposphere. Hence, results

quoted here might be systematically biased; being based upon the assumption that

HadCM3 control is a demonstrably adequate representation of real-world variability.

A very simple (naïve) measure of model skill is subsequently realised. If an

ensemble average realisation truly exhibits skill relative to a null hypothesis of �no

change� in explaining the observations, then it should exhibit skill over a broad range

of scales. Ensembles are treated on a level-by-level (or lapse-rate) basis and, if any

level has a lower proportion of grid-box values in significant disagreement and a

lower RMSD value than the �no change� null hypothesis field, then its score is

incremented by one. This analysis is repeated for both the ensemble average (best

guess value) and population of synthetic data for that ensemble average (to yield an

estimate of uncertainty) for each ensemble, and the �no change� field.

3.2 A comparison of modelled and observed upper air temperature

diagnostics

3.2.1 Global-mean temperature trends

Figure 3.2a shows the results of a comparison of HadRT2.1s with output from the

HadCM2 forced runs. The most striking feature is that the observations exhibit far

greater variation than the model ensemble averages, as expected. How much of the

variation relates to residual errors in the observations is uncertain, but following the

quality control procedure described in chapter 2, and previous efforts by Parker et al.

(1997), it is considered likely to be relatively small. Comparing the model trends
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with the observations, two forcings immediately appear important. In terms of

describing the overall trend in the observations the GSO (greenhouse gases, sulphate

aerosols and stratospheric ozone) run is the most consistent explanation. Both of the

other anthropogenic forcings (GS and GHG) underestimate the observed

stratospheric cooling, implying that ozone changes are important in explaining

recently observed stratospheric temperature trends. However, it is also apparent,

following periods of explosive volcanic activity such as Pinatubo in 1991, that VOL

is important in explaining the observations, although HadCM2 appears to over-

estimate the lifetime of the effect by a few months to a year.

Results considering HadCM3 fields (Figure 3.2b) are broadly comparable to those

for HadCM2. The best overall explanation arises when anthropogenic factors are

taken into account (ANTHRO≡GSO in HadCM2), ozone changes again being required

to explain the stratospheric trends. Volcanic influences are also needed to explain

some of the short term stratospheric warmings and tropospheric coolings seen in the

observations although, as for HadCM2, the lifetime of the effect would seem to be

overestimated. The absolute magnitude of the model-predicted effects of volcanic

incidents is also greater for HadCM3 than is the case for HadCM2, but there is

insufficient evidence in the observations to suggest which, if either, is a more

realistic estimate. Comparing Figures 3.2a and 3.2b, there are no other noticeable

discrepancies between the models at the global-mean scale when considering

equivalent forcing scenarios.

3.2.2 Zonal-mean temperature changes

Figure 3.3 shows differences in the zonal mean temperatures between 1963-1972 and

1983-1992. The top two panels provide a guide as to the likely effect of uncertainty

in the observations when considering zonal mean diagnostics. HadRT2.1s and

HadRT2.1 fields are generally of consistent sign, with differences in magnitude

generally of less than half a degree Celsius. For anthropogenic fields, patterns tend to

be consistent between the two models for comparable forcing scenarios. HadCM3

anthropogenic forcing runs tend to estimate stronger tropospheric and, particularly,

tropical upper tropospheric warming than their HadCM2 equivalents. Both models
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estimate greater warming in this region than is evident in either set of observations.

However, the observations are sparse at these elevations in this region and, therefore,

any individual erroneous grid boxes will potentially have a large effect upon the

calculated observed zonal-mean value. Confidence in the observed zonal-mean

values is generally poorer outside the well-sampled Northern Hemisphere mid-

latitudes. Qualitatively, the best explanation of the observations occurs when all

anthropogenic forcings are considered, regardless of the model being used. Zonal-

mean changes due to natural forcings according to HadCM2 and HadCM3 (not

shown here) are small and of variable sign, implying that a large part of the natural

forcing signals (on decadal timescales) is likely to arise from noise due to random

variations, and temporal sampling effects. These results are, broadly speaking,

consistent with previous quantitative zonal-mean detection study results considering

these model fields (Tett et al., 1996, Allen and Tett, 1999, Tett et al., 2001).

3.2.3 Changes in temperatures on pressure levels

The observed and modelled changes between the periods 1963-1972 and 1983-1992

are compared graphically before advancing to considering the simple statistical

measures outlined in section 3.1. Results for the differences between 1958-1967 and

1988-1997 are essentially similar to those shown here, but they contain substantially

fewer data (> 20% at all levels, increasing with height). For the purposes of this

comparison, two levels are concentrated upon: a lower stratospheric series (100hPa;

above this altitude data availability degrades significantly, see Figure 3.1); and a

mid-tropospheric series (500hPa). Subsequently, results from the simple statistical

indicators (section 3.2.2) for both three-decade and four-decade cases are also

discussed for all other levels.

