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Abstract

The technique of pattern scaling was introduced in 1990 to compare equilibrium
experiments from global climate models (GCMs). The patterns from GCMs were
subsequently combined with simple climate model simulations to allow scenarios
of regional climate change to be constructed for a large number of forcing
scenarios for which GCM simulations were not available. Although the technique
has been widely used in climate change assessments in the last decade, no
comprehensive examination of the technique’s worth has been made. This thesis
provides such an examination.

By using ensemble experiments forced with greenhouse gases from HadCM2 (a
fully coupled general circulation model) it is found that the estimates of regional
changes in seasonal temperature and precipitation made using pattern scaling
techniques are accurate. The accuracy referred to concerns the technique’s
representation of climate changes modelled in GCMs, rather than the likelihood of
the represented changes becoming reality. The accuracy is measured in terms of
the statistical and practical significance of the errors introduced by pattern scaling.
It is suggested that pattern scaling is extended from the multi-decadal mean to
inter-annual variability, for which the technique is also found to be accurate. It is
found that when applying pattern scaling to regions, the identification of the
pattern and the accuracy of the estimates relies less on the climatic information
used to select regional boundaries than on the choice of spatial scale. Using a
sample of six fully-coupled GCMs it is confirmed that pattern scaling may be
applied to a wide range of GCMs.

Pattern scaling enables an accurate estimate to be made of the regional climate
changes that would be simulated by a GCM under different radiative forcing.
Pattern scaling facilitates a probabilistic approach to the assessment of future
regional climate change.
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Abbreviations
CCSR-NIES Center for Climate Research Studies and National Institute for

Environmental Studies (Japan)
CGCM1 Canadian coupled GCM version 1
CSIRO2 Commonwealth Sci. and Ind. Research Org. (Australia) model v. 2
COP Conference of the Parties to the UN/FCCC (see below)
CRU Climatic Research Unit, University of East Anglia, UK
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ECHam4 European Centre / Hamburg model 4
ENSO El Niño Southern Oscillation
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HadCM3 Hadley Centre Coupled Model version 3
HMSO Her Majesty’s Stationery Office
IAM Integrated Assessment Model
IPCC Inter-Governmental Panel on Climate Change
MPI Max-Planck Institute for Meteorology (Germany)
NCAR National Center for Atmospheric Research
RCM Regional Climate Model
RMSE Root Mean Squared Error
SAR Second Assessment Report (of the IPCC)
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SRES Special Report on Emission Scenarios
TGCIA Task Group on Scenarios for Climate Impact Assessment
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UKCIP United Kingdom Climate Impacts Programme
UKMO United Kingdom Meteorological Office
UNDP United Nations Development Programme
UN/FCCC United Nations Framework Convention on Climate Change
WWF World Wide Fund for Nature
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Notation
The meanings of the algebraic notations used in the Equations are listed here.
Letters
a anomaly
D difference: estimate – simulated
E estimated pattern
M’ statistical moment
n sample size
P response pattern
p precipitation
S simulated pattern
s signal
t temperature
w weight
m mean
s standard deviation

Subscripts
A forcing scenario A
B forcing scenario B
b reference period for anomalies
c period mean (from control)
g grid-box within a region
i grid box
j period mean (from scenario)
m simulation
M ensemble mean
r region
y seasonal mean
m number of statistical moment
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1. Introduction

1.1 Context
It is now generally recognised that climate change is real, and that humans are at
least partly responsible. In 1996 a scientific consensus was reached that “the
balance of evidence suggests a discernible human influence on global climate”
(IPCC, 1996a, p5). In 2001 this scientific consensus was updated:

“In the light of new evidence and taking into account the remaining
uncertainties, most of the observed warming over the last 50 years is likely to
have been due to the increase in greenhouse gas concentrations.” (IPCC, 2001,
p6)

Since climate will continue to change during the 21st century and beyond, a
recognition is beginning to dawn that not only must we act to cut anthropogenic
emissions, but that we must also adapt to the climate changes that we are already
experiencing, and that are yet to come. An old English proverb states that
‘forewarned is forearmed’, and to arm ourselves appropriately we must be
warned of where precisely the dangers lie.

Often it is a single prediction of the likely change in climate that non-scientists
seek, whether they are members of the public, ‘stakeholders’, or government
officials. They often treat such a forecast in a similar way to a weather forecast –
and perhaps with a similar level of scepticism. However, it is not possible to treat
future climate in these ‘single-result’ terms. Any prediction involves numerous
uncertainties, most of which are unavoidable; their sources range from future
changes in society to the internal variability of the climate system. Any honest
assessment of future  climate must take these uncertainties fully into account.

1.2 Uncertainty
It is precisely at this point that a clash appears between the necessity of
incorporating uncertainty and the pre-eminent tool for prediction – the numerical
model. The numerical weather prediction model has been developed over many
decades to do exactly what it says – predict weather. Since the idea that humans
might be altering the climate system fired the imagination of the scientific
community in the 1970s, the same models have been adapted – with increasing
success – to simulate the climate changes of the 20th and 21st centuries, rather than
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Thursday’s weather. It is results from these global climate models (GCMs)1 that
have motivated the political process towards mitigating emissions, and that have
dominated assessments of future climate change and its impacts. However, these
models are so computationally expensive that comparatively few simulations can
be performed with them at present at present. Although computing speeds are
expected to increase further in the near future, the increased resources may be
employed as much on improving the models as on increasing the number of
simulations that are performed. Without the ability to carry out a very large
number of simulations to estimate future climate, it becomes difficult to assess the
uncertainties in those estimates.

Faced with this difficulty, many of those who have made estimates of future
climate change and its impacts have often ignored the uncertainties. Seeing an
already difficult problem of estimating for a century to come, they have made a
single estimate of what future climate might look like. This approach has
dominated the advice given to the world by the scientific community, particularly
the contribution of Working Group II (on impacts, adaptation, and mitigation) to
the Second Assessment Report of the IPCC, published in 1996. However, there is a
growing recognition of the need to explicitly recognise uncertainty, and frequently
multiple ‘scenarios’ of possible future changes in climate and impacts are
presented. We are now moving towards an approach to climate and impacts
assessments that is, at heart, probabilistic.

The probabilistic approach treats uncertainty in quantitative terms. It attempts to
describe the range of possibilities and attach likelihoods to them, so that a
probability distribution may be formed. This may be done with a variety of
methods, ranging from literature reviews, through expert judgement solicitations,
to highly complex mathematical models. The probability distributions – and thus
the sources of uncertainty that they represent – may then be combined through
Bayesian logic and Monte Carlo sampling into an overall assessment of future
change that includes all the uncertainties of which we are aware.

However, adopting a probabilistic approach does not, in itself, resolve the clash
between the need to accommodate uncertainty and the computational expense of
GCMs. The warning to adapt must be based on information that is specific to the

                                                            
1 GCM denotes ‘general circulation model’ (e.g. IPCC, 1996d, p566), although it is sometimes taken
to mean ‘global climate model’ (e.g. Barrow et al., 2000). Some are spectral models and others use a
fixed grid, but for convenience we will refer to the spatial element of any GCM as a ‘grid-box’.
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region under consideration. GCMs are the most credible tool for assessing future
regional climate change, yet these are the very same models with which we cannot
simulate all the possible futures presented to the climate system as a result of
anthropogenic emissions and other sources of radiative forcing. We can simulate
the future global climate changes using simple climate models (SCMs), but not
region-specific, season-specific, and variable-specific changes. A technique that
attempts to bridge this gap lies at the centre of this thesis.

1.3 Pattern scaling
The technique of pattern scaling attempts to combine the advantages of both
SCMs and GCMs, while overcoming their disadvantages. When using this
technique we represent the spatially-varying changes in seasonal climate – derived
from a GCM – as a time-invariant pattern of response to radiative forcing. We then
scale this pattern by the global-mean temperature change simulated by SCMs, for
which we have many thousands of simulations. Thus we obtain the region-
specific,2 season-specific, and variable-specific changes that we require for the full
range of possible future radiative forcings.

Elements of this technique were first introduced in 1990 by Santer et al., and it was
subsequently developed into the form we have described. It has been widely used
in the 1990s in climate impact assessments, but it has not received the close
scrutiny that such a pivotal technique demands. We attempt to provide such an
examination in this thesis. After reviewing the relevant literature (chapter 2) and
detailing our data and methods (chapter 3), we will address four questions of
particular interest. These questions, we believe, are highly relevant if pattern
scaling is to fulfil its potential in climate change assessment. We ask whether it is
legitimate to apply pattern scaling to:
4 estimate the multi-decadal mean? (chapter 4)

4 estimate the inter-annual probability distribution? (chapter 5)

4 regions? (chapter 6)

4 a variety of models? (chapter 7)
In the final chapter (8) we draw our conclusions and suggest ways in which the
technique of pattern scaling may be further developed and applied.

