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1. Introduction

This thesis aims to advance our understanding of the most likely causes of recently

observed changes in the climate system, primarily through a more detailed analysis

of available upper air temperature records. It also advances from addressing simple

�yes� or �no� questions of whether particular external forcing factors are important

in explaining these changes to begin to consider the internal consistency of state-of-

the-art climate models, at least within the troposphere. In section 1.1 the basic

concepts of detection and attribution are presented, whilst sections 1.2 and 1.3

introduce the observed and modelled datasets used in this thesis. Section 1.4 provides

a brief synopsis of the principal results from previous detection and attribution

studies, methodological details being covered in chapter 4. In chapter 2 a quality

control algorithm is applied to the HadRT upper air radiosonde temperature record

(Parker et al., 1997). Before advancing to a formal quantitative detection study, an

inter-comparison of modelled and observed datasets is undertaken in chapter 3. The

sensitivity to potential sources of uncertainty of results of previous fixed-signal

zonal-mean optimal detection studies is addressed in chapter 5. Chapter 6 advances

previous detection studies to consider a number of tropospheric temperature

variables under a common detection methodology and qualitatively assess whether

the models are likely to be adequate (internally consistent) explanations of the

observations. In chapter 7 a methodological framework is set out under which more

formal, quantitative, statements regarding model adequacy could be achieved.

Finally, in chapter 8 conclusions and avenues for future research are discussed.

1.1   The detection and attribution framework

Most scientists around the world believe that there is a discernible anthropogenic

influence upon climate causing globally averaged near-surface and free troposphere

temperatures to rise, among other changes to the climate system. If model projections

of the evolution of this effect are correct, then global mean temperatures will

increase further in coming decades, causing considerable net climate change � the

anthropogenic greenhouse effect.  For governments, society, and industry to

seriously consider effective action to minimise and mitigate the effects of such a
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climate change, scientific evidence of a demonstrable anthropogenic cause is

required. Climate change detection and attribution aims to provide this evidence.

The definitions of detection and attribution used here are derived from those

discussed in chapter 8 of the 1995 IPCC (Intergovernmental Panel on Climate

Change) Second Assessment Report (SAR) (Santer et al. 1996). These are the

standard definitions used (albeit in various guises) in most subsequent climate

change detection and attribution studies.

The detection problem is essentially one of finding a given model-calculated climate

change signal in the observations. Such a signal will be embedded in noise due to

natural internal climatic fluctuations, so the detection problem is far from simple. An

estimation of the unforced internal climate variability (noise) is therefore essential to

be able to claim significance. As instrumental records are relatively short and

potentially influenced by anthropogenic (and other external forcing) effects (Jones

and Hegerl, 1998), this must be derived from long control runs of GCM�s (General

Circulation Models), or simpler models.

A signal, or combination of signals, is detected if, and only if, the signal amplitude(s)

in the observations is (are) greater than that expected by chance due to natural

internal climate variability alone.

This statement indicates that the detection problem is a statistical one whereby one

must reject the null hypothesis of natural climate variability explaining observed

trends. The implications of a statistical Type I error (non-rejection) vis-à-vis that of a

Type II error (rejection of a valid null) implies that detection studies should be

looking for a high critical value acceptance of greater than 90% (Zwiers, 1999).  This

ensures that any claims of detection are likely to be conservative, and that we will

not ambiguously claim the presence of an anthropogenic, or other external forcing

influence, when none actually exists. If the model estimate of natural internal

variability is grossly inadequate then problems are likely to arise in making

unambiguous statements of detection.
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Even once a signal has been detected, it does not directly imply cause and effect; this

is the domain of attribution. Attribution is harder to attempt rigorously as, in the

strictest sense, an infinite series of possible climate forcings and their combinations

must be considered and rejected until only one remains. In practice, attribution is

limited to a sensible number of physically plausible explanations of the observed

climate change.

The observed climate change is attributed to a given signal (or combination of

signals) if it is consistent with this (these), and only this (these), signal(s) from the

entire population of plausible signals.

This is a test equivalent to non-rejection of the null hypothesis of consistency

between the signal(s) and the observations. It should be noted that, in the frequentist

statistical sphere of classical detection literature non-rejection of the null hypothesis

at level P% does not imply acceptance of the alternative hypothesis at level (100 -

P)%, due to the asymmetry of the statistical system (Levine and Berliner, 1999). This

means that any claims of statistical significance levels in attribution studies are likely

to be overly optimistic, the uncertainty limits being underestimated. Levine and

Berliner (1999) propose an alternative approach, from which realistic attribution

confidence statements can be made, whereby the statistical system is symmetrical.

Allen et al. (2001) take a different approach to the attribution problem, where

attribution is claimed for the most parsimonious combination of model signals that

are found to be statistically consistent with the observations. However, regardless of

methodological considerations, attribution does not rely solely upon significance

levels, but rather on the rejection of all other plausible causes until only one remains.

So as long as the uncertainty limits are sufficiently separated between competing

signal combinations, attribution can be claimed. As for detection, statements of

attribution are critically dependent upon the adequacy of the model-derived estimate

of natural internal variability.
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1.2 Observational datasets

The basic requirement for a successful outcome of any climate change detection and

attribution study must be a set of suitable climate observations.  Without such a

resource there would be little chance of stringently confirming and, possibly,

constraining model predictions of climate change. Observational climate datasets can

in theory be observations of any parameter, or set of parameters, which measure the

time varying behaviour of the atmosphere. This yields a potentially large set of

observational datasets that may be useful in detection and attribution studies.

Obviously objective selection criteria are required to narrow down this field.

The most important criterion is that the searched for signal in any parameter should

be as near as can be achieved to orthogonal to the major axis of natural climate

variation in the phase space of the treated dataset. This maximises the chances of any

signal being detected, as the signal will be in a direction where it is dominant over

natural internal climate variability. Santer et al. (1994) characterise this in terms of

an analysis of Signal-to-Noise Ratios (SNRs) where �noise� is derived from long

control runs of the same GCM�s as the signals. Ideally the noise estimate should

include everything other than the signal(s) being considered. The results are likely to

be critically model dependent. Three aspects of the signal are generally considered:

the overall magnitude, orthogonality properties, and the trend significance. The full

model field cannot be considered as current model control runs (with no changes in

external forcings) are not run for a long enough time to gain sufficient statistical

degrees of freedom to be able to consider the full spatial field on the multi-decadal

timescales important in detection studies. This would require control runs of the

order of at least several thousand years. Hence the statistics are realised in some form

of truncated Empirical Orthoganal Function (EOF) space. Various criteria such as

pattern correlation between signal and noise, number of EOF�s required to explain P-

critical (%) of the variance, or the time evolution of the signal to noise ratios could

be used (Santer et al. 1994). In practice it is safest to use all such criteria. Previous

studies (Santer et al. 1991, Santer et al. 1994, Santer et al. 1996) suggest that, of the

commonly observed atmospheric variables, surface temperature and vertical
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temperature are both useful whereas precipitation and surface pressure are less so

due to their lower SNRs.

Observations also need to exist for a continuous period, long enough for any

underlying trend to be discernible from that due solely to natural internal climate

variations. This critical trend length for successful detection studies considering near-

surface temperatures has been found by various authors (see Santer et al. 1995,1996,

Hegerl et al. 1996, Barnett et al., 1998, for example) to be at least 30 years. Applying

a 30-year or longer trend length requirement dramatically reduces the set of suitable

candidate variables. Furthermore, numerous authors (Santer et al. 1995, Hegerl et al.