Fields from the 100hPa (lower stratosphere) level are shown in Figure 3.4. Areas of

model output highlighted by boxes indicate those regions which are outside ± 3σ of

the HadRT2.1s observations, where σ is estimated from the respective model�s intra-

ensemble variability (shown in the bottom panels in grey scale). Both HadRT series

are identical at this level, the difference between the two series only being in the

tropospheric corrections applied. During the period there has been a general
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stratospheric cooling observed, although this is by no means uniform, and in some

regions (Southern US, Central Pacific, Caucasus), there is warming. There appear to

be some anomalous points remaining (e.g. Southern China, Iberia), but such points

could appear anomalous solely due to temporal sampling effects in HadRT. Having

already undertaken a degree of spatial quality control upon the HadRT dataset

(chapter 2), it is supposed that this provides at least part of the explanation. Equally,

there exists the potential for residual biases in the observed data due to, for example,

sonde balloon burst effects, which could yield spurious cooling trends at this level.

Considering HadCM2 (HadCM3) anthropogenic fields at the 100 hPa level (Figure

3.4), only GSO (ANTHRO) captures the large-scale cooling seen in the observations.

There are differences between the respective model fields for the two models

however; most noticeably over Oceania where the model-predicted patterns are of

opposite sign. Also, there are a large number of grid boxes where the model-

predicted change is inconsistent with the observations at the 3σ level (boxed areas).

For HadCM2, GS predicts a small warming with areas of very slight cooling, whilst

HadCM3 TROP-ANTHRO predicts regions of both warming and cooling, both of

greater magnitude, with a greater overall warming. Both models predict large scale

warming under the G (GHG) scenario, the warming being greater for HadCM2 than

HadCM3.

The qualitative results described above are confirmed in Tables 3.1 and 3.2. Table

3.1 presents the percentage of grid-box values that are greater than 3σ from the

observations for all model ensembles and, for both three- and four-decade analyses.

Considering the three-decade case at the 100hPa level for both models, the

GSO/ANTHRO fields are consistent with the greatest proportion of the individual

grid-box observations. This is a robust result for HadCM3, being insensitive as to

whether a four-decade or three-decade trend length is considered. However for

HadCM2, LBB provides the best explanation when considering a four-decade

analysis. Although SOLAR also exhibits skill for the HadCM3 four-decade analysis, it

is not as marked. Both of these ensembles utilise the Lean et al. (1995) solar forcing

reconstruction. Confidence would be higher if there were a similar skill exhibited for

SOL in HadCM2, an independent solar forcing ensemble based upon Hoyt and
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Schatten (1993) and Willson (1997). However, this is not the case, implying either

that the SOL forcing history is incorrect, or that the positive result for the Lean et al.

(1995) forced runs in both models is a statistical fluke. Considering RMSD values

(Table 3.2) for both three- and four-decade analyses, GSO/ANTHRO consistently

provides the best explanation of the observed trends at 100 hPa. For neither model in

the four-decade case does LBB / SOLAR exhibit skill and, therefore, confidence in

the robust presence of a solar signal in the observations is further reduced.

The 500hPa HadRT temperature fields as shown in Figure 3.5 (top panels) are

largely similar to each other, as corrections for the HadRT2.1 series have only been

made at a few points (Parker et al., 1997), and are relatively small in many cases.

HadRT2.1 exhibits accentuated high-latitude Northern Hemisphere cooling, and

greatly reduced warming over Southern Australia. In both HadRT series, the large-

scale overall trend is one of warming in the tropical and extra-tropical regions, with

more chaotic patterns of change in high northern latitudes. In neither case are the

patterns zonally homogeneous, implying that such information could be employed to

gain extra power to discriminate between forcing mechanisms, compared to previous

zonal-mean detection studies (Allen and Tett, 1999, Tett et al., 1996, 2001, Santer et

al., 1996a).

Although the observations would tend to suggest a degree of zonal heterogeneity in

temperature trends at 500hPa, model predicted trends are far more zonally

homogeneous, especially in HadCM3. For both models, the anthropogenically forced

runs show a warming, with only runs including stratospheric ozone depletion

indicating any regions of cooling, and even then these are underestimated in extent

compared to the observations. However, from a visual inspection it is difficult to

conclude that any single anthropogenic forcing is a better explanation of recently

observed changes. Considering Tables 3.1 and 3.2 for the three-decade case, a

consideration of the effects of greenhouse gases and sulphate aerosols provides the

best explanation of individual grid-box trends, although all model fields exhibit skill

relative to �no change�. However, considering the four-decade case, solar forcings