                                                            
2 In this thesis ‘region’ may refer to any spatial area smaller than a continent. Depending on the
context it may refer to a single GCM grid-box, or to an amalgam of GCM grid-boxes.
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If pattern scaling is a legitimate method of representing possible future changes in
regional climate, the consequences for climate assessment may be great. Pattern
scaling is not a technique that will necessarily be seen or understood by those
outside the scientific community, but it may be crucial in enabling a fully
probabilistic approach to climate assessment to be developed. By using SCMs to
represent the full range of possible future changes in global climate, and by using
GCMs and pattern scaling to represent the full range of possible future changes in
regional climate, we may present a full picture of the possible and likely changes
in regional climate. Thus much of the gap between managing uncertainty and
using numerical models may be bridged.
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2. Literature Review

2.1 Introduction
The work of this thesis centres on the technique of pattern scaling. Therefore we
begin this literature review by placing the technique in the wider context to which
it belongs. We introduce climate scenarios as the most common approach to
presenting the regional climate changes that we may encounter in the future
(section 2.2). We discuss both the uncertainty arising from model deficiencies and
the uncertainty inherent to the system being studied (section 2.3), and review the
probabilistic approach to dealing with uncertainty (section 2.4). Climate
assessments often begin with the future course of anthropogenic emissions
(section 2.5). We introduce simple climate models (SCMs) as a tool to manage this
source of uncertainty (section 2.6), and pattern scaling as a technique by which to
relate SCM results to GCM simulations of regional climate change (section 2.7).

We then devote four sections to reviewing some aspects of pattern scaling that we
intend to address in our four analysis chapters.
4 We review some of the issues that are basic to pattern scaling (section 2.8).

4 We introduce the concept of applying pattern scaling to variability, rather than
just an inter-decadal mean (section 2.9).

4 We discuss some important spatial questions that have not been addressed in
climate assessments and that have particular relevance for pattern scaling
(section 2.10).

4 We consider some of the issues involved when we apply pattern scaling to a
number of different GCMs (section 2.11).

Finally we draw the discussion to a close by summarising our assessment of the
relevance of pattern scaling (section 2.12).

2.2 Climate scenarios
The result of the efforts to detect and attribute climate change is that “the balance
of evidence suggests that there is a discernible human influence on global climate”
(IPCC, 1996a, p5). Consequently those with an understanding of global climate
have a responsibility to make clear the future changes in climate that may be
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expected.3 The most popular method is scenario analysis,4 a ‘climate scenario’
being simply “a description of a possible future climate” (Pittock, 1993, p481) –
one of a number of “pertinent, plausible, alternative futures” (IPCC-TGCIA, 1999,
p24).

The historical development of climate scenarios is tied to the idea of human-
induced climate change. The origins of the idea that humans might be enhancing
the natural greenhouse effect through emissions of CO2 stretch back into the 19th

century (Tyndall, 1863; Arrhenius, 1896 a,b), but it did not “fire the imagination of
the scientific community” until the 1970s (Kellogg, 1987, p113). Because of the
concern that climate change might adversely affect humans, climate scenarios
were introduced to link possible climate change under enhanced greenhouse
warming with its effects on ecosystems.

Hulme and Carter (1999) have documented the subsequent development of
climate scenario methods over the last two decades. They describe this
development as being “closely related to the availability and sophistication of
results from climate change simulations made with global climate models” (p12).
It is true that other sources of information have also been used to develop climate
scenarios. IPCC-TGCIA (1999) classify these into:
4 synthetic scenarios, where climate variables are changed by a realistic but

arbitrary amount;
4 analogue scenarios, where future climate is equated with a past climate, or

with a present climate from a different location.
However, although they have their advantages, the former are arbitrary and the
latter equate future climates influenced by an enhanced greenhouse effect with
climates caused by other factors. IPCC-TGCIA (1999) conclude that “GCMs offer
the most credible tools for estimating the future response of climate to radiative
forcing” (p36).5

                                                            
3 This responsibility has been recognised for many years. For example, the IPCC First Assessment
Report (Tegart et al., 1990, p424) insisted that “the most essential need is for more reliable and
detailed (both in space and time) estimates of future climatic conditions. These estimates must be
regionally specific and provide information on both the frequency and magnitude of events.”
4 Katz (1999, p44) is explicit: “The technique of scenario analysis is most relied on today in climate
impacts research.” Henderson-Sellers (1996) discusses the use of the term ‘scenario’, many
examples of which may be found in IPCC-TGCIA (1999).
5 There is a body of scientific opinion that challenges the dominance of GCMs in the provision of
policy-relevant scientific knowledge, e.g. Shackley et al. (1998). However, their criticism is chiefly of
the dominance of GCMs over other climate models (particularly simple climate models), rather
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2.3 Uncertainty
Some aspects of the model-based climate scenarios that have been constructed
over the last twenty years have remained remarkably consistent. For example, the
equilibrium climate sensitivity under a doubling of CO2 has consistently been
given as the range 1.5 – 4.5 °C in a series of authoritative assessments:

4 Two panels convened by the USA National Academy of Sciences (Charney,
1979; Smagorinsky, 1982);

4 A summary commissioned by the USA Department of Energy and reviewed by
over 300 scientists from 23 countries (McCracken and Luther, 1985);6

4 The First Assessment Report of the IPCC (Mitchell et al., 1990);7

4 The Second Assessment Report of the IPCC (IPCC, 1996b).8

4 The Third Assessment Report of the IPCC (IPCC, 2001).9

The same assessments have also been consistent in highlighting their lack of
confidence about model projections on regional scales.10 This lack of confidence
arises from model biases and inter-model differences,11 which are commonly
understood to reveal deficiencies in the models themselves. Thus the uncertainty
arising from model deficiencies is commonly recognised.12 Indeed, when the IPCC
was asked to prepare a special report on the regional impacts of climate change
(Watson et al., 1998), the chair of the IPCC was forced to acknowledge that

                                                                                                                                                                                        
than of GCMs per se: “In highlighting alternative techniques we are not in any sense denying the
relative importance of GCMs … Our main argument is that the role of GCMs can only emerge
through considering fully the other possible methods that are available.” (p183)
6 “Models indicate that a doubling of the CO2 concentration would increase the global average
surface air temperature by approximately 1.5 to 4.5 °C.” (p xx)
7 Under CO2 doubling, “the global average warming lies between +1.5°C and +4.5°C” (p 135).
8 “[We use] the range in the estimate of climate sensitivity (1.5 to 4.5°C)” (p39).
9 “The climate sensitivity … is comparable to the commonly accepted range of 1.5 to 4.5°C.” (p8)
10 For example: “The reader should be aware of the limited ability of current climate models to
simulate regional climate change” (Mitchell et al., 1990, p157).
11 Examples from the assessments cited above include the following: “These models do not yet
adequately represent the observed regional features” (McCracken and Luther, 1985, p xx). “The
range of simulated scenarios and the model regional biases were still large, so that confidence in
the regional scenarios simulated by AOGCMs remains low” (Kattenberg et al., 1996, p339).
12 Examples that demonstrate how widely it is believed that ‘models cannot predict on regional
scales’ may be taken from a single volume of Progress in Physical Geography: Joubert and Hewitson
(1997, p52), Schulze (1997, p118), and Wilby and Wigley (1997, p531).



16

“because of the uncertainties associated with regional projections of climate
change” they were unable “to provide quantitative predictions of the impacts of
climate change” (Bolin et al., 1998, p x).

However, model deficiencies are not the only source of uncertainty. It is important
to draw a distinction between deficiencies in scientific tools and uncertainty
inherent to the system being investigated (Mitchell and Hulme, 1999), or
‘incomplete knowledge’ and ‘unknowable knowledge’ (Hulme and Carter, 1999).
The coarse resolution and limited physics in GCMs may be improved or made
more complete. In contrast, human actions are not deterministic13 and climate
evolution is not periodic (Lorenz, 1963), so uncertainty is inherent and the future is
unpredictable.

Uncertainty tends to make scientists cautious. However, Fowler and Hennessy
(1995) argue that since the norm is to assume that the past is a reliable guide to the
future, we must challenge the assumption of stationarity by presenting as much
information as possible. Moreover, according to Henderson-Sellers (1996), “in the
context of information on climate for policy makers scientific (un)certainty is no
longer deemed an adequate reason for withholding advice” (p64). That assertion is
borne out by the political motivation behind the production of the IPCC report on
regional impacts.14

It is clear that assessments of future climate change and its impacts are required,
but to develop them correctly we must be able to handle uncertainty. Yet the
treatment of uncertainty in most assessments has been “quite inadequate” (Katz,
1999, p38). Hulme and Carter (1999) acknowledge that the “suppression of
uncertainty” has been “widespread” (p17). In particular:
4 significant sources of uncertainty are not considered in the modelling

experiments from which scenarios are constructed (Shackley et al., 1998);

                                                            
13 Determinism refers to the theory that all events are completely determined by previously
existing causes that preclude free will and the possibility that humans could have acted otherwise.
14 The report (Watson et al., 1998) was commissioned to provide ‘”a common base of information
regarding the potential costs and benefits of climatic change, including the evaluation of
uncertainties, to help the COP determine what adaptation and mitigation measures might be
justified” (Obasi and Dowdeswell, 1998, vii).
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4 the flow of information about uncertainty is hindered by a “gulf” (Henderson-
Sellers, 1996, p62) between climate modellers and the users of model outputs;15

4 on occasions no scenario is presented at all (Henderson-Sellers, 1996);

4 scenarios are often based on single possibilities among many models,
simulations, forcing scenarios, and climate sensitivities (Hulme and Carter,
1999).16

Many such objections may be countered by developing multiple climate scenarios
(e.g. Carter et al., 1991, 1996; Carter, 1998), and Katz (1999) admits that “Alcamo et
al. [1996] make a compelling case for the usefulness of scenario analysis to policy
makers” (p44). However, Katz argues that scenario analysis does not provide a
full treatment of uncertainty, and should not be used as a substitute for it. He
suggests that an uncertainty analysis should not be limited to just a few scenarios,
and that we should take into account the fact that not all scenarios are equally
likely.