1996,1997, Barnett et al. 1998) have illustrated that the longer the trend length under

consideration, the greater the chance of a successful detection exercise. This is

because, assuming natural internal variability is a stationary normal distribution,

natural trends due to internal variability in any detection statistics will tend towards

zero over long periods. It has also been noted that in certain detection algorithms

using a short trend length, spurious claims of detection can be made by chance,

whereby the statistic after a short further period of time is no longer significant

(Barnett et al. 1998). This is to be expected to occur by chance due to the nature of

the statistical analysis, whereby a given trend is said to be anomalous at the P% level

when compared to natural variations. A more stringent criteria is suggested as a

result by Barnett et al. (1998) whereby detection is claimed only when a statistical

measure becomes significant and remains significant for a long period (order

decades).

A further constraint is that the observations must be homogeneous through time. If

the observation time, method, location, or adjustments applied to observed series for

real-time operational purposes have changed through time then this will result in

potential inhomogeneities within the series (Parker and Cox, 1995, Gaffen, 1994,

Eskridge et al., 1995, Jones et al., 1999 and references therein). Homogeneity can be

assessed using available station meta-data, and by various automated statistical

techniques to check for outliers and break points in a series, and then adjusted to

create a homogeneous series (see Jones et al., 1999, and references therein for a more

complete discussion on this point with regards to the surface temperature record, or

Eskridge et al., 1995 for upper air temperatures).  However, the potential for further
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residual inhomogeneities (e.g. urbanisation influences for surface data) remaining

within any homogenised series should not be discounted. There are also known

problems with removing suspected inhomogeneities in that they may in fact be real

rather than 'apparent' changes as climate change could naturally occur in a step-like

fashion (Gaffen et al., 2000a). Another complication in using fully automated checks

is that the resulting series will be critically dependent upon the criteria used in

identifying and correcting for break points (Gaffen et al., 2000a).

The observed variable being considered must be measured at discrete points across

the globe. A parameter such as global mean temperature is of limited use in any

study of detection, and even more so in attribution because similar changes in such

simple (univariate) indicators could be caused by a variety of different combinations

of forcing factors and internal variability. Studies using such univariate diagnostics

have been referred to as Type I studies in the IPCC SAR (Santer et al. 1996). They

can almost invariably be fitted to any given forcing by fine tuning and introducing

terms into the statistical transfer function which transforms the forcing (e.g a history

of solar activity) to the observed diagnostic (see for example Tol and De Vos, 1998

who use global mean temperature in a Bayesian approach). This is obviously of

dubious scientific value and, even if physically plausible terms derived from state-of-

the-art climate models are used in the transfer function, it is unlikely to bring us

closer to either unambiguous detection or attribution. Therefore the variable needs to

be measured at many points to enable a spatial or spatio-temporal (multivariate)

approach to detection to be employed. It is convenient to grid the variable in a

manner which avoids having to employ complex comparison techniques (such as

neural networks) with the gridded model output. The gridding can be a simple box

average (e.g. Jones et al., 1999, 2001 for surface data), or a more complex approach

whereby weighting of individual stations is attempted based upon grid-box

representativeness. Parker et al. (1997), for upper air data, use an inverse distance

weighting from the centre of the grid-box.

It is useful if the reporting network is of high density as this reduces the standard

error due to sampling (Jones et al. 1997a, 1999, 2001). Expectations are that a single

station reading will have a higher variance than an average of many regional station

readings. The standard error will be critically dependent upon the station variance
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and inter-record correlation within a gridbox (Jones et al. 1997a).  This sampling

error is an extra source of observational uncertainty in any detection study, although

Jones et al. (1999, 2001) show that it is not the major source of uncertainty, at least

in the near-surface temperature record. The effects of sampling error can also in

theory be corrected for, at least in the near-surface temperature record to yield a

variance corrected version (Jones et al., 2001). This does not necessarily imply that

such corrections will be possible in all other observed climate series.

Most recent detection studies look for some form of diagnostic of increasing pattern

similarity between the observed variable and a modelled response(s) to external

forcing, either natural or anthropogenic (Tett et al., 1999, 2001, Stott et al., 2001,

Hegerl et al., 1996, 1997, 2000 Santer et al., 1995, for example). Therefore it is

reasonable to expect that the spatial coverage coherency of the observational field

will affect the chances of a successful outcome. A spatially coherent coverage field

of observations will enable more accurate pattern estimation in those areas which are

well-observed. However, this is potentially at the cost of representing patterns or

values elsewhere in the global field, which a more scattered observational field may

better pick out. To date little attention has been paid to this criterion, although model

data (for HadCM2) have been shown to be generally representative only at the

largest scales for near-surface temperatures (Stott and Tett, 1998).

It is obvious from the above that a spatially coherent variable with a large correlation

decay length would be preferable. Osborn (1997) shows that for precipitation, which

has a small correlation decay length, both point and areal values can be very different

and respond in divergent manners to the same forcing, both in terms of averages and

extremes. There is no reason to suspect that this is not also true, if less markedly so,

for other variables. Therefore care must be taken in ensuring that one is comparing

truly grid-box (rather than point) representative observations with the gridded GCM

output.

Taken together these criteria lead to an almost empty set of observational datasets

which can be used in detection studies. Realistically one is limited to using near-

surface temperatures (Jones et al. 2001) and the radiosonde temperature record

(Parker et al. 1997). Only these records are of the necessary length (greater than 30
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years), are well enough sampled and constrained, and exhibit relatively high SNRs.

However, there are still residual uncertainties in both datasets, and specifically in

recent temperature trend differences between the lower troposphere and the near-

surface (NRC, 2000). In section 1.2.1 the construction of the near-surface

temperature record is described, section 1.2.2 summarises the radiosonde record, and

section 1.2.3 discusses recent work towards reconciling the most recent 20-year trend

discrepancy between the two datasets.

1.2.1. The HadCRUTv gridded surface temperature record

The HadCRUTv surface temperature record is well documented (see for example

Jones, 1994, 1995, Jones et al., 1997a, 1999, 2001 and references therein). The

values are composed of station temperature anomalies over land and sea surface

temperature (SST) anomalies over the ocean. All monthly station data have been

quality controlled, and corrected for known / suspected inhomogeneities before being

added to the database. Grid box values are simply an average of all station anomaly

values within the box, with no attempt being made to account for distance from the

centre of the grid-box (Jones, 1994). This is the major temperature dataset used in

those detection studies reported in both the IPCC SAR (Santer et al. 1996) and TAR

(Third Assessment Report) (Mitchell and Karoly et al., 2001), and many other

detection studies to date (Allen et al., 2000, 2001, Stott et al., 2001, Tett et al., 1999,

2001, Hegerl et al., 1996, 1997, Santer et al. 1995, for example). The HadCRUTv

dataset in its latest version (Jones et al., 2001) exists as a 5° longitude x 5° latitude

globally gridded, variance corrected, set of grid-box monthly anomalies, from the

1961-90 average, from the middle of the 19th Century to the present day. The global

average temperature record is shown in Figure 1.1, and exhibits a long term

(although by no means linear) warming trend in the series over this period.

The areal coverage of HadCRUTv decreases before the 1950�s and again before the

early 1900�s (Santer et al., 1995), and slightly in recent times due to delays in data

availability in near real time (Jones et al., 1999). Jones et al. (1997a) show through a

frozen-grid analysis that the higher variability in global-mean near-surface

temperature during the 19th century is primarily due to the sparser data coverage at
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that time, at least over land. Data variability is also greater when fewer stations

contribute to a grid-box value due to an increase in the sampling standard error (see

Jones et al., 1999 and earlier discussion), as is the case in some regions before 1951.

A variance-corrected version of these data (Jones et al., 2001) is used in this thesis.

HadCRUTv accounts for the effect of the changing density of reporting stations both

over land and in ocean regions (Jones et al., 2001). The adjustments have no effect

on data coverage, and the hemispheric average series are not significantly changed,

although there are slight changes in the time series in some cases at continental and

regional scales. Further, Jones et al. (2001) comment upon how variance corrections

will yield more stable EOF's, an important consideration in detection studies using

the optimal regression methodology of Allen and Tett (1999) and Allen and Stott

(2001) (see chapter 4).