(SOL and SOLAR) also provide a similar degree of skill, on a grid-box basis, to

anthropogenic forcings. Confidence in the result is reduced, as the HadCM2 solar

realisation LBB (equivalent to SOLAR in HadCM3), does not show similar skill.
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These results for HadCM2 are consistent with RMSD values (Table 3.2), unlike the

100hPa case, giving increased confidence. For HadCM3 fields, the anthropogenic

ensembles do not exhibit skill in the RMSD values for the four-decade analysis,

whereas SOLAR does. A visual inspection of the anthropogenic HadCM3 fields in

Figure 3.5 indicates that the most probable cause of the anthropogenic ensembles not

exhibiting skill is that they overestimate the warming trend at the 500 hPa level. The

SOLAR forcing (not shown) also contains a net overall warming, although this is

greatly reduced compared to the anthropogenic fields.

Results for both grid-box consistency tests and RMSD statistics on all levels are

shown in Tables 3.1 and 3.2 respectively. In general, there are more cases of fields

exhibiting skill at the grid-box level, but not for RMSD values. This may relate to the

conservative approach used in constructing the �no change� field, which is perfectly

spatially auto-correlated. For both statistics, the models exhibit least skill at the

150hPa and 200hPa levels � the region of the tropopause. From a consideration of

Figures 3.2a and 3.2b, the large-scale pattern of change is one of tropospheric

warming and stratospheric cooling. Therefore, in this region the observed trends tend

towards zero, and there is likely to be a reduction in the perceived model skill

relative to the �no change� null hypothesis field, even if the model were to exhibit

the same degree of skill as in other regions of the atmosphere. This may also impact

upon the skill of quantitative detection studies in this region of the atmosphere,

although there remain spatially distinct trends (not shown). For the four-decade

analyses great care should be exercised in interpreting stratospheric values for both

tables, as the sample size is very small.

Any model ensemble should exhibit skill in explaining observed changes at a range

of scales relative to a null of �no change� if it includes some or all of the important

forcing factors. The grid-box and RMSD values in Tables 3.1 and 3.2 are, therefore,

used to ascertain estimates of overall model skill. For any level, a score of unity is

given if both the RMSD and grid-box scale values exhibit skill relative to �no

change� (values highlighted in yellow in Tables 3.1 and 3.2). The best guess scores

summed over all levels are shown in Table 3.3. Also shown in brackets are the

confidence limits resulting from the addition of independent HadCM3 control run

segments as pseudo-noise estimates. There is no a priori reason why the uncertainty
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limits should be symmetric about the best guess score value for any ensemble.

Interpreting the results is potentially very complex. Here, a very simplistic approach

is pursued, whereby it is concluded that a model ensemble provides skill in

explaining the observations if its score uncertainty does not encompass zero.

Confidence in this statement is enhanced the greater the separation of the lower limit

of the uncertainty range is from zero.

For both models and trend lengths, a consideration of all anthropogenic influences

generally provides the best explanation, consistent with previous detection and

attribution studies considering zonal-mean upper air temperature patterns (Santer et

al. 1996a, Tett et al., 1996, Allen and Tett, 1999). However, in all cases at least some

natural external forcings also exhibit a degree of skill, particularly SOLAR in

HadCM3 and SOL for HadCM2 for four-decade analyses, implying that it is not

necessarily only anthropogenic factors that are important in explaining recently

observed tropospheric temperature trends. The uncertainty ranges in the best estimate

scores vary widely between ensembles, being generally greater for the shorter three-

decade analyses, and of smaller magnitude than the uncertainty range in the null

hypothesis �no change� field. Adding small perturbations to the �no change� field

will yield a non-zero score. Comparing the skill of the perturbed field to that of the

original �no change� field in explaining the observations, expectations are that a

number of levels will exhibit skill. Adding such random perturbations to other fields

is only likely to have an effect on scores for those levels which exhibit similar skill in

explaining the observations to the �no change� null hypothesis field.

3.2.4 Changes in tropospheric lapse rates

It can be seen from Figure 3.5 (top two panels), that there are distinct changes

observed when considering an entire troposphere lapse rate diagnostic and, therefore,

the use of lapse rates could prove useful in detection and attribution studies. Results

using either an upper (300-500hPa) or a lower (500-850hPa) troposphere lapse rate

yield broadly similar pattern observational fields.
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HadRT2.1s and 2.1 exhibit similar changes in entire troposphere lapse rates between

1963-1972 and 1983-1992. In tropical regions the upper troposphere is generally

warming relative to the lower troposphere. In these regions the Environmental Lapse

Rate is approximately equivalent to the Saturated Adiabatic Lapse Rate, at least over

ocean regions. Therefore, any surface warming will tend to be accentuated with

height in tropical regions. Away from the tropics, the predominant change is one of

relative lower tropospheric warming, although this is by no means uniform. There

are regions of both distinct relative lower tropospheric cooling (over North East

America, the Mediterranean, Central Asia, and parts of Australia (in 2.1s, but not

2.1)) and warming (most high Northern latitudes, and Southern Africa). Such a

relatively complex observational field should provide power in discriminating

between different potential forcing mechanisms. This makes the assumption that the

changes are real, and not the manifestation of residual errors in the HadRT dataset.