“Thus, one is drawn to think about having infinitely many scenarios and
weighting the output corresponding to each scenario by its likelihood; that is, a
formal probabilistic approach.” (Katz, 1999, p41)

Considered in this way, probability analysis becomes the natural outcome of the
scenario approach. Indeed, the underlying problem of climatic prediction is itself
probabilistic:

“The migration away from a purely deterministic approach to modelling,
emphasises further that all meteorological prediction problems, from weather
forecasting to climate-change projection, are essentially probabilistic.” (Palmer,
2000)

2.4 Developing a probabilistic approach
The probabilistic approach is an important part of the rationale for the work we
present in this thesis. Although a literature has recently developed concerning
how a probabilistic approach might be developed, there are only a few practical
examples of probability analyses in climate change assessments; current IPCC
guidelines do not go beyond the scenario approach (e.g. IPCC-TGCIA, 1999).
                                                            
15 Nonetheless, uncertainties are often explicitly recognised within the assessments, and there is
often an overlap in authorship between modellers and others.
16 This practice has been very common, but it is now being recognised by impacts researchers that
this approach is inadequate. A rapporteur from a group of impacts analysts reported as follows:
“Using only one GCM scenario for a climate impact assessment misrepresents the uncertainty in
the projection of future climate change” (Mortsch, 2000, p113).
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We should not apply probability analysis to just a single source of uncertainty, but
to each of them.17 Therefore we must be able to inter-relate the different sources of
uncertainty in a climate change assessment.18 The most common way of
conceptualising these relations is as a ‘pyramid’ (Mitchell and Hulme, 1999),
‘cascade’ (New and Hulme, 2000), or ‘explosion’ (Jones, 2000). This is a ‘top-down’
or ‘sequential’ conceptualisation of uncertainty that relates external forcings19 to
regional climate change via various other sources of uncertainty. This approach is
often implemented by including ‘one-way’20 links between different varieties of
model, such as radiation models and GCMs.

The sequential approach neglects the feedbacks between different levels in the
sequence. It is possible that this neglect might be overcome through integrated
assessment models (e.g. Alcamo et al., 1996), which offer an alternative to the
sequential approach to uncertainty. However, thus far it has not proved possible
to use integrated assessment models to treat uncertainty in a non-sequential way
(Leemans, 1999),21 so we adopt the sequential approach.

In order to combine the sources of uncertainty in the sequence it is appropriate to
adopt a Bayesian approach (Katz, 1999),22 which offers two particular advantages:
4 we may include subjective assessments of the uncertainty in variables for

which we have no simple means of objectively calculating uncertainty;23

                                                            
17 Katz (1999) argues that “anything less than a fully probabilistic approach to uncertainty analysis
is inadequate” (p46). However, it is also worth noting that ”although integrated assessment is the
natural framework to account for uncertainty, it is worthwhile to start by assessing uncertainty in
individual model components separately” (p51).
18 The most important sources of uncertainty to take into account in an assessment of future climate
include anthropogenic emissions of greenhouse gases and other pollutants, natural variability in
other sources of radiative forcing, atmospheric chemistry, radiative forcing, the global climate
response, and regional climate change.
19 i.e. changes in the radiative forcing of the climate system, e.g. from anthropogenic greenhouse gas
emissions or solar variability.
20 The term ‘one-way’ refers to data being passed from model to model in one direction only.
21 “Unfortunately, a systematic way to include uncertainty in IAMs has not been developed up to
date, although some research groups have tried” (Leemans, 1999, p94).
22 Epstein (1985) provides an introduction to the use of Bayesian statistics in climatology.
23 For example, in the absence of an authoritative objective assessment of the likelihood of a
collapse in the West Antarctic Ice Sheet, Vaughan and Spurge (2001) assess probabilities using
expert judgments from a sample of scientists.
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4 we may combine different sources of uncertainty in the sequence by using the a
posteriori distribution from one source as the a priori distribution for the next
source in the sequence.

There are a number of examples in climate change assessments where Bayesian
methods have been used to deal with uncertainty. The examples we cite assess
uncertainty in:
4 model parameters (Shackley et al., 1998);

4 climate sensitivity (Tol and de Vos, 1998);

4 sea level rise (Titus and Narayanan, 1996);

4 regional climate change and hydrological impacts (New and Hulme, 2000);

4 irrigation demand (Jones, 2000).

A formal Bayesian approach generally requires the numerical evaluation of very
complex integrals, so it is not computationally feasible to solve the probability
equations analytically (Katz, 1999). Therefore Monte Carlo techniques are often
adopted in which probability distributions are treated through random sampling.
The computational demands of Bayesian analysis are such that the examples given
above also give examples of Monte Carlo methods.

2.5 Future emissions
The first source of uncertainty that a probabilistic assessment of regional climate
change must address is the future course of anthropogenic emissions. By
expressing the uncertainty in future emissions – and from natural forcings24 – in
probabilistic terms, we may form the a priori distribution with which we must
work to develop an assessment of changes in atmospheric chemistry, radiative
forcing, global climate change, and regional climate change.

The possible futures for human society are infinite in number and variety;
describing them is “a daunting task” that some consider “impossible” (Grübler,
1999, p55).25 Working Group III of the IPCC recently published the SRES set of
emissions scenarios based on four “narrative storylines”; for each storyline a
number of modelling approaches were used to develop scenarios, carefully
avoiding ‘surprise’ scenarios and scenarios representing the mitigation of

                                                            
24 Ultimately, any probabilistic assessment of future climate ought to include the uncertainty
concerning solar and volcanic variability.
25 With a measure of understatement, the IPCC (2000) noted the complexity of human systems and
acknowledged that “their future evolution is highly uncertain” (p3).
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emissions (IPCC, 2000). The scenarios numbered no fewer than forty, and the
authors were careful to avoid identifying any single scenario as being more likely
than another:

“No judgment is offered in this Report as to the preference for any of the
scenarios and they are not assigned probabilities of occurrence … All are
equally sound.” (IPCC, 2000, pp3-4)

The IPCC (2000) insisted on regarding all forty scenarios as equally likely even
when identifying six ‘marker scenarios’ for the benefit of climate modellers.26 They
also recommended that “more than one family [of scenarios] should be used in
most analyses” (p11). This is not the first occasion on which such assertions have
been made by those responsible for developing emissions scenarios:

“We recommend that analysts use the full range of IS92 Scenarios rather than a
single scenario as input to atmospheric/climate models … We do not attempt to
identify the most likely emission scenario.” (Alcamo et al., 1995, pp255, 258)

However, in most climate modelling centres, GCM simulations have  been
performed for only a few of the scenarios, whether the IS92 or the SRES emissions
scenarios. Part of the reason may be that some climate modellers view particular
scenarios as more likely than others,27 but more important are the various pressing
demands on computing resources that they face.28

2.6 Combining models
Not even the full suite of SRES marker scenarios has been represented by
simulations from a GCM, still less the set of forty, or scenarios based on ‘surprises’

                                                            
26 “Marker scenarios are no more or less likely than any other scenarios”. (IPCC, 2000, p5)
27 Hulme and Carter (1999) state that “[the SRES] perspective on uncertain world futures has been
challenged by natural scientists who are more inclined to view one or two of these futures as more
likely than others” (p20). However, it should be noted that the SRES writing team recognise
personal preferences – “Preferences for the scenarios presented here vary among users” (IPCC,
2000, p3) – and only insist on a number of scenarios being used from different families.
28 Authors from the Hadley Centre (Mitchell et al., 1999) state that some modelling centres “do have
the computing power” to perform simulations for a range of scenarios (p549), but recommend that
this should not be done because of their lack of confidence in the models on regional scales, and
because of the need for ensembles. “Running climate experiments is expensive in terms of both
human and computing resources. It makes little sense to squander these resources to produce
detailed scenarios with little credibility when the uncertainties associated with modelling are
comparable to those associated with the different emissions scenarios under investigation.” (p550)
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or mitigation of emissions; nor is this likely in the near future.29 However, this is
not the case with simpler climate models.

Following Harvey et al. (1997), we adopt ‘Simple Climate Model’ (SCM) as a label
for the models used to compute CO2 concentrations and global temperature
change. The differences between SCMs and GCMs can be over-emphasised; they
have much in common, and they differ mostly in complexity (Harvey et al., 1997).30

The simplicity of SCMs can be an advantage: Monte Carlo experiments involving
many thousands of simulations may be performed because the SCM requires
minimal computing resources. For example, MAGICC (Wigley et al., 2000) runs on
a PC from a CD-ROM (Hulme et al., 2000) and has been used by New and Hulme
(2000) in a Monte Carlo experiment to convert emissions scenarios into global-
mean temperatures.