Some criticisms have been made of the near-surface temperature record over time

(see NRC, 2000 for a summary), casting doubt upon whether the observed century

scale global-mean warming has actually occurred. Jones et al. (1999), Peterson et al.

(1999), and NRC (2000) dismiss the commonly-argued urban heat island effect as a

plausible explanation, estimating its maximum potential contribution to be, at most,

an order of magnitude smaller than the observed hemispheric-scale surface warming

in the last century. Residual inhomogeneities are harder to constrain, but gross errors

(both systematic and random) are routinely corrected for or removed by the quality

control criteria and statistical tests. Folland et al. (2001) address a number of

previously identified potential sources of uncertainty, including previously

implemented corrections to the dataset, and find that trends remain highly significant

since 1861. More subtle inhomogeneities could explain some residual trends but

would have to be similarly positively biased over large regions to account for the

observed changes. In all likelihood, individual erroneous grid-box trends will exhibit

essentially random biases. Physical mechanisms for a (global) systematic positive

bias to explain the observed trend are hard to imagine and, therefore, it is concluded

that the observed trend is likely to be real and not a sampling artefact. Further

credence is given to the validity of the temperature record of Jones et al. (2001) as

two other independently produced surface temperature datasets broadly agree with

the trends on global and regional scales (Quayle et al., 1999, Hansen et al., 1999, see

also the discussion in NRC, 2000). However, care should be taken not to read too
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much into this as much of the data are common to all three near-surface temperature

datasets, with the differences being primarily in treatment and assimilation of the raw

data, rather than the raw data themselves. Totally independent reconstructions from

borehole temperature measurements confirm the warming trend (Huang et al., 2000),

although uncertainties remain over the effects of land-use changes during this period

on these borehole temperature series (Mann, 2001).

Measurement errors (other than gross errors), which are by nature assumed to be

random both in space and time, have not been implicitly taken into account by Jones

et al. (2001). Hegerl et al. (2001) attempt to quantify the likely effect on detection

studies using a Monte-Carlo approach to randomly seed errors in realisations of the

gridded near-surface temperature record. It is assumed that the error is WHITE in

nature (independent identically distributed noise). Hegerl et al. (2001) consider both

spatially correlated and uncorrelated errors. Spatially correlated errors between grid

boxes is an ultra-conservative treatment, as this would require spatially consistent

errors, which given their suspected random nature is highly unlikely. A spatially

systematic bias could occur due to coincident instrument or observing practice

changes over large regions (Gaffen et al., 2000a), but at the surface the procedures

have remained relatively stable over time (at least compared to upper air

temperatures (1.2.2)) making this highly unlikely. Even taking this conservative

approach the maximum possible trend in global mean near-surface temperatures

gained by Hegerl et al. (2001) is only half that of the observed trend. This does not

imply necessarily that such errors should be ignored, especially at smaller scales, but

for the purposes of detection and attribution studies, which tend to concentrate on the

largest temporal and spatial scales, these errors are not first order in HadCRUTv, and

can therefore be discounted.

1.2.2. The HadRT radiosonde temperature record

The HadRT radiosonde temperature dataset consists of a 10° longitude x 5° latitude

gridded temperature record on 9 standard WMO reporting levels throughout the

troposphere and lower stratosphere (850, 700, 500, 300, 200, 150, 100, 50, and 30

hPa levels) from 1958 to date (Parker et al., 1997). Values are quoted as temperature
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anomalies in degrees Celsius from the 1971-90 average. The versions used in this

thesis are HadRT 2.1 and 2.1s. These records have been corrected globally for

known post 1979 inhomogeneities by reference to collocated data from the MSUc

record (Christy et al., 1998, 2000 and references therein) in the same manner as

version HadRT1.1 was over Oceania (Parker et al., 1997). Climatologies are

recalculated after corrections have been applied. In version 2.1s corrections are made

solely in the stratosphere, whereas in version 2.1 they are made throughout the depth

of the atmosphere.

Parker et al. (1997) note that raw radiosonde temperature data used in the

construction of the HadRT dataset have been widely affected by both random and

systematic errors. The radiosonde recording network has been designed and

implemented with operational meteorology rather than consistent climatological

recording in mind. Gaffen (1994, 1996) has attempted to collate a history of metadata

for individual stations, including changes in instrumentation, observation times,

corrections applied, station location, and balloon type, amongst others. This work has

been augmented by a number of other investigators (see for example Eskridge et al.,

1995, Parker and Cox, 1995, Luers and Eskridge, 1998). It is only with such a

complete station history, as well as an inter-comparison of instrumentation, that any

small amplitude systematic temporal and spatial errors can be corrected. Parker et al.

(1997) correct for known inhomogeneities based upon available station metadata

(Gaffen, 1996) where a significant difference can be found in the individual station

series using a student's t-test statistic. This reduces systematic errors in individual

grid-box series, but is by no means ideal. Corrections applied to the HadRT

temperature record are seasonally invariant. A more complex database is currently

under development, which should reduce further any residual systematic biases

present in the HadRT radiosonde record (Eskridge et al. 1995, CARDS webpage,

GUAN webpage).

In chapter 2 of this thesis, the previous analysis of Parker et al. (1997) is augmented

by extending quality control criteria to an analysis based upon a comparison with

neighbouring grid boxes on both annual and seasonal timescales. Two simple

statistical measures are used and are treated conservatively to minimise the chances

of disposing of valid data. Such an exercise is important if, as is the case here, one is
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searching for increasing pattern similarity between model scenarios and the

observations. The HadRT temperature record also exhibits much sparser spatial

coverage than that of the HadCRUTv near-surface temperature record and is highly

biased towards Northern Hemisphere land areas. A HadRT dataset coverage map for

the 850 hPa level, providing an illustration of tropospheric coverage characteristics,

is given in Figure 2.11. It should be noted that coverage also decreases rapidly within

the lower stratosphere, especially during the early part of the record, due primarily to

radiosonde balloon burst. This is discussed in further detail in Chapter 2.

Santer et al. (1999) explicitly recommend that more than one observed dataset should

be used in any detection exercise in the free troposphere. Available records arise

from radiosondes, MSU satellite records (Christy, 1995, Christy et al., 1998, 2000),

and operational reanalyses. However, Barnett et al. (1999), Santer et al. (1999) and

Stendel et al. (2000), for example, state that the current generation of reanalysis

products (NCEP, Kalnay et al., 1996; and ECMWF, Gibson et al., 1997) are not of

sufficient quality for such purposes. Further, the MSU satellite record (Christy et al.,

2000) is not likely to be of a sufficient length (Barnett et al., 1998, 1999) and has

remaining attendant uncertainties and problems due to being a depth-integrated

quantity rather than a point measurement (NRC, 2000). There is no alternative

gridded radiosonde temperature dataset available at this time. Therefore in this thesis

attention is limited solely to the HadRT record, although the use of additional

observed products in future work would be highly desirable.

1.2.3 Reconciling recent trend differences between near-surface and

radiosonde temperature records

It has been shown that over approximately the last two decades (1979-2001) near-

surface and lower tropospheric temperature trends (principally MSU2LT, centred

around 740 hPa, Christy et al., 2000) have not been exactly coincident on a global

average basis. The near-surface record has exhibited net warming, but little, if any,

warming has been observed in the lower troposphere (Santer et al. 2000, 2000a;

NRC, 2000 amongst others). This discrepancy leads some to question whether

recently observed near-surface temperature trends are in error. The use of short-term
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trends can be wholly misleading. Analyses using longer periods (1958-99 and 1964-

99) show agreement between the near-surface and (radiosonde based) lower

tropospheric temperature trends (Angell, 2000, Brown et al., 2000, Gaffen et al.,

2000, and Jones et al., 1997). If the most recent disparity is important then it must be

right to consider not only the last two decades but also the longer 40 year record, as

the differences must have been of opposite sign in these first two decades of the

longer period.  The recent NRC report ''Reconciling observations of global

temperature change" (2000) debates the most recent trend discrepancies in terms of

the three major temperature datasets available and their uncertainties. In the previous

two sub-sections residual uncertainties in each of the datasets used in this thesis have

been discussed. In this sub-section potential reasons for the recently observed

discrepancies are discussed.