Confidence in this is increased as both models also exhibit zonally heterogeneous

behaviour in their entire troposphere lapse rate diagnostics.

Considering the anthropogenic model runs, results for equivalent forcing scenarios

show little overall field agreement between the models solely on the basis of visual

inspection (Figure 3.5). The implication from this must be that changes in the model

parameterisations (Pope et al., 2000) and forcing algorithms (Tett et al., 1999, 2001)

have had important effects on lapse rate diagnostics. This illustrates the importance

of not relying upon a single model in formal detection and attribution studies for

such diagnostics, in agreement with previous detection studies considering near-

surface temperatures (Hegerl et al., 2000, Barnett et al., 1999, 2000). As is the case

for temperatures on pressure levels, more grid boxes fail to capture the observed

changes than would be expected by chance (Figure 3.5 middle 3 panels; Table 3.1). It

is difficult to determine which fields are providing the best overall explanation.

Considering RMSD values (Table 3.2) for both models and trend lengths, a

consideration of all anthropogenic forcings yields the best (or equal best)

explanation. Ignoring the effects of stratospheric ozone depletion reduces the

agreement, but it remains a better explanation than �no change�. The agreement is

encouraging because the global average change is around zero (actually very slightly

negative (Figure 3.5 top panels)), which means that the models are exhibiting a
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degree of skill in estimating the patterns of observed changes in entire troposphere

lapse rates.

Results shown in Tables 3.1 and 3.2 for a lower troposphere and an upper

troposphere lapse rate are less conclusive than those considering a whole troposphere

lapse rate. This is likely due to the signal strength in most regions being additive,

lower troposphere lapse rate trends being generally of the same sign as the upper

troposphere lapse rate trends for any given grid box (not shown here). For the lower

troposphere trends, it is possible that natural forcings could explain at least some of

the observed trends, but this result appears to be both trend-length and forcing-

history dependent, reducing overall confidence in the importance of natural external

forcings.

Table 3.3 also presents best-guess scores and uncertainty ranges for lapse-rate

diagnostics. The uncertainty estimates in lapse rates are proportionately larger than

those for individual pressure levels, which implies that noise due to natural internal

variability may be a limitation in quantitative detection studies that consider such

diagnostics. There are very few model fields for which the uncertainty range in the

score does not encompass zero and, therefore, for which it can be confidently

concluded they exhibit true skill. For the three-decade case there are no model

ensemble responses which exhibit skill using this diagnostic. In the four-decade case

there is a possible SOLAR influence, although neither LBB nor SOL also exhibit skill,

again reducing confidence in there being a robust solar influence. In the four-decade

case for both models, for anthropogenic forcings to exhibit skill in explaining

recently observed lapse rate changes, the effects of sulphate aerosol forcings (and

stratospheric ozone depletion for HadCM3) must be considered.

3.2.5 Overall model skill

In Figures 3.7 and 3.8 the skill scoring system as described previously for

temperatures on pressure levels and lapse-rate diagnostics is used to derive an overall

�skill-score� value based upon all variables considered (maximum possible value of

12) for the three-decade and four-decade analyses respectively. The assumption is
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that if the lower boundary of the uncertainty range is separated from zero, then the

model ensemble exhibits skill in explaining the observations, confidence increasing

with the degree of separation. Furthermore, if the best guess estimate is greater than

the upper-bound of the uncertainty range in the null hypothesis �no change� field,

then it is concluded that it should be detectable. Caveats apply to this assertion as the

true numbers of degrees of freedom of the statistical approach are unknown, and so

rigorous significance estimates cannot be attached to such statements.

In the three-decade analyses (Figure 3.7), ensembles for which it can be confidently

asserted the models exhibit skill are those which consider anthropogenic forcings. At

these timescales and using such 'skill-score' diagnostics, it is not possible to

differentiate between the skill exhibited by the individual anthropogenic forcings.

There are also potentially weak solar and volcanic signals evident, but skill is

dependent on both model and forcing-scenario, which reduces confidence in these

being truly detectable signals. None of the best guess estimates are outside the range

of 'skill-score' values expected by chance, so no claims are made as to the likely

detectability of signals on this timescale.

For the four-decade analyses (Figure 3.8), anthropogenic forcings exhibit much

greater skill when the effects of sulphate aerosols are included for both models.

