
256

7. A framework for quantitatively advancing detection studies to

begin to rigorously consider the internal consistency of state-of-

the-art climate models

�Stage 4 studies differ from the earlier categories in their use of a number of climate

variables simultaneously. Thus the searched-for anthropogenic signal in a Stage 4

investigation might consist of patterns of change in surface air temperature,

precipitable water, diurnal temperature range, etc. Each variable would be defined

in at least two (and possibly three or four) dimensions. The individual components of

this multi-variable �fingerprint� might be decided upon by preliminary analysis of

the signal-to-noise properties of a wide range of climate variables in model data. At

Stage 4, �successful detection� would mean that the multi-variate, space-time

varying climate-change signal from a model experiment forced with transient

increases in anthropogenic emissions was in good accord with available

observations�

Santer et al., 1996, IPCC Second Assessment Report (SAR)

In the IPCC SAR, the most advanced detection study conceived of was a Stage 4

study. Implementation of such a study has not been achieved to date, primarily due to

the lack of a range of suitably constrained observational datasets of sufficient length.

The availability of both HadCRUTv (Jones et al., 2001) near-surface, and HadRT

(Parker et al., 1997) upper air temperature records, for the common period of 1958 to

date, means that such studies should now be possible considering tropospheric

temperatures. In chapter 6, a number of tropospheric temperature variables based

upon these data were considered independently in detection studies under a common

OLS detection framework (AT99) for HadCM2 and HadCM3, and the results were

then qualitatively intercompared. This, it could be (liberally) argued, was a first

attempt at a Stage 4 study. It would be highly desirable, however, to elicit a more

formal, quantitative measure as to whether the climate models being considered are

demonstrably adequate explanations of recent climate change.
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The definition of Stage 4 studies provided in the SAR is at best ambiguous. There are

two obvious routes that could be pursued to gain a quantitative detection statistic.

Firstly, a single application of any detection algorithm could be undertaken with all

the input fields combined together, yielding a single result. Alternatively, an

application of the same detection algorithm could be applied to each field, and the

results compared in a quantitative manner to determine whether the model is, at least

in some limited sense, a consistent explanation of recently observed climate changes.

Undertaking an approach whereby the atmospheric variables being considered are

combined to yield a single input field to any detection algorithm has some

immediately obvious limitations. The most immediate problem when considering

optimal detection techniques is that combining the fields will yield a larger input to

the detection algorithm. This makes it much harder to accurately estimate the

covariance matrix (due to natural internal climate variability), upon which the

optimisation is based. Hence such an approach could lead to both poorly constrained,

and highly biased, estimators under optimal approaches to detection and attribution

such as those employed in this thesis (AT99, AS01). This is especially pertinent

given the relatively short model control runs currently available to estimate the

covariance matrix for both optimisation and hypothesis testing purposes.

Furthermore, although it is a potentially powerful statistical approach, as more

variables are added it would become increasingly difficult to find out where the

information yielding the result effectively arises from within such a (relatively)

complicated input field. This would mean the loss of potentially useful information

as to whether, and if so where or in what variables, the model is overestimating /

underestimating or otherwise grossly mis-representing the atmospheric variability

and / or signal response. Taking such an argument to its logical conclusion, the

presence of a single variable that a model grossly fails to predict in any meaningful

manner may present a null detection result when all other variables are, at least in a

statistical sense, in agreement. This is, of course, an important result as the model is

an inadequate explanation of all the variables being considered, being only as good

as its worst variable. However, it is also an inadequate explanation of only a single

variable amongst the many being considered, and expectations must be that any

model will not be adequate in all regards, as it is solely a numerical approximation to

the true climate system. Furthermore, the lack of information on what in the model is
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effectively causing such a null result means that the modelling community cannot

easily address it.

Given such obvious potential problems in the combined input approach, a conceptual

framework is proposed and justified here, to apply the alternative approach of inter-

comparing the results of the detection algorithm when it is applied to each variable in

turn. A method is outlined, using the optimal regression approach of AT99 to yield a

number of PDFs as to where the true solution lies in signal phase space. These

individual estimates could subsequently be employed to yield a quantitative

assessment as to whether the results are internally consistent, and if they are then

what the true solution is most likely to be. Section 7.1 briefly recaps the OLS

regression technique of AT99. In section 7.2, conditions are relaxed from a perfect

world situation towards the real world, to identify those factors which are likely to be

important in any consideration of model internal consistency. Finally, section 7.3

proposes a methodological approach to moving forwards to gain the desired

quantitative measures of model adequacy. Development and application of the

precise methodology are left for future work by others.

7.1 The OLS regression algorithm revisited

Here, an application of the OLS optimal regression detection methodology of AT99

is proposed based upon the ability of the regression algorithm to explicitly calculate

the Probability Density Function (PDF) of the β field, the range of plausible

amplitudes of individual input model signals in the observations. Only the OLS

approach is considered in this chapter, as it has the advantage of always yielding

normally distributed solutions, although there is no likely fundamental reason why

TLS regression results (AS01) could not also be used.