The MSU series of Christy et al. (2000) is used in inter-comparisons between the

near-surface and lower tropospheric temperature records. The MSU record, which

exists from 1979 to date, uses satellite records of up-welling microwave radiation

from oxygen molecules (the wavelength of which is temperature dependent) to make

layer average temperature estimates. Three layer average series are derived (MSU4,

MSU2, and MSU2LT), each of which gains its peak information from a different

portion of the atmosphere (stratosphere, upper troposphere, and lower troposphere

respectively). For the purposes of the NRC (2000) study, MSU2LT is considered

which has the peak signal from ~740mb, but contains information from the surface

up to ~300mb. Residual uncertainties remain relating to orbital effects (Wentz and

Schabbel, 1998), instrumentation drift, and continuity between satellite platforms

(NRC, 2000). There is also only the one dataset (albeit in numerous versions) and

therefore confidence in the trends is reduced as they may be susceptible to the

algorithms used in converting the radiation measurements to layer-average

temperatures (NRC, 2000).

Global average temperature series hide many differences in sampling distribution in

both space and time as well as changes in instrumentation, corrections applied and

other changes. Therefore, the use of a global mean diagnostic for comparison

purposes may yield entirely spurious results. Spatially masking the MSU temperature

record to that of the observational radiosonde record has an effect, both on a year-to-
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year basis and also on decadal trends, tending to increase the observed MSU 2LT

warming (Christy et al. 2000, Santer et al. 1999). Masking also has an effect upon the

correlation with the independent radiosonde record, degrading the agreement with

the Angell (1988) record, which has been used previously to validate the MSU series

(Santer et al. 1999, 2000). Similarly, masking the HadCRUT (an earlier version of

the near-surface temperature record to that used in this thesis) (Jones et al., 1999)

observations to that of the HadRT series increases the agreement of HadCRUT with

both the HadRT and the MSU lower tropospheric temperature series (Santer et al.

2000). Furthermore, the choice of trend fitting method can greatly affect the

calculated global mean trends, at least within the lower troposphere (Santer et al.,

2000a).

The correlation between globally averaged values of the HadRT temperature series

and the MSU record is susceptible to the method used in interpolating the level-

specific radiosonde temperatures to layer-average MSU equivalent temperatures

(Santer et al., 1999, Hurrell et al., 2000). The MSU 2LT series also has

approximately 20% of its signal derived from surface microwave emissions which

have no equivalent in the available HadRT radiosonde temperatures, and therefore

will add 'noise' in any comparison if the surface radiance characteristics change over

time due to natural or anthropogenic processes. Hurrell and Trenbeth (1997, 1998)

argue that, for this reason, the MSU2 record (which does not incorporate a surface

component, but gains its peak signal from higher in the troposphere (c. 400 hPa) and

includes a stratospheric component) is more stable.

Even subsequent to masking datasets and taking into account uncertainties due to

procedures used in the treatment of the data (Santer et al., 1999), discrepancies

between the available observed near-surface and lower tropospheric temperature

series remain. These discrepancies, or at least some of them, are almost certainly real

(NRC, 2000, Chase et al., 2000). Expectations are that, over all time and space

scales, near-surface and lower tropospheric temperatures need not perfectly co-vary.

Sections of control runs from GCM's can be used to provide independent estimates of

the natural variation, although with the obvious caveat that they are assumed to be a

realistic representation of the real world. Santer et al. (2000), using such an approach,

show that although natural internal variability may go some way towards explaining
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the observed discrepancy it cannot explain all of it, unless the natural variability is

significantly underestimated in magnitude within the models. This approach neglects

the possibility that the trend discrepancy may be a transient response to a

combination of anthropogenic and natural external climate forcings as well as

internal climate variability. Removing the effects of stratospheric ozone, ENSO and

volcanic eruptions has been shown to bring the records into much closer agreement

(Santer et al., 2001), as well as improve the model agreement with the observations

(Bengtsson et al., 1999). To date the effects of anthropogenic forcings have not been

rigorously assessed. Recent trends at the surface have tended to be dominated by

increasing minimum temperatures, and at night, particularly in mid to high latitude

wintertime, the lower troposphere tends to be more effectively de-coupled from the

surface (Hurrell et al., 2000). Finally, as stated previously, the opposite trend occurs

over the period 1958-78 with lower troposphere temperatures warming faster than

surface temperatures (Gaffen et al., 2000, Jones et al., 1997, Brown et al., 2000,

amongst others).

1.3 The Hadley Centre General Circulation Models

The second requirement for a successful detection and attribution study is a realistic

simulation both of the expected transient climate change to a number of candidate

forcings, and of natural climate variability. Unfortunately, we have not been studying

the atmosphere for long enough, nor in enough detail, to have an adequate realisation

of its natural variability characteristics on the decadal-to-centennial timescales which

are important in climate change detection and attribution studies. Even if they

existed, such observations would contain information pertaining to the effects of

changing external (natural and anthropogenic) forcings, although some of these

might be estimated and removed (Jones and Hegerl, 1998). However, following such

a methodology it would be difficult to attach rigorous confidence estimates on the

variability within any corrected series being due to natural internal variability alone.

Nor are we able to perform repeat experimentation under numerous forcings upon

the real world system. Therefore, we must rely upon numerical simulations of the

climate using GCM's (General Circulation Models). This thesis uses two versions of
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the Hadley Centre GCM: HadCM2 (Mitchell et al. 1995, Johns et al. 1997) and

HadCM3 (Pope et al., 2000, Gordon et al., 2000).

It is not the desired purpose of this thesis to go into extensive detail on the

development and physics of climate models. However, a certain amount of

information on models and their limitations is required to understand the implications

of their use in detection and attribution studies. GCMs aim to produce physically

based estimates of the effects of perturbations on the transient climate state (Johns et

al. 1997). Due to computational constraints, models are run in some form of coarse

resolution three-dimensional (latitude, longitude, height) grid co-ordinate system.

The primitive equations are solved on this grid co-ordinate system by numerical

finite difference approximations for both the oceanic and atmospheric components

and the models then forward-stepped in time. Models generally consider land

surface, hydrological and cryospheric processes in addition to atmospheric and

oceanic components in an attempt to yield an approximation to the real world. They

contain hugely simplified orography and land/sea data masks. Sub-gridbox scale

processes are parameterised within the models. To date, little attention has been

given to the sensitivity of models to uncertainty in these parameterisations. Given the

likely uncertainties inherent in using such a modelling approach, detection and

attribution studies effectively degenerate to being a model validation exercise where

the question is: �Is the model an adequate representation of the recently-observed

climate?�. It is likely that, at the grid-scale and time-step resolutions, variability will

be under-estimated as models are using finite linear approximations to predict an

infinite non-linear system (Allen and Tett, 1999). Stott and Tett (1998) have shown

how only at the largest scales is HadCM2 near-surface temperature variability

adequate, and this is likely to hold true for other models and variables, at least on

theoretical grounds.