The disadvantage of SCMs is that they are not sufficiently complex to represent
regional climate change. Their end product is usually annual global-mean
temperature, whereas a climate assessment usually requires regional changes for a
variety of climate variables and a variety of time scales. Among climate models
only GCMs can provide this level of information.31

Therefore, in order to develop a fully probabilistic approach using models, we
need some way of combining the computational simplicity of SCMs with the
detailed information from GCMs:32

                                                            
29 There are plans to perform experiments with multiple GCMs. “The Hadley Centre is developing
a large number (100 or more) climate models, each of which has a different (but plausible)
representation of various aspects of the climate system (e.g. clouds, carbon cycle).” However,
“these models are then run with the same emissions scenario” (UKMO/DETR, 2000, p10).
30 Harvey et al. (1997) give a succinct comparison of SCMs and GCMs: “The essential common
features of the models used for climate projection … are that they can calculate the response of
surface temperature to radiative forcing, and that they include the ocean, because of its dominant
influence on the rate of climatic change. The essential difference between simple and complex
models is the degree of simplification, or the level at which parameterization is introduced.” (p19)
31 Even the critical Shackley et al. (1998) recognise GCMs as “the only models that are potentially

capable of producing regional simulations” (p184).
32 As we noted above, the Hadley Centre plans to run a large multi-model ensemble in the near
future. “From this we can build up a picture of the probability of the change being at various
levels, such as 10% or 20% more or less rainfall than today.” (UKMO/DETR, 2000, p10) However,
this does not, by itself, take into account uncertainties concerning forcing scenarios, because among
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“The use of AOGCMs for the simulation of regional, time-varying climatic
change, and the use of SCMs for more extensive sensitivity and scenario
analysis, are both dictated by pragmatic considerations involving computer
resources and the level of detail appropriate when coupling various
components together.” (Harvey et al., 1997, p5)

2.7 Pattern scaling
A decade ago a similar problem was addressed by Santer et al. (1990) in an MPI
report. They recognised that only GCMs could provide “the space-time resolution
and richness of information required by impact analysts” (p1), but that their
equilibrium experiments could not satisfy the need for time-dependent
information necessary “in the real world” (p6). Their idea was to standardise the
spatial response patterns33 from equilibrium experiments on the basis of their
climate sensitivities (thus achieving a measure of comparability between models
with very different climate sensitivities), and to use estimated future changes in
global-mean temperature to add a time dimension to the equilibrium patterns.

Santer et al. (1990) did not envisage a long life for this technique of generating
scenarios:

“Such scenarios represent a compromise pending the availability of model
output from GCM transient experiments with dynamic oceans.” (p7)

However, one of those authors (Wigley) broadened the scope of the technique by
using SCMs to generate estimates of the global-mean temperature, and by linking
the SCM time series to the GCM pattern via global-mean temperature.34 This idea
was employed in the IPCC’s First Assessment Report (Mitchell et al., 1990), and
was developed further in one of the first integrated assessment models (Rotmans
et al., 1994). In this form the technique has become very popular, and has been
widely used over the last decade.35 Thus the lifetime of pattern scaling is extending
well beyond the lifetime of equilibrium experimentation, and into the future:

                                                                                                                                                                                        
the limited number of simulations, the maximisation will be of the number of GCMs rather than of
the number of forcing scenarios.
33 A ‘response pattern’ is a spatial pattern describing the change in a particular climatic variable in
response to radiative forcing (such as that due to increased greenhouse gas concentrations).
34 Wigley et al. submitted a paper to Climatic Change in 1990, but the required revisions were never
made and the paper was never published (Mike Hulme, pers. comm.).
35 For example, pattern scaling has been widely used in individual country assessments: Hulme et

al. (1996) for southern Africa, and Hulme and Jenkins (1998) for the UK.
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“In the absence of a larger sample of GCM experiments to draw upon, scaled
scenarios will continue to be used in impacts assessments.” (Hulme and
Jenkins, 1998, pA9)

2.8 Assessing pattern scaling
Although pattern scaling has been widely used in climate change assessments
over the last decade, it has received very little attention. The MPI report (Santer et
al., 1990) never reached the peer-reviewed literature, and a fuller review of the
technique did not appear from any of the original authors for another nine years,
until Mitchell et al. (1999). Since pattern scaling is an important part of a
probabilistic approach to climate change assessments, and since it has many
aspects that have not yet received the attention they deserve, we develop this
thesis as an examination of the technique of pattern scaling. In our first analysis
chapter (4) we go back over some of the ground that has already been partly
covered in the literature – chiefly by Mitchell et al. (1999) – but in more detail and
with fresh perspectives.

There are a number of conceivable ways of defining the response pattern,
including:
4 a spatial field36 of anomalies for a particular time slice37;

4 an enhanced signal-to-noise ratio38 (e.g. Jonas et al., 1996);

4 linear regression (e.g. Mitchell et al., 1999; Hennessy et al., 1999).
The last two methods have the advantage of using information from an extended
period; if there is a linear response, they are therefore more likely to capture it in
the response pattern. However, the method of Jonas et al. (1996) – used to estimate
regional temperature changes from early models39 – has been found to be “sub-
optimal” (Mitchell et al., 1999, p550).

                                                            
36 A ‘spatial field’ is a set of values, organised spatially, where there is a single value for each
spatial location.
37 A ‘time slice’ is a period of time during which a particular set of conditions (such as an
atmospheric concentration of greenhouse gases) prevail.
38 A ‘signal-to-noise ratio’ is the proportion between the numerical magnitudes of the information
that is sought (the ‘signal’) and other information that is present (the ‘noise’).
39 They used IMAGE version 1.0 and ECHam1-LSG.
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The critical assumption made in pattern scaling is that the climate system
responds linearly to radiative forcing.40 In particular, the regional climate changes
must:
4 relate linearly to global-mean temperature change, not non-linearly or as a step

function;
4 relate linearly to the amount of global-mean temperature change, not to the rate

of change.
Examinations of equilibrium (Oglesby and Saltzman, 1992) and transient (Murphy
and Mitchell, 1995) experiments have suggested that in general there is a linear
relationship. Linearity is also implicit wherever accurate estimates have been
made from pattern scaling (see below).

The most important test to apply to pattern scaling is to examine whether a
pattern extracted from one GCM experiment gives an accurate estimate of the
regional climate change simulated in another GCM experiment. This has been
carried out for regional changes in temperature (Jonas et al., 1996; Mitchell et al.,
1999) and land surface driving variables (Huntingford and Cox, 2000). In each case
favourable results were obtained. In particular, Mitchell et al. (1999) found that the
errors introduced from estimating temperature were in many cases within the
range explicable by the internal variability from a GCM control simulation.
Mitchell et al. (1999) also investigated precipitation, although they did not carry
out a full investigation. They reasoned from a brief signal-to-noise investigation
that since the changes in precipitation are “at best marginally significant in many
regions” (p574) it would be difficult to identify precipitation responses from
internal variability, and they concluded that therefore pattern scaling is not likely
to be accurate for precipitation.

The measure by which Mitchell et al. (1999) judged the accuracy of the pattern
scaling technique is an absolute one. Errors occur when the estimate from pattern
scaling is different from the modelled value. Errors may be detected when the
difference between the estimated and modelled values is statistically significant at
a prescribed level of confidence. However, the statistical is not the only important
measure of significance. Errors that are statistically significant may be so small

                                                            
40 This assumption has been recognised from the outset. Santer et al. (1990) remarked that: “The
assumption on which this approach is based is that the spatial patterns of temperature change …
are stable in the transition from 1xCO2 to 2xCO2” (p7). Any departures from linearity will
introduce errors to the estimates made using pattern scaling. This amounts to an additional source
of uncertainty, which is specifically considered in chapter 4 (particularly section 4.5).
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(perhaps in relation to the anomaly itself) as to have no practical significance. From
this perspective we might complement the absolute measure of accuracy by a
relative measure of accuracy. If we were to reject pattern scaling, the lack of GCM
simulations for many forcing scenarios would leave us without any measure of
climate change other than the global-mean temperature obtained from a SCM.
Therefore it is legitimate to calculate the accuracy of pattern scaling relative to the
accuracy of assuming that each grid-box takes the global-mean value. If pattern
scaling is more accurate than the global-mean assumption, then there may be cases
in which pattern scaling is judged on these grounds to be ‘sufficiently accurate’ for
certain applications.

Thus far we have considered pattern scaling for scenarios of changing greenhouse
gas emissions, where the gases are well-mixed and gradually increase over time.
Sulphate aerosols are not so well-mixed and concentrations both rise and fall over
time. Mitchell et al. (1999) found that a pattern from a greenhouse scenario does
not give an accurate estimate of regional climate changes under a greenhouse-gas-
plus-sulphates scenario.41 However, it is now believed that the IS92 scenarios
adopted by Mitchell et al. (1999) contained unrealistically large emissions of
sulphur, and the more recent SRES scenarios contain much lower emissions of
sulphur (IPCC, 2000).42 Therefore the effect of aerosols on future climate is also
much reduced under the SRES scenarios. Thus the problem posed to pattern
scaling by sulphates is not nearly so great as under the IS92 scenarios.

Nonetheless, sulphate emissions are still likely to affect regional climate changes
in certain parts of the world. Ramaswamy and Chen (1997) suggested that a
response pattern might be decomposed into greenhouse and sulphate
components, and that these might be linearly recombined. One of the authors of
the original MPI report of 1990 developed this idea by examining whether a
sulphate response pattern might be linearly scaled by regional sulphate emissions
in a similar manner to the greenhouse response pattern (Schlesinger et al., 1997). It
is conceivable that a greenhouse pattern and a number of region-specific sulphate
patterns might be individually scaled and linearly recombined to create a single
climate scenario.