The basic premise of the OLS regression approach is that the observations can be

expressed as a linear combination of physically plausible forcing responses, and an

additional noise term due to natural internal variability. Optimisation of both the

signals, and the observations, is undertaken with respect to an estimate of the

covariance due to natural internal climate variability, to yield the best linear unbiased
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estimator of the model signal amplitudes in the observations. The covariance is

unknown and must be estimated from a segment of model control. There will be

uncertainty in the signal amplitude estimators, which can be considered as a cloud of

plausible solution values. To avoid bias in the estimated covariance (uncertainty) of

the signal amplitude estimators, the calculation of the solution PDFs is carried out

with respect to a covariance estimate based upon an independent section of control.

The output will be approximately F-distributed in the signal phase space in the limit

of a finite model control run. Isopleths of a PDF can be produced by specifying

critical values for the F-distribution, and evaluating the loci of values that they

satisfy. A consistency test is undertaken upon the residuals, to ensure that they are

similar to an independent section of control. A complete derivation of the OLS

solution is given in sub-section 4.2.1.

7.2 Relaxing the conditions from an ideal situation to the real

          world situation

In this section, a highly simplified climate system is considered. This system consists

of just six tropospheric variables. It also responds to only two time-varying external

forcings. In the real world, the climate system both contains a much larger variable

set, and responds to a much larger number of external forcings.

In an ideal world scenario, climate scientists would have at their disposal a perfect

model, which had been run for both an infinitely long control run and an infinite

number of ensemble members for each forcing (each started under an independent

set of initial conditions from the control). These ensembles would perfectly capture

the transient response to the changing forcings, to yield a pure realisation of the

signal response. There would also exist an infinite set of observations that perfectly

captured the true spatio-temporal history of each and every atmospheric variable over

a continuum of real worlds. In such a situation, detection and attribution would not

be required, but if any form of detection statistic were implemented then the final

result would intuitively consist of a number of points which exactly overlaid yielding

the true amplitude of the model signal responses in the observations, βtrue. In the

simple example used here, for the OLS approach, results would yield six values at
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the point (1,1), as the model is perfect (Figure 7.1a). There would be no uncertainty

in the estimates, as only this single point could ever be satisfied by every one of the

infinite number of possible solutions.

Relaxing the requirements slightly, it is highly unreasonable to assume a continuum

of real worlds that can be observed. One is, therefore, limited to a single realisation

of the observations. Each of the realisations of the observations (for each of the six

variables) is assumed to consist of a linear combination of the true climate system

response, and an additive noise term due to internal climate variability. Uncertainty

has been introduced into the detection algorithm and, therefore, the result will now

be dependent upon the noise present in the observations. It is likely, on physical

grounds, that the noise term will be correlated, but not identically, between the six

observed variables, at least for tropospheric variables as the troposphere is well

mixed. The presence of noise in the observations will affect the calculated OLS

estimators ,~,~
21 ββ � 6

~β , of the true solution βtrue (which is assumed to be the same

for all six). Each variable will yield a χ2 distributed (infinite control run leads to the

F-distribution collapsing to a χ2 distribution) PDF estimate as to the value βtrue.

Solution PDFs will be different shapes, depending upon the true covariance of the

atmospheric variables being considered in the bivariate signal phase space, which is

highly unlikely to be identical for different variables. Therefore, although the noise

in each realisation of the observations includes a common component, this change is

likely to project differently onto the bivariate signal phase space, leading to a

separation of the solutions. The additional uncorrelated noise component in the six

sets of observations will tend to move the individual estimators ,~,~
21 ββ � 6

~β , of βtrue

further apart. Intuitively, all six PDFs would be expected to contain the point (1,1) at

the 90% confidence interval (Figure 7.1b).

Given current computing capabilities, even if a perfect model did exist, then it would

only be able to be run for a definite finite length of control, and a small population of

members for each ensemble response. This adds uncertainty to the solution in two

ways. Firstly, the control sections used for the optimisation and hypothesis testing

will be finite. The PDF distribution therefore becomes F rather than χ2 distributed.

An assumption is made in AT99 that the uncertainty arises solely in the magnitude
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and not the shape of the principal modes of variability through sub-sampling of an

infinite control. This is unlikely to be strictly true, but provides a good first order

approximation, and is seen not to significantly affect detection results (Tett et al.,

1999). Secondly, there will be uncertainty in the model-derived signal response

estimates. This will affect the estimators ,~,~
21 ββ � 6

~β .  AT99 note how this tends to

bias the estimators towards zero, especially for weak or poorly constrained signals

(see AS01 for an explanation), and increase the true variance in the estimator by a

factor of approximately 1+1/M, where M is the number of ensemble members used

in the derivation of each signal. The effects of using a finite perfect model should,

therefore, be primarily to increase the uncertainty in the solution PDFs, at least in the

presence of strong signals. This will systematically reduce the signal detectability

(whether the amplitude of a signal in the observations is positive definite at a given

confidence interval), but will increase the chances of the estimates being consistent

with both the observations (1,1), and each other, at any given confidence interval

(Figure 7.1c).