The Hadley Centre models are global, fully coupled GCM's with both atmosphere

and ocean components having a resolution of 96 x 73 (3.75° x 2.5°) grid boxes in

HadCM2, but a much finer (1.25° x 1.25°) ocean component in HadCM3. This is

equivalent to a horizontal surface resolution of 3.75° longitude by 2.5° latitude in

both models� atmospheric components. They also each have a total of 19 layers in
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the atmosphere and 20 in the oceans. Seasonal flux corrections are applied at discrete

spatial points to compensate for model drift into an unrealistic climatology for

HadCM2, but no such corrections need to be applied to the HadCM3 model

(Mitchell et al. 1995, Pope et al., 2000). Although such 'flux' corrections are

undesirable they are felt to be preferable to model drift in HadCM2 (Johns et al.,

1997). A long control run of over 1000 years with no changes in external forcings

has been run for both models. Both these control integrations exhibit essentially no

long-term global mean trends in almost all diagnostics (Johns et al., 1997, Pope et al.,

2000, Gordon et al., 2000). However, there is a known cold bias in the troposphere

and warm bias in the stratosphere (Johns et al. 1997, Pope et al., 2000) for both

models. HadCM2 also has a winter warm bias in the troposphere north of 50°N

(Johns et al., 1997). This may be related to the recently observed positive Arctic

Oscillation (AO) phase (Thompson and Wallace, 2000) which is not captured in the

model (Gillett et al., 2000a) and is within the period of observations used in the

Johns et al. (1997) validation exercise.

Both HadCM2 and HadCM3 have been used to develop a baseline climatology

through the long control run segment; and to study the likely impacts of changing

external forcings, both natural and anthropogenic, over time. The evolution of any

single model run response to an external forcing will be a superposition of the true

signal response and 'noise' due to internal model climate variability. In an attempt to

better quantify the likely climatic response to any given forcing each model is run a

number of times to form an ensemble-mean response to each external forcing. Initial

conditions for each ensemble member are taken randomly from the model control

run, thus ensuring that the individual ensemble members are consistent with the

model. Resulting differences between ensemble members are then considered to be

due to internal climate variability alone. By averaging over a number of ensemble

members, the SNR is increased (see Allen and Tett, 1999). The resulting ensemble

mean provides a best guess of the likely climatic response to the forcing under

consideration. It is desirable for the ensemble population size to be large in order to

maximise the SNR. At the limit of an infinite ensemble population the pure model

forcing-response signal will be gained by this process. Unfortunately, the ensembles

used here are (generally) only four-member ensembles and therefore noise is likely
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to constitute a significant proportion of any ensemble average (Allen and Stott,

2001). More information on the ensembles described here can be found in Mitchell et

al. (1995), Mitchell and Johns (1997), Tett et al. (1999, 2001), and Stott et al. (2001).

The ensembles are also briefly summarised in Table 1.1.

Natural external forcings considered in both models are variations in solar output and

explosive volcanic activity. Solar radiation received at the top of the atmosphere has

varied both due to sunspot activity and longer-term variations over the observed solar

record. Two reconstructions of solar activity are used in HadCM2, those of Lean et

al. (1995) (LBB), and Hoyt and Schatten (1993) and Willson (1997) (SOL).

HadCM3 considers the forcing of Lean et al. (1995) in its ensemble labelled SOLAR.

Both models parameterise this forcing by changing the value of the solar constant in

the model (Tett et al., 2001). The major discrepancy between the two solar

reconstructions used in HadCM2 over the 20th Century is that the middle 20th

Century peak in activity, and thus forcing, is shifted by one solar sunspot cycle. In

HadCM2 both solar activity ensembles start at the end of the 19th Century and run up

until 1995. In addition each has a single ensemble member which extends further

back (to 1700 for SOL and 1799 for LBB), from which the other three ensemble

members are initiated in 1890 by perturbing the field with control data. Therefore, at

least in the late 19th Century, these ensemble members may not be completely

independent. HadCM3 SOLAR ensemble members start in the late 19th Century and

continue until 1999.

When explosive volcanic eruptions occur they inject volcanic aerosols into the

stratosphere, where they have a residence time typically of the order of a couple of

years. Volcanic aerosols absorb and scatter incoming solar radiation, reducing

radiation receipt at the surface, and thus leading to a net tropospheric cooling and

stratospheric warming. In the models this volcanic forcing is derived from the dust

veil index (Sato et al. 1993) and input, as zonal concentrations in four discrete bands,

in an attempt to replicate the observed zonal volcanic aerosol concentration

distribution, assuming a uniform mass mixing ratio above the model tropopause (Tett

et al., 2001). The zonal distribution is critically dependent upon the latitude at which

the eruption took place, with tropical eruptions having the greatest global coverage

effect. For both HadCM2 and HadCM3 the volcanic ensemble members (VOL and
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VOLCANIC respectively) are initialised in the late 19th Century and continue up until

1997 and 1999 respectively.

In addition to these individual natural external forcing ensembles, HadCM3 has an

ensemble of runs which incorporates both solar (Lean et al. 1995) and volcanic (Sato

et al. 1993) changes simultaneously. This ensemble is started in the late 19th Century

continuing up until 1999 and is given the label NATURAL.

Both solar and volcanic forcing histories are only really well observed and

constrained for the last 20 years. Prior to this they are based upon either evidence

from proxy sources or very sparse direct observations. Other solar and volcanic

forcing series estimates exist (Solanki and Fligge, 2000, Fligge and Solanki, 2000,

Bard et al., 2000, Stothers, 1996 for example). However, each model ensemble takes

up a large amount of computational time and therefore only a very few natural

forcings ensembles can realistically be considered. Considering a number of different

forcing history ensembles would help reduce uncertainties to the climatic response

inherent in the natural forcing histories prior to the latest 20 years.

Anthropogenic forcings considered in increasing order of complexity are well-mixed

anthropogenic greenhouse-gases (labelled as G for HadCM2 and GHG in HadCM3),

well-mixed anthropogenic greenhouse gases and sulphate aerosols (GS in HadCM2,

TROP-ANTHRO in HadCM3), and well-mixed anthropogenic greenhouse-gases,

sulphate aerosols and stratospheric ozone (GSO in HadCM2, ANTHRO in HadCM3).

For HadCM2 the G forcing uses reconstructed emissions of all greenhouse gases

(represented as CO2 equivalent concentration) from 1860 until 1990. Forcing is then

projected up until 2100 based upon a projection of compound 1% year-on-year

increases (Mitchell et al., 1995, Mitchell and Johns, 1997). Mitchell and Johns

(1997) note how this is a greater increase than that given under IPCC emissions

scenario IS92A � Business As Usual (BAU). They estimate that by 2100 the forcing

is over-estimated by 12% compared to this scenario. Individual ensemble members

extend from 1860 until 2100 (Johns et al., 1997). In HadCM3 greenhouse gases are

treated separately (rather than as a CO2 equivalent concentration) and there are

coupled chemical models which simulate the overall changes in individual
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greenhouse gas concentrations (Tett et al., 2001). The gases considered are: CO2,

CH4, N2O, and six (H-)CFCs and are assumed to have globally uniform mass mixing

ratios. Again, members extend from 1860 to 1990 based upon observational

estimates. Subsequently, the concentrations are calculated based upon emissions

scenario B2 of the IPCC SRES report (Nakicenovic et al., 2000).

In HadCM2 the GS run series has the same greenhouse gas forcing but also

incorporates the direct effect of sulphate aerosols, which scatter incoming solar

radiation, parameterised by an increase in the clear-sky albedo (Johns et al., 1997).

Therefore if the model grid-box is covered in cloud this forcing has no effect upon

the model calculated values (Mitchell and Johns, 1997). The forcing applied is

seasonally and geographically invariant, being a scaled version of current emissions

patterns back in time from 1860-1990 (Mitchell and Johns, 1997). Future emissions

were estimated for 2050 under the BAU scenario and sulphate loading values

linearly interpolated between 1990 and 2050 to yield a forcing estimate (Mitchell and

Johns, 1997). After 2050, values are just a scaled version of the 2050 pattern to agree

with the BAU scenario. In HadCM3 TROP-ANTHRO runs include a more realistic

pattern of forcings based upon an interactive sulphur cycle scheme to yield the

distribution of sulphate aerosols at each timestep which is then passed to the model

radiative scheme (Tett et al., 2001). The patterns of emissions scenarios are also

based upon more realistic estimates of past and future emissions than was the case

for HadCM2. The first order indirect effect of sulphate aerosols, due to changes

caused in cloud droplet characteristics, is included in a rather crude manner (Tett et

al., 2001 give details), although not any second order indirect effects on cloud

lifetime. The TROP-ANTHRO ensemble also incorporates modelled changes in

tropospheric ozone concentrations calculated in an off-line chemistry model and

interpolated between the calculated periods (Tett et al., 2001). Both the evolving

pattern and magnitude of the direct and indirect sulphate aerosol effects are less

certain than those of well-mixed greenhouse-gases (Tett et al., 2001, Stott et al., 2001

amongst others).