Greenhouse gases on their own appear to be an inadequate representation of the

observed trends. There is also a potentially much stronger solar signal than was the

case in the three-decade analyses. However, LBB does not exhibit skill, although

both SOLAR (a HadCM3 realisation of the same LBB forcing signal) and SOL do;

therefore solar ensemble skill is found to be both model and forcing-history

dependent. For HadCM2, the GSO ensemble has a best estimate �skill-score� that is

greater than the uncertainty range for the null hypothesis field and, therefore, it is

likely to be detectable. There is no similar result for the HadCM3 ANTHRO field,

however, reducing the confidence in there existing a demonstrable anthropogenic

influence, at least considering the simple statistics employed here.
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3.3 Suitability for use of the full field HadRT temperature record

in formal detection and attribution studies

Results from section 3.2 point towards a discernible human influence upon recently

observed free atmosphere temperatures. However, these results in themselves are

insufficient to claim formal detection and attribution. For such purposes a more

formal, quantitative, approach is required. Previous detection and attribution results

have been introduced in chapter 1, and the optimal regression algorithm is explained

in detail in chapter 4. Here, consideration is given as to the potential of extending

current optimal regression detection and attribution studies to full field upper air

temperatures.

Results indicated in Figures 3.4, 3.5, and 3.6, show that for both temperatures on

pressure levels and lapse-rate diagnostics there is a degree of zonal heterogeneity in

both the observations and the models. This means that in zonally averaging the data

before proceeding to detection and attribution, as has been the case previously (Allen

and Tett, 1999, and references therein), a proportion of information is being lost.

Retaining such information should enable a better signal derivation and reduce

problems of signal degeneracy (see Allen and Tett, 1999, and Tett et al., 1999, for a

discussion on degeneracy) and, hence, improve upon previous detection and

attribution studies.

The optimal detection methodology of Allen and Tett (1999) only requires a vector-

input diagnostic from which the leading EOFs can be calculated. For the near-surface

temperature record, spherical harmonics are employed (Tett et al., 1999, Stott et al.,

2001) to consider the largest-scale properties which the model simulates best (Stott

and Tett, 1998). The first five spherical harmonic wave numbers are used to derive

an input vector of 25 values (Tett et al., 1999). The HadRT observations are far more

data-sparse than the HadCRUTv near-surface observations, and contain little

information over oceanic regions and in high Southern latitudes. Furthermore,

confidence is lower in the quality of HadRT data from poorly-sampled regions, as

near-neighbour consistency checks have not been possible in these regions (chapter

2). It is, therefore, inappropriate to use spherical harmonics in detection studies



83

considering upper atmosphere temperature diagnostics using HadRT records, as they

are unlikely to be stable, and could be greatly influenced by (potentially erroneous)

values in data sparse regions.

For detection studies involving upper atmospheric temperatures a different input

vector is therefore required. Any input vector must contain information on large-

scale changes, and confidence must be high in the accuracy of the observations.

Hence it is proposed that some form of large-area averages (LAA henceforth) be

used in constructing the input vector in this thesis. To ensure data representativeness,

a number of reporting grid boxes are desirable for any region to calculate a value.

This further increases bias towards Northern Hemisphere mid-latitude continental

regions. The number of contributing grid boxes required should be large enough to

mitigate the effects of individual erroneous grid-box values. However, this needs

weighing against the necessity for an input vector size sufficient to reduce signal

degeneracy and increase confidence in the results of regression analysis, as well as

requirements of spatial representation. A number of different input vectors derived

from different combinations of LAAs should ideally be utilised to ensure against

spurious results. In chapter 6 four choices of LAA inputs are used (see chapter 6 for

details of their construction).

3.4 Conclusions

In this chapter it has been shown, consistently and across a range of indicators from

univariate global-mean diagnostics to tropospheric lapse rates, that anthropogenic

influences are likely to be required to explain recently observed HadRT radiosonde

upper air temperature trends. These findings are consistent with those from previous

quantitative detection studies considering zonally-averaged upper air temperatures

(Santer et al., 1996a, Tett et al., 1996, 2001, Allen and Tett, 1999), and near-surface

temperatures (Tett et al., 1999, 2001, Stott et al., 2001, 2001a) for the same models.

However, the statistical indicators considered in this section are relatively simple in

nature and cannot be directly used to robustly answer questions of detection and

attribution. What they do provide, albeit rather weakly, is additional evidence for an

anthropogenic influence on climate. This does not discount the possibility that
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natural external forcings could also be important in explaining, at least in part, recent

trends. Nor does it entirely rule out natural variability as a (partial) cause of the

recently observed changes.

Previous zonal-mean detection studies (Santer et al., 1996a, Allen and Tett, 1999,

Tett et al., 1996, 2001) are likely to have been sub-optimal because both the

observational and model datasets exhibit a degree of zonal heterogeneity. In zonally

averaging these data, potentially useful information is, therefore, being lost, which

could be used to discriminate between competing forcings.