                                                            
41 “The results here suggest that scenarios with substantial changes in aerosol emissions are not
well represented by a single greenhouse gas pattern.” (p576)
42 “Sulfur emissions in the SRES scenarios are generally below the IS92 range, because of structural
changes in the energy system as well as concerns about local and regional air pollution.” (p8)
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2.9 Pattern scaling the variance
Thus far we have only considered scaling the climatological mean. We have
envisaged an approach in which we describe probability distributions for mean
future emissions, mean radiative forcing, mean global annual temperature, and
mean regional climate change. However, many important impacts of climate
change may result from changes in extremes.43 Since a small change in variability
has a disproportionately large effect on extreme events (Katz and Brown, 1992),44

changes in variability are potentially very important. If our climate change
assessments, carefully developed in a fully probabilistic manner, exclusively
address climatic means, they fail to address a critical area of uncertainty, i.e.
regional changes in climate variability.

Just as only GCMs can represent regional changes in climate means, only GCMs
can possibly represent regional changes in climate variability. In both cases SCMs
are required to represent the full range of possible future courses of radiative
forcing. It is conceivable that we could represent a particular change in variability
in a GCM – in the interannual variance for example – as a response pattern,
expressed as a function of global-mean temperature. We could link the response
pattern to the SCMs via global-mean temperature, as before. This has not been
attempted before.

It is conceivable that by calculating response patterns for both a mean and
variance, we might be able to describe how the probability function for a
particular climatic variable changes under radiative forcing, for as wide a range of
forcing scenarios as we can simulate with a SCM. Impacts researchers are
beginning to recognise a need for climate scenarios that include changes in
probability distributions.45 However, since different climatic variables have

                                                            
43 For example, Working Group II of the IPCC introduced their assessment of climate change
impacts by pointing out that “potentially serious changes have been identified, including an
increase in some regions in the incidence of extreme high-temperature events, floods, and
droughts, with resultant consequences for fires, pest outbreaks, and ecosystem composition,
structure, and functioning, including primary productivity” (1996c, p3).
44 “A small change in the variability has a stronger effect than a similar change in the mean.” (IPCC,
1996b, p44)
45 A rapporteur from a group of impacts analysts reported that “statistical distributions (pdf’s)
including their change in time are needed” (de Ronde, 2000, p101).
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different distributions,46 the most appropriate measures by which we may describe
probability distributions may vary between climatic variables. Some distributions
may, for example, be skewed, and so require a third parameter in order to
accurately describe the probability function. In chapter 5 we examine the
possibility of applying pattern scaling to higher statistical moments than the mean.

2.10 Spatial questions when pattern scaling
Chapter 6 examines some spatial questions that are particularly relevant when
conducting climate assessments in general, and when pattern scaling in particular.

Recent years have seen an increasing number of geographically-specific
assessments carried out both for particular countries47 and for sub-continents48. We
have already remarked that in many cases climate scenarios are developed for,
and motivated by the need for, an assessment of the potential impacts of future
climate change: they are aimed at policy-makers,49 and they are prompted by
political concern.50

                                                            
46 e.g. monthly temperature often has a Gaussian distribution, and monthly precipitation often has
a gamma distribution.
47 Examples of national assessments include those for the UK (CCIRG, 1991) and Finland (Kuusisto
et al., 1996).
48 An early example of a sub-continental assessment was for Southern Africa (Hulme et al., 1996).
Later an IPCC assessment of the regional impacts of climate change (Watson et al., 1998) was
prepared for ten continental regions that together cover the earth’s entire land surface and
adjoining coastal seas.
49 The editors of the IPCC assessment of the regional impacts of climate change noted that their
report “represents an important step forward in the evolution of the impact assessment process for
the IPCC … This report analyzes impacts at a continental or subcontinental scale that is of more
practical interest to decisionmakers.” (Bolin et al., 1996, ix)
50 Political concern is both inside and outside governments. For example, the UK Secretary of State
for the Environment employed some predicted regional impacts from research sponsored by his
department to argue for reductions in greenhouse gas emissions (Prescott, 1999), whereas the
WWF funded the assessment for Southern Africa (Hulme et al., 1996). At the global level, the IPCC
assessment of the regional impacts of climate change was prepared at the request of a political
body subsidiary to the UN/FCCC (Obasi and Dowdeswell, 1998), something that is true of all
IPCC reports: “The IPCC was established as an intergovernmental body with the express purpose
of assessing for the policy community a focused set of issues salient to policy formulation.” (Moss,
2000, p461)
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These impact and policy-related motives influence the methods that are employed
in climate assessments. This may be seen in the methods by which different spatial
scales are bridged. A major problem in developing climate scenarios from GCM
simulations lies in the nature of the GCM outputs, which are rarely at the spatial
scale or with the boundaries that are most convenient for the anticipated users of
the climate scenarios. An entire area of research has developed around the
dynamical or statistical ‘downscaling’ of GCM output51 to the spatial scales of
hydrological catchments, or even smaller areas. However, it is not always
necessary to downscale GCM output before incorporating it into climate scenarios.
There are examples in the literature of:
4 an assignment being made of the nearest grid-box estimate (Croley, 1990);

4 laying a mesh of GCM grid-boxes over the local topography (Hulme et al.,
1996);

4 representing a grid-box as a geographical region (e.g. Eastern England, Hulme
and Jenkins, 1998).

The requirements of impact analyses and policy initiatives do not only affect the
spatial scale at which climate scenarios are constructed. The geographical
boundaries of the scenarios are often determined by the same requirements. Thus
we find examples of boundaries formed by:
4 political states (e.g. Carter, 1996; Hulme and Jenkins, 1998);

4 topographic features (e.g. Croley, 1990).

However, if we move beyond impact-related assessments to the literature of GCM
evaluation, we find that GCMs are treated at different spatial scales from the
individual grid-box, and with different boundaries. Climate modellers are well
aware of the uncertainties in their science,52 including uncertainties about models
on regional scales.53 This makes them reluctant to use their models in a predictive
sense on regional scales,54 despite their confidence in them at global scales. 55

                                                            
51 For reviews of downscaling techniques see Hewitson and Crane (1996), Kattenberg et al. (1996),
and Wilby and Wigley (1997). ‘Dynamical’ downscaling includes the use of regional climate
models, and ‘statistical’ downscaling often employs regression techniques.
52 “We … believe that most, if not all, climate scientists are only too aware of the uncertainties both
in ‘their’ models and throughout policy development.” (Henderson-Sellers and McGuffie, 1999,
p597)
53 We remarked upon this and cited key assessments in section 2.3.
54 A sense of the compulsion required to use GCMs in this way is palpable in the First Assessment
Report. Mitchell et al. (1990) stated that “In order to assess the impacts of future changes in climate,
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Therefore any discussion of regional climate change in GCM evaluations is
generally based on spatial scales that are much larger than would generally be
described as ‘regional’. Two approaches are popular:
4 Relatively large geometric shapes are defined, generally representing a crude

division into climatic zones.56 A regional mean for each shape is created by
averaging together an aggregation of grid-boxes.

4 Results are plotted for each grid-box for the globe, with no commitment to the
accuracy of any individual grid-box.57

To judge whether the use of individual grid-boxes in the construction of climate
scenarios is justified is beyond the scope of this review.58 It must suffice to make
two salient points:

4 there is a substantial literature on the subject of uncertainty in climate science
from which justifications might be given, as we have demonstrated in previous
sections;

4 such use is increasing rather than diminishing.59

                                                                                                                                                                                        
one needs to know the changes and rates of change in climate on a regional scale.” (p155) Having
given a summary of the state of the science from which the unstated conclusion was that this need
had not yet been met, they remarked that “Nonetheless, one of the briefs of Working Group I was
to provide estimates of changes in 5 selected regions” (p155), and proceeded to do their best to
meet their brief.
55 This may appear to be unjustified, but is in fact based on physical reasoning, as Shackley et al.

(1998) recognise: “It is assumed by many GCM modellers (‘GCMers’) that the regional errors do
not compromise the validity of the global response to CO2 forcing. This is because, providing the
major, large-scale features are simulated and energy at the top of the atmosphere (TOA) is
balanced, then the model will produce a new global equilibrium position which is largely
independent of what occurs regionally.” (p162)
56 A continuous thread of development for one such division may be found in Mitchell et al. (1990),
Kattenberg et al. (1996), Kittel et al. (1998), and Giorgi and Francisco (2000).
57 A series of examples may be found in the publications of the Hadley Centre: UKMO / DETR
(1997, 1998, 1999).
58 Note that we refer here to the value of GCMs at the grid-box scale, not the accuracy of pattern
scaling at the grid-box scale.
59 In recent years concerted efforts have been made to improve the supply of grid-box level
information to those concerned with the potential impacts of climate change. One example is the
IPCC Data Distribution Centre, an IPCC task force charged with the free distribution of climate
scenarios and observations. Another example is the circulation by a UNDP subsidiary of software
and literature (Hulme et al., 2000) on generating climate scenarios from GCM data that aims to
“give countries the tools they need to develop their own solutions” (p4).
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It is in this context of a plausible and increasing use of information from the
individual grid-box that we choose to employ data from individual grid-boxes in
our initial investigations into the possibility of scaling means (chapter 4) and
variances (chapter 5).