For HadCM2 GSO is identical to the GS series except that post 1974 the effects of

stratospheric ozone depletion due, at least primarily, to anthropogenic CFC and H-

CFC emissions are taken into account (Tett et al., 1996). In HadCM3 the ANTHRO
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series is similarly identical to the TROP-ANTHRO series except post 1974 when,

again, changes in stratospheric ozone concentrations are included (Tett et al., 2001).

1.4 Previous detection studies

The importance of detection and attribution studies has been recognised since the

potential for a distinct large-scale anthropogenic effect on climate was first seriously

considered in the 1970�s. With increasing model resolution, realism, and power,

more and more independent modelling efforts (albeit based on the same underlying

modelling premise) over the past decade, and advances in observational datasets,

detection and attribution approaches have also advanced and diversified. In chapter 4

the evolution and statistical methodology of some, but by no means all, of these

approaches are outlined. Here, major results of quantitative detection and attribution

studies to date are summarised showing the breadth of independent approaches and

modelled and observed datasets which have consistently demonstrated

anthropogenic influences in the recent climate records of a number of variables

(principally near-surface and zonally-averaged temperatures). There also exist

numerous examples of qualitative studies identifying both consistencies and

inconsistencies between observations and simulations of climate change for a diverse

range of indicators. Effectively, such studies degenerate into a model validation

exercise and so yield little, if any, extra useful information in terms of either

detection or attribution. These are summarised in the IPCC SAR (Santer et al., 1996)

and TAR (Mitchell and Karoly et al., 2001).

The simplest quantitative detection studies are two dimensional in nature, using

global mean trends in atmospheric variables. These are termed Stage I detection

studies, and as discussed previously could easily yield ambiguous results (see 1.2.3).

Most studies of this type have used global mean near-surface temperatures, either

from instrumental records or paleo-reconstructions, or both. Section 8.4.1 of the

IPCC SAR (Santer et al., 1996) provides a good review of these Stage I studies and

their limitations. Levitus et al. (2001) have recently used observed changes in global

mean ocean heat content to attribute observed changes to a combination of

anthropogenic and volcanic influences. Tol and De Vos (1998) have employed a
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Bayesian approach to show a significant relationship with atmospheric CO2 and

indicate that natural variability is unlikely to explain the large-scale observed surface

temperature trend. The Bayesian approach is potentially very powerful (Hasselmann,

1998, Berliner et al., 2000), removing at least some of the uncertainties and caveats

attached to conventional studies. However, to date the full potential of the Bayesian

approach has not been employed within the sphere of climate change detection and

attribution, in anything but an idealised setting.

Stage II detection exercises (Santer et al., 1996) involve looking for a signal in three

dimensions (either on a surface (longitude, latitude, time) or zonally averaged

(latitude, height, time)). Stage III detection studies similarly search for a signal in

this space, but they optimise the searched-for signal in some respect before carrying

out detection. These two distinct approaches have been employed to elicit the most

recent detection and attribution results, and hence they are concentrated upon in this

section. The methodologies are summarised in chapter 4. To date only one Bayesian

type study has been applied to either Stage II or III detection exercises in an idealised

setting (Berliner et al., 2000), hence the studies summarised here result from the

more classical frequentist statistical approaches. A further advanced stage was

conceived in the IPCC SAR (Santer et al., 1996) labelled Stage IV whereby a

number of climate variables are considered simultaneously in a detection exercise.

This approach has yet to be implemented in any study.

The earliest studies (Stage II) used pattern correlations and are the main component

of the detection chapter in the IPCC SAR (Santer et al., 1996). These studies have

employed both centred correlation statistics (R(t)) which remove the global mean

change and uncentred correlation statistics (C(t)). In both cases the signal is a fixed

model derived signal, and only a single forcing scenario (or linear combination of

signals) can be considered at any time. Uncentred (C(t)) statistics tend to be

dominated by the global mean change and therefore are of limited use in

discriminating between competing forcings, not really being any advance on Type I

studies. Long term trends in the statistics (trends in the statistics when the fixed

signal is correlated against the smoothed observational series) are used and compared

to those from models run in control mode to assess trend significance. Using centred

statistics and a single model, Santer et al. (1995) find a significant correlation for 50-
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year near-surface temperature trends in JJA and SON if anthropogenic greenhouse

gases and sulphate aerosol forcings are considered.

Several studies have considered zonally-averaged (latitude, height, time) temperature

trends using a pattern correlation approach (Santer et al., 1996a, Karoly et al., 1994,

Tett et al., 1996, Folland et al., 1998). Santer et al. (1996a) show that the

observations are best explained by a linear combination of greenhouse gases,

sulphate aerosols and ozone changes. Tett et al. (1996) augment this study by

considering a more realistic sulphate forcing scenario. They find that when

stratospheric ozone changes are taken into account the upper atmosphere temperature

record is better captured but the lower atmosphere is too cool when compared to the

observations. As a sensitivity study the stratospheric ozone depletion forcing is

halved, this scenario provides the best results and removes some of the discrepancy

in the lower atmosphere. Allen and Tett (1999) reassess the results of Tett et al.

(1996) in the light of a masking deficiency in the model data whereby all data had

been included rather than sub-sampling to the available observational field, and find

that this does not significantly affect previous conclusions. Karoly et al (1994) also

find a significant anthropogenic signal, although changes in stratospheric ozone and

tropospheric sulphate aerosol concentrations are not considered in their study. Using

an atmosphere-only model forced with observed SSTs, and a radiosonde field

reconstructed from its leading eigenvectors (EOFs), Folland et al. (1998) find that

observed trends cannot be explained by changing SSTs alone, and that anthropogenic

forcings must be considered. Even though SSTs have increased, this in itself is not

sufficient to explain the observed changes in atmospheric temperature structure.

Various criticisms have been made of pattern correlation approaches to detection and

attribution, primarily by Legates and Davies (1997). Many of the criticisms have

been shown by Wigley et al. (2000) to be either implicitly taken into account by the

pattern correlation approach, or pertaining to technical details of the unrealistic

hypothetical simple example presented by Legates and Davies (1997) and their

treatment of it. Critically, Wigley et al. (1998) show that the trends found in Santer et

al. (1995) for the surface temperature are comparable to those which would be found

if the signal response were perfectly known for an emerging signal given the

attendant noise due to internal variability (estimated from a GCM).
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Optimal detection techniques (Stage III studies), which are heavily referenced within

the IPCC TAR (Mitchell and Karoly et al., 2001), consider the signals and

observations in some form of truncated phase space, and rotate the statistic such that

it searches for each signal in a direction which maximises the SNR. The phase space

in which the detection is performed is truncated as sufficient independent noise

realisations do not exist for optimisation in the full field space (this would require a

GCM control run of order a million years). A useful by-product of such approaches

is that it has been shown that only the largest spatial scales are considered, and

furthermore that models only adequately capture the variability at such large scales

(Barnett et al., 2000, Stott and Tett, 1998). This is expected when models attempt to

realise an infinite non-linear system by linear finite numerical approximations (Allen

and Tett, 1999).