Two GCM datasets have been considered, and results using simple statistical

indicators have been shown to be model-dependent. There is no reason to believe

that this will not also be the case for the more complex optimal detection and

attribution statistical approaches described in chapter 4 which are used in subsequent

studies in this thesis. Therefore, caution is advised when considering only a single

model, as this could yield ambiguous results, consistent with findings for near-

surface temperatures (Hegerl et al., 1999, Barnett et al., 1999, 2000). Furthermore,

Santer et al. (1999) conclude that the use of a single observational dataset could also

yield ambiguous results. No other gridded observed upper air temperature product of

similar quality and length exists to date, both NCEP and MSU records containing

known limitations. Therefore, both versions of HadRT should be used in subsequent

analyses. This is far from perfect as the two datasets are not truly independent.

It has been argued here that the use of spherical harmonics to filter the data (Tett et

al., 1999, Stott et al., 2001) is unlikely to be stable for detection diagnostics based

upon HadRT data. This is due both to the heavily biased data coverage, and reduced

confidence in data quality from data sparse regions (chapter 2). An alternative

methodology is proposed whereby the input vector is derived from large-scale area

averages for a number of distinct regions.
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Table 3.1. Percentage of individual grid box values greater than 3σ from the observations for each temperature variable. Values highlighted in

yellow indicate model skill compared to the null hypothesis field of �no change�.

Percentage of grid boxes greater than 3 sigma different to the observations.
Pressure level 850 hpa 700 hpa 500 hpa 300 hpa 200 hpa 150 hpa 100 hpa 50 hpa 30 hpa 500-850 300-500 300-850
3 DECADES
num. of grid boxes 182 189 192 191 187 185 186 104 81 181 191 181
HadCM2 gso 40 37 42 39 60 53 37 49 57 36 36 38
HadCM2 gs 26 31 35 41 27 30 45 51 54 32 38 35
HadCM2 ghg 41 38 37 41 36 33 70 70 58 36 45 41
HadCM2 sol 38 35 37 39 30 32 65 80 80 34 39 33
HadCM2 lbb 51 60 54 47 37 37 46 82 73 45 44 36
HadCM2 vol 45 51 48 42 36 35 59 79 83 42 35 35
no change 50 59 56 49 36 33 40 79 69 36 38 35

HadCM3 anthro 27 29 43 51 49 59 52 56 57 31 39 31
HadCM3 trop-anthro 24 25 35 58 39 39 70 75 44 25 40 31
HadCM3 ghg 22 26 40 62 43 44 74 77 47 37 47 43
HadCM3 natural 41 50 59 59 49 52 67 82 73 35 40 43
HadCM3 solar 39 46 57 63 42 44 61 80 74 34 35 43
HadCM3 volcanic 50 56 60 64 44 39 65 81 74 31 42 39
no change 45 52 61 64 47 41 63 76 67 30 38 38

4 DECADES
num. of grid boxes 146 149 149 146 144 138 136 34 17 146 146 144
HadCM2 gso 36 34 41 50 64 54 78 44 65 60 38 44
HadCM2 gs 26 24 34 53 41 50 90 82 94 48 43 45
HadCM2 ghg 73 89 97 98 47 47 93 88 82 62 41 51
HadCM2 sol 47 39 36 54 51 64 94 85 82 63 50 64
HadCM2 lbb 57 54 60 68 65 62 68 85 88 57 62 65
HadCM2 vol 63 69 66 74 69 58 85 88 88 53 57 63
no change 42 45 48 70 59 58 87 91 76 53 53 61

HadCM3 anthro 38 36 48 61 37 57 61 56 53 47 38 39
HadCM3 trop-anthro 42 42 53 68 51 48 92 91 88 45 43 42
HadCM3 ghg 43 48 59 79 58 53 93 94 88 42 40 45
HadCM3 natural 41 48 57 77 74 72 83 91 76 42 49 55
HadCM3 solar 31 36 40 71 62 58 82 91 71 45 38 56
HadCM3 volcanic 55 56 60 79 67 68 79 91 76 47 53 51
no change 37 41 54 73 67 66 88 94 76 42 45 52
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Root Mean Squared Difference values between modelled and observed fields.
Pressure level 850 hpa 700 hpa 500 hpa 300 hpa 200 hpa 150 hpa 100 hpa 50 hpa 30 hpa 500-850 300-500 300-850
3 DECADES
num. of grid boxes 182 189 192 191 187 185 186 104 81 181 191 181
HadCM2 gso 0.04 0.034 0.034 0.033 0.05 0.057 0.05 0.059 0.059 0.028 0.025 0.043
HadCM2 gs 0.031 0.026 0.029 0.033 0.031 0.044 0.063 0.063 0.062 0.028 0.024 0.044
HadCM2 ghg 0.041 0.032 0.032 0.033 0.038 0.046 0.083 0.078 0.07 0.031 0.025 0.047
HadCM2 sol 0.037 0.031 0.031 0.031 0.032 0.044 0.075 0.084 0.097 0.028 0.023 0.043
HadCM2 lbb 0.05 0.044 0.042 0.037 0.038 0.049 0.065 0.092 0.09 0.031 0.028 0.052
HadCM2 vol 0.044 0.039 0.039 0.036 0.034 0.044 0.073 0.087 0.094 0.027 0.025 0.043
no change 0.047 0.042 0.042 0.04 0.035 0.044 0.058 0.086 0.085 0.028 0.024 0.045