There is also a case for examining the value of scaling for regions made up of
aggregations of grid-boxes. We present a number of relevant points:
4 Such regions have an established place in climatology. Analyses of regions

have been present in the literature that compares GCMs on sub-global scales
for the last decade, and further analyses are expected in the chapter on regional
climate change in the IPCC Third Assessment Report.

4 Such regions are used to convey sub-global climatic information. They have
been one of the principal forms through which the reports of IPCC Working
Group I have supplied information on regional climate change during the
1990s.60

4 Such regions exhibit some agreement between models. It is only for large
spatial scales that any claim is made for qualitative agreement between
models.61 (It is recognised that the models could all be wrong in the same way.)

4 Such regions are relevant to policy. It is partly potential climate impacts on
such spatial scales that give a sense of urgency to the political moves towards
mitigation (e.g. Prescott, 1999).

4 Such regions have already been subject to some evaluation with regard to
pattern scaling (Mitchell et al., 1999).

There are unanswered questions about the aggregation of grid-boxes that are
relevant to pattern scaling. It is a long-standing problem in the analysis of
spatially-aggregated data that “for some analyses the results depend on the
definition of the areal units for which data are reported” (Fotheringham et al.,
2000, p237). Known as the ‘modifiable areal unit problem’ (Openshaw, 1984), it
has two components:
                                                            
60 Such regions provided the sole form in the IPCC report of 1990 (Mitchell et al., 1990). Information
from statistical and dynamical downscaling was added in the supplementary report of 1992 (Gates
et al., 1992). All three forms were included in the Second Assessment Report (Kattenberg et al.,
1996) and the supplementary report on the regional impacts of climate change (Giorgi et al., 1998).
61 Mitchell et al. (1990) remarked that there was “agreement between models on the qualitative
nature of the large scale changes in temperature and to a lesser extent precipitation” (p155).
Kattenberg et al. (1996) noted that “several instances occurred in which regional scenarios
produced by all models agreed, at least in sign” (p339).
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         “ 1. The scale effect: different results can be obtained from the same statistical
analysis at different levels of spatial resolution.
2. The zoning effect: different results can be obtained owing to the regrouping
of zones at a given scale.” (Fotheringham et al., 2000, p237)

This problem is not easily solved.62 Among the possible solutions is the use of
spatially disaggregated data, but we are already considering individual grid-
boxes, and our interest here is specifically in aggregated data. Another possibility
is to construct the regions using some form of optimisation (Openshaw and Rao,
1995). To a certain extent this already occurs, in that the IPCC regions are loosely
based on climatic regions; there is potential for a further refining of such regions
on the basis of the model topography or its control climate. The ultimate source of
information for optimisation would be the response pattern itself, but this would
preclude the use of the optimised regions to evaluate the effects of regionalisation
on scaling,63 and introduces a further problem, in that such regions would not be
applicable to more than one model.64 A third possible solution was demonstrated
by Fotheringham and Wong (1991): the definition of regions may be carried out a
number of times for different methods of regionalisation to assess the stability of a
particular result to the regionalisation choices made.

Moreover, the problem has important implications. Mitchell et al. (1999) found that
the estimated decadal changes using the five original IPCC regions (Mitchell et al.,
1990) were an order of magnitude larger than the decadal standard deviation for
temperature (their Table II), but not for precipitation (their Table III). They argued
that their results suggest that “many of the regional changes in precipitation may
not be significant, and hence a large part of the spread in regional precipitation
changes from different models is an artefact of internal variability” (p576).
                                                            
62 Fotheringham et al. (2000) comment that “Despite the fact that the modifiable areal unit problem
has been observed for decades, we appear little closer in dealing with the problem effectively”
(pp237-238), and that “Until a general solution is found, the modifiable areal unit problem will
continue to create uncertainty in the widespread applicability of spatial analytical results.” (pp239-
240)
63 The reason for the preclusion is the circularity in logic. To define regions on the basis of the
model’s response to forcing, to apply scaling to those regions, and to evaluate regionalisation on
that basis, is circular reasoning.
64 To create a new set of regions for each GCM does not offer a solution. “If we create one zoning
system for one regression model, then include another variable and rezone to get the ‘best-fit’, then
it is not immediately clear how we compare one model with another” (Fotheringham et al., 2000,
p238).
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However, would those results and conclusions change if the regions were defined
differently? If the regions were not defined climatically, would the positive result
for temperature still stand? Conversely, if the regions were defined in a way that
was more sensitive to the model’s precipitation climatology, would the negative
result for precipitation still stand? If the spatial scale was reduced would the
results still stand?

There are good grounds for examining regions constructed from aggregations of
grid-boxes: they are well-established, well-used, climatically-relevant, policy-
relevant, and have already been employed in an investigation of pattern scaling.
There are questions about the choices we make in aggregating grid-boxes together
to form regions that have the potential to influence the conclusions we draw
concerning the validity of applying pattern scaling to such regions. These
questions concern the spatial scale and the geographical boundaries that are
chosen for the regions; they are examined in chapter 6.

2.11 Pattern scaling for multiple models
In chapter 7 we turn our attention to the application of pattern scaling to a sample
of six GCMs from the IPCC Data Distribution Centre (DDC). When we attempt to
combine different GCMs in a climate assessment we have two alternatives:

4 treat the sample of GCMs as a multi-model ensemble, extract a single response
pattern from the sample, and scale it for the purposes of a climate assessment;

4 treat each GCM as an internally consistent model, extract a response pattern
from each model, and use the patterns to give a range of scaled estimates in a
climate assessment.

Both are legitimate approaches to take: the former emphasises what the models
have in common, whereas the latter tends to emphasise the differences between
the models. If our intention is to provide a single best estimate of climate change
under a particular forcing scenario, then the former approach may be more
appropriate.65 After all, there is some evidence that the inter-model mean may be
closer to the real world than any individual model (Lambert and Boer, 2000).
However, if we are concerned to incorporate all the uncertainties in our climate
assessment then we must recognise that there are substantial uncertainties over
                                                            
65 However, we must recognise that although the response patterns from individual GCMs may
each be physically reasonable, the inter-model response pattern may not be. This is not necessarily
an obstacle to the use of the inter-model mean pattern in pattern scaling, providing that regions are
considered individually rather than in relation to each other.



33

how a GCM ought to represent the climate system. These uncertainties may, at
least partly, be incorporated by including the full range of GCM patterns in our
assessment.

Differences between models arise partly because of the limitations of human
understanding of the climate system, and partly because of the limitations of a
mathematical model. For example, there are major uncertainties in the
parameterisations that may be fundamental and irreducible (Palmer, 2000). It is
important to recognise that all of the models may be regarded as plausible,66 and
that no model may be regarded as the ‘best’.67 All of the models in the DDC
sample have weaknesses, and some may be regarded as more plausible than
others, but none can be excluded. The range of plausible models that could
conceivably be constructed is very great – indeed, it is beyond measurement – and
it is beyond the powers of humans to fully occupy that range with models.68

However, if we are to provide as full an assessment as possible of the uncertainties
in climate scenarios, we must represent the plausible range as fully as possible.

This problem parallels the problem of internal variability. In both problems the
range of possible cases is beyond measurement, and cannot be fully represented.
We cope with the inherent uncertainty from internal variability by constructing
random samples called ensembles. In theory we might mimic this strategy by
constructing a sample of models whose architectures we vary (Palmer, 2000). This
is rather different from anything currently proposed. In the Casino-21 project
(Allen, 1999) random variations are made to a few selected variables in a single
well-established model. The Hadley Centre plan to vary a number of sub-models
within a GCM and run a simulation for each variety (UKMO/DETR, 2000).

                                                            
66 “Whilst we know Newton’s laws of motion extremely well, there is no unique prescription for
representing the governing equations of climate computationally, since the process of
parameterisation is not a rigorously (or even heuristically) justifiable procedure in regions of
mesoscale organisation.” (Palmer, 2000) A practical outcome of this is the intention of the Hadley
Centre to develop at least 100 “plausible” climate models (UKMO/DETR, 2000, p10).
67 Lambert and Boer (2000) remarked that ”as is characteristic of intercomparison results, different
climate variables are simulated with different levels of success by different models and no one
model is ‘best’ for all variables”.
68 This is the case even for the ‘Casino-21’ project (Allen, 1999), which aims to run many thousands
of variants of HadCM2 in which a small number of parameters are changed. Only a limited number

of variables will be altered in a single model that aims at middle-of-the-road behaviour, that
represents the climate system in terms of a specific spatio-temporal structure, and that incorporates
only a small number of factors.
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However, it is a very different proposition to construct entirely new GCMs on a
random basis. The latter is almost inconceivable,69 despite some evidence that an
inter-model mean may be a better predictor than any single model (Lambert and
Boer, 2000). Therefore we must represent the model-related uncertainty as best we
can, using the models that are available.

However, we must recognise that the DDC sample is not a random sample of the
range of plausible models that might possibly be constructed. The members of the
DDC sample, each formulated using deterministic equations (whether a spectral
model or one based on a fixed grid), may well be more similar to each other than
they are to nature (Palmer, 2000).70 Each model has been constructed by a research
groups that has developed a ‘middle-of-the-road’ model that:
4 accords with current best practice,

4 is tuned to present conditions,

4 is limited by present computing constraints,

4 has been developed with the aim of winning acceptance for the model and the
experiments carried out with it.