Numerous approaches have been taken to the optimisation and subsequent detection

algorithms, all of which can be shown to be broadly equivalent (Hegerl and North,

1997) and can be couched in terms of linear regression (Allen and Tett, 1999, Levine

and Berliner, 1999). A regression approach has advantages in terms of being able to

estimate signal strengths directly and consider a number of signals simultaneously.

The optimal regression methodology of Allen and Tett (1999) and Allen and Stott

(2001) is discussed in detail in chapter 4. Three distinct approaches to the signal

derivation have arisen: space-time, (Allen et al., 2000, 2001, Tett et al., 1999, 2001,

Stott et al., 2001, 2001a, G.S.Jones et al., 2001); fixed signal (Hegerl et al., 1996,

1997, 2000, Barnett et al., 1999, 2000, Allen and Tett, 1999, Tett et al., 2001); and

frequency-space (North and Stevens, 1998). This section concentrates on the first

two of these approaches. Space-time approaches consider the transient nature of the

signal, whereas a fixed signal approach assumes that the signal is of fixed pattern and

it is solely the signal amplitude that varies. If the model correctly predicts any

transient changes in the climate response, i.e. if they exist, then the former approach

will be more powerful than the latter. However, an emerging signal will tend to be

highly contaminated by noise and therefore a large ensemble must be used in any

space-time approach to ensure against sub-optimal results, especially if noise in the

signals is not implicitly factored into the analysis (Allen and Stott, 2001, Stott et al.,

2001a).
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A number of optimal detection studies have considered changes in near-surface

temperatures using different models and accounting for various sources of potential

error. Results for space-time signals have been found, for the detection of a well-

mixed greenhouse-gases signal, to be generally insensitive to signal processing

procedures, scales considered, and estimates of natural variability (Tett et al.,

1999,2001 Stott et al., 2001). For HadCM2, results are also insensitive to whether

noise in the signals is implicitly taken into account in the detection algorithm,

although the range of uncertainty in signal strength is generally increased, especially

in the upper-estimates (Stott et al., 2001a). Results have also been shown to be

generally consistent between models forced with anthropogenic forcing histories for

both fixed and space-time signals, as well as robust to various methodological

differences (Allen et al., 2000, 2001, Barnett et al., 1999, 2000, Hegerl et al., 1996,

1997, 2000, Gillett et al., 2001). All these studies generally detect a distinct

greenhouse gas influence with a more uncertain sulphate forcing influence.

Near-surface temperature optimal detection studies that consider natural forcings in

some cases also yield a significant solar signal and, depending upon the time period

under consideration, a volcanic signal. This is particularly the case in the early 20th

Century climate (Tett et al., 1999, 2001, Stott et al., 2001, 2001a, Allen et al., 2001,

Hegerl et al., 1997, 2000, Barnett et al., 1999). These results are less robust to

changes in parameterisations than is the detection of anthropogenic influences. The

use of decadal chunks of annually averaged temperatures in the space-time studies

may be sub-optimal for detecting natural forcings; volcanic signals are short-lived (of

the order of years) and the solar forcing cycle probably has a frequency peak at

approximately 11 years (the sunspot cycle). Stott et al. (2001) show how, by

reducing the temporal resolution in a space-time approach from decadal to annual, a

clear volcanic signal from Pinatubo can be detected during the 1990s. Importantly,

numerous studies have shown that natural forcings on their own are an inadequate

representation of late 20th Century climate and that an anthropogenic influence is

required (Hegerl et al., 1997, 2000, Tett et al., 1999, 2001, Stott et al., 2001, 2001a,

Barnett et al., 1999).
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Incorporating seasonal information into the searched for signal reduces signal

degeneracy (when a signal or combination of signals is similar to another signal) and

increases the power of the regression algorithm to distinguish between forcings (Stott

et al., 2001). The summer and autumn seasons exhibit highest SNRs (Stott et al.,

2001). Barnett et al. (1999) and Hegerl et al. (1997,2000) consider solely summer

season temperatures for this reason.

Changes in zonal mean temperatures have been considered by Allen and Tett (1999)

and Tett et al. (2001) using a fixed signal optimal detection methodology. Allen and

Tett (1999) detect a combined signal of greenhouse gases, sulphate aerosols, and

ozone, using HadCM2 fields, consistent with the pattern correlation study of Tett et

al. (1996). Tett et al. (2001) using the same input fields for HadCM3 data find that

they can detect both anthropogenic and natural external forcing influences on the

zonal mean temperature field. Both studies do not undertake any sensitivity studies;

confidence in the result would be increased if they were found to be robust to

uncertainties. In chapter 5 such an analysis is undertaken with a modified version of

the observed upper air temperature dataset used in these studies. Hill et al. (2001),

using a space-time approach, detect a solar signal as well as anthropogenic influences

in HadCM2. G. S. Jones et al. (2001) augment these studies by undertaking a space-

time study considering near-surface and zonally averaged upper air temperatures to

yield what is effectively a crude 4-dimensional input pattern of late 20th Century

temperature change. This study gives detectable anthropogenic and volcanic

influences on the climate of the last 40 years, although not solar influences.

Barnett et al. (2001) have undertaken a study, using a single model, considering

changes in oceanic heat content in a number of ocean basins. Regardless of whether

optimisation is applied, an anthropogenic signal is detected and found to be

consistent with the observations. However, natural external forcings are not

considered and therefore rigorous attribution of the observed changes to an

anthropogenic cause is not possible. The control run of the model used in the study is

also relatively short and may exhibit drifts, although Barnett et al. (2001) state that

sensitivity studies indicate that this should not be a first order effect. Further work

considering more models and incorporating the effects of natural external forcings is

required to confirm the principal findings of this study.
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Optimal space-time studies have also been used in an attempt to attribute recent

changes in observed near-surface temperatures to given causes. Using HadCM2

(Stott et al., 2001, Tett et al., 1999) and HadCM3 (Tett et al. 2001) late 20th Century

near-surface temperature changes have been attributed to anthropogenic influences,

although considering the whole 20th Century solar influences are also detected. Over

the entire 20th Century the net change in solar forcing used in these studies has been

almost zero. This raises an important point: a signal need not be important in

explaining recent climate change, even if it is detected, since detection is solely a

statistical parameter. The solar forcing on the timescales of a few decades under

consideration here is essentially cyclical around a stationary mean and therefore

yields little long-term near-surface temperature trend on multi-decadal timescales

(relative to the short-term fluctuations). Allen et al. (2001) extend these studies by

explicitly considering noise in the signals due to finite ensemble effects, and using a

larger population of models, only some of which have ensembles based upon natural

external forcings.  Their study consistently yields an anthropogenic influence in the

latter 20th Century, with a less certain solar and volcanic component. Hegerl et al.

(1997, 2000) using a fixed signal approach, also tentatively attribute recently

observed climate changes to anthropogenic and natural forcings.

Extending consideration beyond a simple yes-no detection exercise, Allen et al.

(2000, 2001) illustrate how optimal detection studies which use a regression

algorithm can be employed to consider certain aspects of the climate system. As an

example, they attempt to constrain uncertainty in future predictions of global mean

near-surface temperature by various models, by ascertaining the range of plausible

signal strengths in the available observations and scaling future model predictions by

this range. The argument is that this will hold under a transient forcing. It is believed

to be unlikely that it would continue to hold after stabilisation of greenhouse gas

levels in the atmosphere (Myles Allen, personal communication, 2000). Of course,

changes in global mean temperature, whilst being a large component of the climate

variance, is not very useful from impacts, adaptation, and mitigation perspectives,

but the power exists within the algorithm to extend it to consider other variables

which may have greater applicability.
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Both the pattern and optimal studies summarised above have numerous caveats

applied to them. Some of these have been addressed; others are more general in

nature. All detection studies rely critically upon realistic estimates of natural

variability, derived either from model runs with no external forcing, or from

observations to claim significance. For this purpose the observations are potentially

polluted by signals from natural external sources as well as anthropogenic influences,

and although these can be estimated and removed (Jones and Hegerl, 1998), the

result is model dependent, and residual errors may remain. There is also a risk of

introducing a common factor effect in using such filtered observations (Santer et al.,

1993), especially if optimisation is being carried out, whereby the fields are made to

become artificially similar and will yield ambiguous results. Equally, model

estimates of internal variability may be compromised by their inability to accurately

represent some major modes of atmospheric variability (El Niño Southern

Oscillation (ENSO), Quasi-Biennial Oscillation (QBO), North Atlantic Oscillation

(NAO)/Arctic Oscillation (AO), stratosphere-troposphere interactions, amongst

others), as well as oceanic variability on longer time scales. Gillett et al. (2000a)

have shown that the detection of an anthropogenic signal in the near-surface

temperature record for the latter 20th Century is insensitive to whether the recent

positive trend and variability in the AO (Thompson and Wallace, 2000) is correctly

simulated in HadCM2.