HadCM3 anthro 0.036 0.03 0.032 0.031 0.039 0.053 0.05 0.062 0.069 0.028 0.023 0.04
HadCM3 trop-anthro 0.033 0.028 0.03 0.033 0.036 0.044 0.065 0.08 0.061 0.027 0.024 0.04
HadCM3 ghg 0.034 0.029 0.033 0.039 0.037 0.047 0.073 0.088 0.066 0.032 0.027 0.048
HadCM3 natural 0.048 0.042 0.042 0.038 0.037 0.049 0.062 0.091 0.09 0.031 0.027 0.049
HadCM3 solar 0.047 0.039 0.039 0.036 0.035 0.044 0.059 0.088 0.09 0.03 0.024 0.047
HadCM3 volcanic 0.051 0.046 0.045 0.04 0.035 0.045 0.061 0.089 0.088 0.029 0.026 0.047
no change 0.047 0.042 0.042 0.04 0.035 0.044 0.058 0.086 0.085 0.028 0.024 0.045

4 DECADES
num. of grid boxes 146 149 149 146 144 138 136 34 17 146 146 144
HadCM2 gso 0.038 0.033 0.038 0.048 0.059 0.072 0.077 0.212 0.291 0.04 0.032 0.059
HadCM2 gs 0.038 0.038 0.047 0.062 0.06 0.081 0.126 0.234 0.29 0.04 0.035 0.062
HadCM2 ghg 0.041 0.043 0.054 0.067 0.056 0.079 0.15 0.258 0.315 0.043 0.033 0.062
HadCM2 sol 0.039 0.032 0.037 0.053 0.056 0.082 0.159 0.304 0.417 0.045 0.035 0.068
HadCM2 lbb 0.047 0.04 0.041 0.056 0.074 0.087 0.109 0.292 0.371 0.04 0.042 0.074
HadCM2 vol 0.052 0.045 0.048 0.058 0.066 0.084 0.109 0.29 0.341 0.038 0.039 0.068
no change 0.047 0.04 0.042 0.055 0.064 0.083 0.114 0.296 0.374 0.04 0.038 0.07

HadCM3 anthro 0.043 0.042 0.052 0.061 0.055 0.079 0.077 0.169 0.196 0.04 0.032 0.058
HadCM3 trop-anthro 0.048 0.047 0.057 0.069 0.062 0.075 0.126 0.27 0.246 0.04 0.035 0.062
HadCM3 ghg 0.051 0.052 0.064 0.078 0.068 0.084 0.139 0.294 0.269 0.042 0.036 0.066
HadCM3 natural 0.051 0.044 0.046 0.058 0.071 0.092 0.112 0.291 0.381 0.041 0.034 0.066
HadCM3 solar 0.04 0.035 0.039 0.056 0.064 0.084 0.114 0.286 0.377 0.039 0.034 0.066
HadCM3 volcanic 0.061 0.053 0.053 0.062 0.072 0.088 0.111 0.286 0.371 0.043 0.041 0.075
no change 0.047 0.04 0.042 0.055 0.064 0.083 0.114 0.296 0.374 0.04 0.038 0.07

Table 3.2. RMSD values between modelled and observed fields for each temperature variable. Values highlighted in yellow indicate model skill

compared to the null hypothesis of �no change�.
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Table of best guess skill scores and their uncertainty ranges for HadCM2 and

HadCM3 fields for three decade and four decade diagnostics.