The non-random nature of the DDC sample has implications for the statistical
approach we take to the DDC sample. In particular, we cannot carry out
inferential statistics with the DDC sample, and the median and range are more
appropriate measures than the mean and standard deviation.

2.12 Relevance of pattern scaling
Pattern scaling is a valuable technique in the context of climate scenario
development (section 2.2), but it reaches its full potential in a probabilistic
approach to climate assessment (section 2.7). Under the approach we suggest,
Monte Carlo techniques (section 2.4) may be applied to SCMs (section 2.6) to allow
a full assessment of the possible global climate changes that may result from
future emissions (section 2.5). Pattern scaling allows us to relate the global climate
changes to regional climate change. Thus we may be able to incorporate many

                                                            
69 It is inconceivable for a number of reasons, including: the vast funds required, the level of co-
operation required between presently competing research groups on different continents, and the
requirement to avoid matching the model to observations.
70 Raisanen (2001) adds: “Even when models have been developed to their final form at different
institutions, they often have a family relationship in the form of some similar if not identical
components”.
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sources of uncertainty (section 2.3) into climate assessments, without neglecting
the models that provide the best tools to study climate change.

We have reviewed the history of pattern scaling (section 2.7) and considered how
we might provide a fuller evaluation of it. In particular, we have:

4 extended our examination of the basic concept (section 2.8), in preparation for
our fuller analysis of the basic concept in chapter 4;

4 suggested applying pattern scaling to higher statistical moments than the mean
(section 2.9), which we attempt in chapter 5;

4 considered some spatial questions that arise in climate assessments generally,
and with pattern scaling in particular (section 2.10), which we address in
chapter 6;

4 discussed how to employ different GCMs in pattern scaling (section 2.11),
which we attempt in chapter 7.

Prior to conducting these analyses in chapters 4-7, we introduce some of our key
methods and data in chapter 3.
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3. Methods and Data

3.1 Introduction
In this chapter we introduce some of the key methods and data-sets that will be
used in our analysis. We begin by describing the technique of pattern scaling in
more detail (section 3.2). We explain our choices of variable, season, and forcing
scenario in section 3.3. In section 3.4 we briefly describe and reference the model
simulations we will be using. In section 3.5 we describe permutation testing, a
family of distribution-free techniques that we adopt in chapter 6.

3.2 Pattern scaling
In section 2.7 we introduced pattern scaling as a technique by which we may
construct regional climate scenarios. The method may be broken down into three
steps:

4 a GCM response pattern is extracted from a transient simulation and is
expressed in terms of the scaler,71 i.e. per °C change in the annual global-mean
temperature;

4 the selected forcing scenario is simulated in a SCM with the selected climate
sensitivity, giving a time series of the scaler;

4 for any selected time period, the GCM pattern is multiplied by the value of the
scaler from the SCM to give the regional climate scenario.

We illustrate this method in Figure 3.1. A probabilistic approach may be
developed by repeating the final two steps a large number of times.

We evaluate the method using GCM simulations. The best test of the method  is to:
4 extract the response pattern from one forcing scenario;

4 obtain the time series of the scaler from a second forcing scenario;

4 estimate the anomaly pattern for a period in the second forcing scenario;

4 compare the estimated anomalies with the modelled anomalies.
Internal variability complicates the evaluation. Differences might arise between
the estimated and modelled anomaly patterns as a result of internal variability,
despite having obtained an accurate estimate of the average modelled anomaly
pattern from the scaled response pattern. Therefore to evaluate the method we

                                                            
71 We use ‘scaler’ throughout, rather than ‘scalar’. The former refers to a ratio of size, whereas the
latter refers to a quantity having magnitude but not direction.
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need not only multiple forcing scenarios, but an ensemble for each forcing
scenario in which the only differences between simulations arise from initial
conditions.

There are a number of conceivable ways in which we might calculate the GCM
response pattern. Following Mitchell et al. (1999) we use a method of linear
regression by which we relate the time series in each region72 to the scaler. Having
treated each region individually, we produce a response pattern by combining the
regional results.

The time periods that we use for regression depend on the simulations that are
available. In chapter 7 we consider a variety of models, so we are restricted to the
common period (1990-2099) available from those models, as we describe in section
7.2. However, for most of our analyses it is vital that we have ensembles for more
than one forcing scenario. Therefore in chapters 4, 5, and 6 we use the HadCM2
ensembles, for which the period 1860-2099 is available.

In order to maximise the signal-to-noise patterns and construct the patterns as
robustly as possible, it will be necessary to smooth the time series. In section 4.4
we briefly investigate the effects on the signal-to-noise ratio of smoothing at
different windows. We smooth by calculating the means of overlapping periods in
the time-series, upon which we base the linear regression in chapters 4, 6, and 7. In
chapter 5 we investigate inter-annual variability, so we use the same overlapping
periods but calculate higher statistical moments: the variance, skewness, and
kurtosis. Where ensembles are available we base the regression on the individual
means from each simulation, rather than the ensemble means.

Before regressing we convert the regional and global time series into anomalies.
By using anomalies rather than the absolute values, and by assuming that the
long-term mean of the regional anomaly is zero when the scaler anomaly is zero,
we may simplify the regression equation in chapters 4, 6, and 7. Rather than
relating the regional time series (y) to the scaler time series (x) using y=ax+b, we
may assume that the intercept (b) is zero and use y=ax instead. We use the
gradient (a) to form the response pattern.

                                                            
72 Here we use ‘region’ to refer to the sub-global area that we relate to the global-mean. In practice a
sub-global area may be an individual grid-box or the mean of an agglomeration of grid-boxes. We
compare these alternatives in chapter 6.
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Although we will mostly use linear regression to define our response patterns, on
occasion we will use the time slice method to investigate the time-dependence of
the response patterns. This method is very simple: we calculate the regional
anomaly and the scaler anomaly in the chosen period, and divide the former by
the latter to obtain the response pattern. Where ensembles are used we use the
ensemble mean anomalies.

3.3 Subjects of investigation
Much of the evaluation of pattern scaling in the literature has been conducted on
just a single variable – surface temperature. In many ways this variable may
represent the best opportunity for pattern scaling:
4 temperature is the same variable as the scaler,

4 temperature is spatially continuous,

4 temperature is represented well by GCMs,

4 temperature has a high signal-to-noise ratio under radiative forcing.
Although pattern scaling is potentially of great value for other variables, its
success for temperature may not be repeated for other variables. Therefore
throughout our analyses we consider not only temperature – to provide a
benchmark and to relate our analyses to previously published work – but also
precipitation, which offers a much sterner test for pattern scaling:
4 precipitation is not the same variable as the scaler,

4 precipitation is spatially discontinuous,

4 precipitation is not represented as well as temperature by GCMs,

4 precipitation has a relatively low signal-to-noise ratio.

Another limitation of the evaluation of pattern scaling in the literature is its
restriction – in most cases – to annual means. In many parts of the world the
climate changes – particularly for precipitation – will differ between seasons, so
we need to apply pattern scaling to individual seasons. Therefore we focus our
attention upon a single season (JJA), rather than upon the annual mean.

We have already discussed the importance of sulphate aerosols (section 2.8).
However, for a number of reasons any treatment of sulphates will remain outside
the scope of our analyses:
4 Most of the sulphate-forced simulations that were available when we

conducted our analyses used the IS92 forcing scenarios, which are now
regarded as including too large a sulphate forcing (IPCC, 2000). Therefore it
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would be hard to draw worthwhile conclusions from those simulations about
the value of pattern scaling in the context of climate assessments.

4 In order to fully examine the accuracy of scaling we need model simulations
from different forcing scenarios. Moreover, for pattern scaling to be accurate
the forcing must retain the same spatial pattern between scenarios, or else the
response pattern is likely to vary between scenarios. However, the only model
for which we have ensembles for different sulphate scenarios is HadCM2, and
those scenarios do not have the same spatial patterns of sulphate forcing
(Mitchell et al., 1999).

4 In order to assess pattern scaling for a number of models we need simulations
with a common forcing scenario. However, the various climate modelling
centres have used different sulphate forcings in their simulations.

Therefore we restrict our analysis to greenhouse-gas-only simulations, which pass
each of the requirements that the sulphate-forced simulations fail:
4 The greenhouse forcing scenarios for which we have simulations are regarded

as plausible.
4 We have ensembles from different greenhouse forcing scenarios between

which the spatial pattern of forcing remains constant.
4 We have simulations from different models with near-identical greenhouse

forcing scenarios.

3.4 Model data
It is important to evaluate pattern scaling for a variety of GCMs: one GCM differs
from another (section 2.11), and since GCM-related uncertainty should be taken
into account in any climate assessment, we need to apply pattern scaling to GCMs
in general rather than to a single example. Equally, in order to conduct a thorough
examination of pattern scaling we need ensembles of simulations for a variety of
forcing scenarios. Our problem is to meet both these requirements: we have
simulations for a number of GCMs, but multiple ensembles only for HadCM2.
Our solution is to restrict most of our analysis (chapters 4, 5, and 6) to the
HadCM2 simulations, but to broaden the relevance of our results by comparing a
wider variety of GCMs in chapter 7. The reasons for our selection of the particular
GCMs used in chapter 7 are given in section 7.2, together with appropriate
references (Table 7.1).
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The second version of the Hadley Centre coupled model (HadCM2) has probably
been used in more climate impact assessments than any other GCM,73 so it is a
highly relevant model for which to examine the accuracy of pattern scaling. Many
aspects of the model have received detailed assessment.74 In addition, detailed
assessments of the model have been made for particular regions, notably for the
North Atlantic storm track region.75

HadCM2 is a coupled atmosphere-ocean model and includes representations of
both the land surface and sea ice. It is one of a series of models that have been
successively developed by the Hadley Centre, and it runs under the Unified
Model system (Cullen, 1993) for both meteorological and climatological models.
The spatial structure of the model takes the form of a grid with a horizontal
resolution of 2.5° latitude and 3.75° longitude. There are 19 vertical levels in the
atmosphere and 20 vertical levels in the ocean. Conditions in the model
atmosphere and ocean are calculated on time scales of minutes, and the two are
coupled on a daily time scale. Flux adjustments are required to prevent model
drift.