Some studies have tested the sensitivity to estimates of natural variability by inflating

the model-derived variance (Tett et al., 1999, 2001 for example). Such an approach

implicitly assumes that the pattern of natural variability is correctly estimated and

only the amplitude is wrong; an assumption that almost certainly is not strictly true,

especially in the limit of a finite control run (Allen and Tett, 1999). Errors in the

estimate of natural variability are most important in optimal studies. The internal

variability is employed in the optimisation procedure and therefore the optimal

statistic will only consider areas of phase space sampled in the control. If the control

underestimates a mode of variability then it will focus the optimised statistic on this

region in the reduced phase space, reducing the chances of a successful detection

exercise. Noise in the observations is considered highly unlikely to mimic the

complex spatio-temporal fingerprints used in optimal studies and therefore the

chances of yielding a false positive result are remote for this source of error. Equally,
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if the model control overestimates the natural variability in a given mode then the

signal will be damped in this mode. Therefore an optimal approach can only ever

yield a conservative result, being critically dependent upon an adequate model

estimate of natural internal variability. Further, there is residual uncertainty in the

observational fields. It is likely that all observed fields maintain at least some biases

and random errors (Barnett et al., 1999). The question remains as to whether a signal

can be detected if residual uncertainties remain both in the observations and in the

model derived estimates of variability. In both cases errors can only lead to

conservative conclusions whereby detection is rejected, unless the observational

error has a similar pattern to an incorrect model signal, which is highly unlikely.

Hegerl et al. (2001) take into account the potential effects of observational errors and

show that, even making the most pessimistic assumptions, such errors will not yield a

first order effect upon results of fixed signal detection studies.

A consistency test has been proposed for the optimal regression approach by Allen

and Tett (1999), whereby the residuals of the regression are compared to an

independent realisation of the natural internal variability (generally, an independent

section of control) in an f-test. If the residuals are found to be inconsistent with the

independent noise realisation then the result is rejected as a plausible explanation of

the observed climate change. The test is relatively weak, as it does not consider the

shape of the residuals but only their amplitude.

Detection studies also assume that the model-derived signals are accurate

representations of an evolving climate under the forcing in question. Both the

correlation and optimal approaches assume that the pattern is correct but the

amplitude not necessarily so, although correlation and some optimal approaches

cannot effectively differentiate between pattern and amplitude effects. Numerous

optimal approaches have considered different model signals and concluded that the

results, at least for near-surface temperatures, are generally independent of the model

used to derive the signal at the large scales considered (Hegerl et al., 2000, Barnett et

al., 1999, 2000 Allen et al., 2001). These studies tend to yield a significant detection

of anthropogenic influences in late 20th Century surface temperatures, although

perhaps significantly, the exact details differ depending upon the pre-processing

applied. Gillett et al. (2001) illustrate how differences in the signals detected by
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Hegerl et al. (2000) (fixed signal, summer only), and Allen et al. (2001) (time-space

signal, annual), for the same models and forcings can primarily be explained by

differences in signal pre-processing algorithms, rather than any fundamental

differences between the different optimal detection approaches employed. Further,

the result of Gillett et al. (2001) suggests that there may not be a one size fits all

"optimal" technique that is indeed optimal for all possible applications. Finally, a

number of studies recognising the potential problems of using a single realisation of

an emerging signal have taken to using ensemble realisations to better constrain the

results (Stott et al., 2001, 2001a, Tett et al., 1999, 2001, Allen et al., 2000, 2001).

This is consistent with an explicit recommendation of Barnett et al. (2000) who

found that single member ensembles could yield highly erroneous results.

Residual uncertainties remain regarding the prescribed forcings the models are run

with (Barnett et al., 1998, Stott et al., 2001). This is especially the case for natural

forcings, which previous to about 20 years ago are based on best available proxy

measures or sparse observations. Tett et al., (1999) and Stott et al., (2001) attempt to

quantify the uncertainty in solar forcing history by considering signals based upon

two solar reconstructions which had their mid-20th Century radiation peak separated

by a complete solar cycle (Lean et al., 1995, Hoyt and Schatten., 1993). They find

that detection, at least in the HadCM2 model, is potentially dependent upon the

ensemble realisation, and therefore accurate forcing histories are essential to

constrain uncertainties. However, these are likely to be difficult to obtain through

proxy indicators.

Our confidence in the results of current detection studies will be increased if an

anthropogenic signal can be detected in a broader range of both climate parameters

and GCM's, considering a range of detection methodologies and numerous potential

sources of uncertainty. Confidence would also be increased in model realism if the

results of these detection studies were found to be, at least potentially, internally

consistent for any given model(s).
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1.5 Conclusions

In this chapter previous work in the sphere of climate change detection and

attribution has been summarised to enable the remainder of this thesis to be placed in

context. Detection and attribution were formally defined before advancing to

consider the components necessary for a successful detection and attribution study.

Particular focus was placed on the observed near-surface (HadCRUTv, Jones et al.,

2001) and upper air (HadRT, Parker et al., 1997) globally gridded datasets employed

in this thesis. The two versions of the Hadley Centre GCM considered were also

briefly summarised. Subsequently, consideration was given to previously published

detection results. Although there exists a range of results, these studies consistently

suggest a demonstrable anthropogenic influence and, where considered, more

tentative evidence for natural external influences, upon 20th Century climate. This

result is seen to be at least to first order independent of both dataset and

methodological considerations, although the range of both is limited. Previous

detection studies have considered solely near-surface temperatures, ocean heat

content, or zonally averaged upper air temperatures. In the remainder of this thesis it

is aimed to ameliorate this situation by advancing to consider the full-field upper air

temperature record in a rigorous manner.
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Table summarising the modelled forcing histories for HadCM2 and HadCM3.

Forcing HadCM2 ensembles HadCM3 ensembles

Well-mixed greenhouse

gases

G

1860-2100

(Considered as CO2

equivalent)

GHG

1860-2100

(Individual constituent

gases considered)

Greenhouse gases plus

anthropogenic sulphate

aerosols

GS

1860-2100

(Direct effect of sulphate

aerosols only)

TROP-ANTHRO

1860-2100

(includes tropospheric

ozone changes)

Greenhouse Gases plus

Anthropogenic sulphate

aerosols plus changes in

Stratospheric Ozone

GSO

1860-1995

ANTHRO

1860-2100

Solar SOL, LBB

1890-1995, 1890-1996

(First members start in

1700 and 1799)

SOLAR

1860-1999

Volcanic VOL

1890-1997

VOLCANIC

1860-1999

All natural NATURAL

1860-1999

Table 1.1 Summary of HadCM2 and HadCM3 ensembles giving the acronyms and

the run dates. A detailed description is given in Section 1.3 and Stott et al., 2001

(HadCM2) and Tett et al., 2001 (HadCM3).
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Figure 1.1 Global and Hemispheric mean temperatures from the Jones et al. (2001)

dataset. Reproduced from http://www.cru.uea.ac.uk/cru/data/temperature/
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