The chances of any current model (or any future model) being a perfect model are

vanishingly small. A model is, as the name suggests, only an approximation to the

real world, it does not (and cannot) purport to be a true representation of the

observed system in every minute detail. Therefore, the problem being considered

here degenerates to one of the form: "is the model an adequate representation of the

observations?". If it is adequate, then it should be impossible to prove that it is

inadequate. Some form of test aimed at disproving model inadequacy is the only test

that can realistically be applied. Any test must, therefore, determine whether, for the

model being considered, there plausibly exists an estimator trueβ~  of the true signal

amplitudes.

There are additional uncertainties within the system being considered in the real

world. The forcing histories used to derive the model forcing response patterns are

increasingly poorly constrained back in time, such that there may be non-negligible

errors in the signals being considered, which are not directly related to the model

itself. It would also be naïve to assume that the observations are entirely free of

residual sampling errors (chapter 2). These uncertainties will likely affect the
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estimators ,~,~
21 ββ � 6

~β in the simple example discussed here by adding further

random and systematic errors to the estimators (Figure 7.1d). It is difficult to

conceive how these errors can be parameterised without access to an order of

magnitude more models and observational dataset realisations than are currently

available. However, any test for model adequacy should be able to identify cases

when these sources of error are causing gross errors in the individual

estimators ,~,~
21 ββ � 6

~β .

Finally, Figure 7.1e gives actual results for the HadCM2 G+S signal combination for

the six tropospheric temperature variables considered in Chapter 6. Purely

qualitatively, this is indistinguishable from Figure 7.1d, the hypothetical situation.

This does not imply that HadCM2 is demonstrably adequate. The hypothetical

solution has been constructed by placing subjective noise estimates into the system,

and making assumptions about the nature of this noise, which may or may not be

correct. The Figure is solely used here for illustrative purposes, to enable an

understanding of the likely nature of a consistent result.

7.3 Checking for model consistency: A conceptual framework

A test for internal model consistency must effectively be a test for whether there

plausibly exists a solution or range of solutions, trueβ , for any given model, which

satisfies all the OLS estimators for the individual atmospheric variables being

considered ( )Nβββ ~,...,~,~
21 . The most intuitive approach to the problem is to gain an

unbiased estimate as to the distribution trueβ~  (where ~ indicates the best-guess

estimate) from the individual estimators ( )Nβββ ~,...,~,~
21 . This likely requires recourse

to the Bayesian (probabilistic) family of statistical approaches, using the ability of

the OLS regression algorithm to return PDF estimators as to the true solution. In

terms of increasing complexity, the problem could be viewed in a conditional

probability framework (Von Storch and Zwiers, 1999), as an explicitly Bayesian

problem (Carlin and Louis, 2000), or in terms of relative entropy (Uffink, 1995 (and

later web update)). The key problem in any of these approaches is that the individual

component estimators are not independent of one another, certainly within the
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troposphere. Therefore, to avoid bias in the estimator trueβ~ , an orthogonality

constraint may be required. Development of this estimator is beyond the scope of this

thesis, and is left to future work by others.

Any resulting unbiased estimate trueβ~  could then be compared pair-wise to the

component estimators ( )Nβββ ~,...,~,~
21 , to yield whether the model is plausibly an

internally consistent explanation of the observations. The most obvious test is some

form of distance statistic such as the Mahalanobis distance (Kotz et al., 1983, Von

Storch and Zwiers, 1999) which is conditioned upon the two component

distributions, although this assumes that the estimator trueβ~  will be normally

distributed. This is not a new idea to the atmospheric science community

(Stephenson, 1997), although it has not to date been considered for such an

application. There is likely to be a potential circularity argument in any such distance

statistic test, especially for small populations of β estimates (where N is small),

whereby the estimate trueβ~  is not (ever) truly independent of the estimates to which it

is being compared. This should still, however, provide for a relatively weak internal

model consistency check. If the model cannot be shown to be a demonstrably

inadequate explanation of the observations, then the PDF estimator of trueβ~  could be

treated as the best estimate of the model signal amplitudes in the observations, with

associated uncertainty. This may have distinct advantages, as this estimator is likely,

by construction, to have smaller uncertainty than any of the individual component

estimators. The normal detection and attribution tests could then be applied to this

estimator.
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Figure 7.1 Illustration of the likely effects of relaxing from an ideal world to a real

world situation, and results for HadCM2 G + S signal combination. In each case only

the 90% confidence interval is plotted. Key value abbreviations are given in chapter

6.
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