Ensemble Three

decades

levels

three

decades

lapse

Four

decades

levels

Four

decades

lapse

HadCM2 GSO 4 (3-5) 0 (0-2) 5 (3-7) 2 (1-2)

HadCM2 GS 5 (3-6) 0 (0-2) 4 (3-6) 2 (2-3)

HadCM2 GHG 4 (3-5) 1 (0-1) 1 (1-2) 0 (0-1)

HadCM2 SOL 1 (1-6) 2 (0-3) 4 (2-6) 0 (0-1)

HadCM2 LBB 1 (0-4) 0 (0-1) 1 (0-2) 0 (0-1)

HadCM2 VOL 2 (1-5) 1 (0-2) 0 (0) 0 (0-2)

HadCM3 ANTHRO 4 (3-6) 0 (0-2) 2 (2-4) 2 (1-3)

HadCM3 TROP-

ANTHRO

5 (3-7) 1 (0-3) 2 (1-3) 1 (0-2)

HadCM3 GHG 4 (2-6) 0 (0-1) 0 (0-2) 1 (0-2)

HadCM3 SOLAR 2 (1-4) 0 (0-1) 4 (1-6) 2 (1-3)

HadCM3 VOLCANIC 1 (0-4) 0 (0-2) 2 (1-3) 0 (0-1)

HadCM3 NATURAL 1 (0-3) 0 (0-1) 2 (0-2) 1 (0-2)

No change 0 (0-5) 0 (0-2) 0 (0-4) 0 (0-3)

Table 3.3 Overall skill scores for the model fields when compared to a null

hypothesis of zero change. For any level or lapse rate to gain a score it must exhibit

skill both at the grid-box level and in the RMSD statistic. The maximum possible

score is, therefore, 12. The fields are split so as to consider skill scores and their

uncertainty ranges for temperatures on pressure levels and lapse rate diagnostics

separately. Model fields considering anthropogenic influences consistently provide

the best explanation, although there are also likely solar, and possibly volcanic

influences, and �no change� cannot be ruled out. The choice of decadally averaged

data is probably sub-optimal when searching for natural external forcing signals.
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Figure 3.1. Changes in areal grid box coverage of the HadRT dataset over the period

1958-1998. The key in the top right hand corner denotes the pressure levels. Note

how, below an altitude of 50hPa, the total number of observations is generally

consistent between the levels. Decreases in data availability occur both early in the

record due to a lack of observations, and late in the record due to delays in release of

the data.



89

Figure 3.2a. Global averages for the HadRT2.1s temperatures and HadCM2

ensemble mean fields. Note that prior expectations are that model fields will exhibit

less variability.
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 Figure 3.2b. Global averages for the HadRT2.1s temperatures and HadCM3

ensemble mean fields. Note that prior expectations are that model fields will exhibit

less variability.
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Figure 3.3. Difference in zonally averaged temperatures between 1963-1972 and

1983-1992. The top two panels show HadRT2.1s and HadRT2.1 fields, the

differences between these datasets being relatively small. Remaining panels indicate

ensemble mean model responses to various anthropogenic forcing scenarios for

HadCM2 (left hand panels) and HadCM3 (right hand panels).
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Figure 3.4. Difference in temperatures at the 100hPa level between 1963-1972 and

1983-1992. The top two panels show HadRT2.1s and HadRT2.1 fields, the

differences between these datasets being relatively small. Remaining panels indicate

ensemble mean model responses to various anthropogenic forcing scenarios, and the

respective model σ fields for HadCM2 (left hand panels) and HadCM3 (right hand

panels). In these model fields those points outside 3σ from the observations are

boxed.
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Figure 3.5. Difference in temperatures at the 500hPa level between 1963-1972 and

1983-1992. The top two panels show HadRT2.1s and HadRT2.1 fields, the

differences between these datasets being relatively small. Remaining panels indicate

ensemble mean model responses to various anthropogenic forcing scenarios, and the

respective model σ fields for HadCM2 (left hand panels) and HadCM3 (right hand

panels). In these model fields those points outside 3σ from the observations are

boxed.
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Figure 3.6. Difference in an entire troposphere (300-850hPa) lapse rate diagnostic

between 1963-1972 and 1983-1992. The top two panels show HadRT2.1s and

HadRT2.1 fields. Remaining panels indicate ensemble mean model responses to

various anthropogenic forcing scenarios, and the respective model σ fields for

HadCM2 (left hand panels) and HadCM3 (right hand panels). In these model fields

those points outside 3σ from the observations are boxed.
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Figure 3.7. Best estimate and range of skill scores for a three-decade diagnostic. The

best estimate is denoted by a square. There is no reason to expect the uncertainty

range to be symmetric about this estimate. An ensemble is concluded to exhibit skill

if its uncertainty range does not encompass zero. Confidence is increased with

greater separation. In this approach a signal would be detectable if its best estimate

was outside the uncertainty range of the null hypothesis no change field.
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Figure 3.8. Best estimate and range of skill scores for a four-decade diagnostic. The

best estimate is denoted by a square. There is no reason to expect the uncertainty

range to be symmetric about this estimate. An ensemble is concluded to exhibit skill

if its uncertainty range does not encompass zero. Confidence is increased with

greater separation. In this approach a signal would be detectable if its best estimate

was outside the uncertainty range of the null hypothesis no change field.
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