Our interest is particularly in the long control simulation (Tett et al., 1997),76 in the
‘Ga’ and ‘Gd’ four-member ensembles of greenhouse-gas-only simulations
(Mitchell et al., 1999), and in the two stabilisation simulations – s550 and s750
(Mitchell et al., 2000). We are interested in this set of simulations because they have
been performed with a single GCM, and because as a group they offer extensive
opportunities for evaluating pattern scaling. We describe the simulations below:
4 The four simulations in the Ga ensemble receive identical radiative forcing, but

their initial conditions were taken from points 150 years apart in the control
simulation. The radiative forcing in Ga represents estimated changes in
greenhouse gas concentrations for the period 1860-1990, and a 1% per annum

                                                            
73 An important reason for this is the dissemination of the model output via the LINK project.
74 The list is lengthy even if we restrict our list to Hadley Centre assessments of aspects of the
model on a global scale, which include: the model itself and its current mean climate (Johns et al.,
1997); its variability (Tett et al., 1997); its climatology in the mid-Holocene (Hewitt and Mitchell,
1998); its response to radiative forcing (Tett et al., 1996); the contribution of sulphate aerosols
(Mitchell and Johns, 1997); the ensembles for four forcing scenarios (Mitchell et al., 1999); the
simulations of stabilisation scenarios (Mitchell et al., 2000).
75 For example, Osborn et al. have compared the modelled North Atlantic Oscillation (1999a) and
downscaled UK climate (1999b) with observations, while Carnell and Senior (1998) have examined
the storm track under increased radiative forcing.
76 We have 1400 years of continuous control simulation.
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increase in concentrations for the period 1990-2099 that approximates the IS92a
scenario (Mitchell and Gregory, 1992).

4 The four simulations that make up the Gd ensemble begin in 1990, having
been initialised from their respective Ga simulations in 1990. However, when
we analyse the Gd simulations we add the period 1860-1989 from their
respective Ga simulations to give the full length of 240 years. The radiative
forcing for the period 1990-2099 is weaker in Gd than in Ga, and represents
concentrations approximating to the IS92d scenario (Mitchell and Gregory,
1992).

4 The s550 simulation (1990-2259) is initialised from Ga 2 (John Mitchell, pers.
comm.), so when we analyse it we add the period 1860-1989 from Ga 2.77 The
carbon dioxide concentrations stabilise at 550 ppm78 by 2150, but other
greenhouse gases remain at 1990 levels throughout the simulation.

4 The s750 simulation (1990-2249) is similar to s550, but the carbon dioxide
concentrations stabilise at 750 ppm by 2250.

3.5 Permutation testing
In a number of places in chapter 6 we use a distribution-free method of statistical
inference to compare methods of selecting regions. Statistical tests have been
widely used for many decades to permit inferential reasoning on the basis of a
sample. However, many tests – such as Student’s t-test – make assumptions that
strictly restrict their application, frequently including the assumption that the
reference and test distributions are normally distributed.79 There will be occasions
in chapter 6 where this assumption is not justified, so we turn to a family of
distribution-free tests called ‘permutation tests’ or ‘randomisation tests’.80

The logical basis for permutation testing is the principle of randomisation, first
conceived by Sir Ronald Fisher in the 1930s.81 The principle is easiest to grasp
                                                            
77 ‘Ga 2’ denotes the second member of the Ga ensemble.
78 ‘ppm’ denotes parts per million
79 Such assumptions are often breached in practice, but at the cost of statistical accuracy. In the
official journal of the American Heart Association, Glantz (1980) claimed that: “Approximately half
the articles published in medical journals that use statistical methods use them incorrectly”; most
of the errors tabulated concerned Student’s t-test.
80 Sprent (1998) provides a good introduction to permutation testing.
81 It was Pitman (1937a-c) who provided the first theoretical framework for randomisation tests, but
he did not claim priority of the idea: “The main idea is not new, it seems to be implicit in all
Fisher’s writings” (1937a, p119). Fisher (1935) developed the principle to test the null hypothesis
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when we consider two random samples that have been drawn from the same
population. We may regard them as a single sample, the individuals of which
have been randomly divided into two sub-samples of the sizes actually drawn. In
theory the process of randomly dividing the sample into two sub-samples might
be done for every possible permutation of individuals. We might calculate the
means of the sub-samples and the difference between the means for a particular
permutation. If we repeated this for every permutation we would obtain a
theoretical probability distribution for the difference between the sub-samples.

Now consider an experiment where we are interested in the significance of the
difference between two random samples, of unequal size and unknown
distributions. Our null hypothesis is that the two samples have been randomly
chosen from a single population (of unknown distribution). By adopting Fisher’s
principle of randomisation and following the procedure above we may construct a
null distribution against which to test our null hypothesis. If the null hypothesis is
true, the difference between sample means that we obtained will not be ‘unusual’
compared to the null distribution of differences between sample means. It is this
method of statistical testing that we adopt in certain places in chapter 6.

Although the principle and its applications have been well known for much of the
20th century, it has never been very widely used. This is not because of any fault in
the method itself, but rather because of the immense number of calculations that
must be made in order to establish the null distribution.82 This obstacle has been
overcome with the advent of computers. Where there are too many permutations
to calculate each, we may obtain a very good approximation to the theoretical null
distribution by sampling the permutations with Monte Carlo methods.

Although no assumption is made about the parent distributions, it is essential that
the samples are random. In the past, confusion about the value of permutation
techniques has arisen because temporal auto-correlation has tampered with this
                                                                                                                                                                                        
that seeds from two populations would produce the same sized plants under the same conditions.
See Edgington (1987, p17-21) for a discussion of the early history of the principle.
82 Fisher (1935) considered a reference set of 32,768 data permutations, and Edgington (1987, p18)
comments that “It is a credit to Fisher’s analytical ability that he could determine what proportion
of the data permutations provided as large a difference between totals as the obtained value
without computing the test statistic for all 32,768 data permutations.” In 1968 Bradley described
randomisation tests as “among the best tests to be found” (p83), being “superior or equal to their
parametric counterparts in the generality of cases” (p83), but concluded that they were “little more
than statistical curiosities” (p84) because of the computational problem.
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assumption.83 Ben Santer’s PhD thesis (1988) and the papers published following it
(Santer and Wigley, 1990; Wigley and Santer, 1990) used randomisation methods
without making allowance for temporal autocorrelation, and were justly criticised
on those grounds (Santer, pers. comm.). Model simulations with lengths of 10, 20,
and 35 years were used, and adjacent single year time slices were permuted.
Barnett et al. (1998) also recognised the temporal auto-correlation problem when
they used overlapping periods to estimate null distributions.84 Nonetheless, when
properly applied the technique is still a valuable one.85 We do not have the
problem of temporal auto-correlation because we sample regions, not periods. If
we used every region in a permutation test we would have the parallel problem of
spatial auto-correlation, but we only employ a few widely-separated regions in
any single test, so spatial auto-correlation is not a problem in this thesis.

                                                            
83 Livezey (1995) concluded that: “serial correlation … is perhaps the most serious difficulty the
analyst faces in the application of permutation or Monte Carlo techniques. Without attention to its
effects it is completely debilitating to the effectiveness of the procedures.” (p171).
84 Barnett et al. (1998) deliberately added a caveat to their estimates: “Obviously these estimates are
not independent due to the temporal autocorrelation” (p663). They also felt constrained to use
speech marks when referring to a ‘significance threshold’ (p667).
85 Livezey (1995) recognised the value of permutation tests in a wide variety of situations: “In these
instances the permutation and Monte Carlo techniques described in this chapter are generally
effective alternatives for hypothesis testing.” (p159) “A knowledge of the material in this chapter,
consultation of the listed references when needed, and some creativity will permit the application
of permutation techniques in a wide variety of test situations.” (p175)
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Figure 3.1
The technique of pattern scaling.

response pattern

climate scenario

SCM time series

1. A response pattern is extracted from a GCM, and each grid-box response is
expressed in °C per °C of global annual temperature change (top left).

2. A number of SCM simulations (green, red) are performed for various
emissions scenarios, and the global annual temperature change (‘the scaler’) in
those simulations is expressed in °C as a function of time (top right).

3. We select a particular time period under a particular emissions scenario, and
determine the value of the scaler from (2). For example, the scaler is 2°C under
both the red scenario in 2020 and the green scenario in 2030. We multiply the
response pattern from (1) by the scaler from (2) to obtain an estimate of the
temperature anomaly pattern (bottom) for the selected period and emissions
scenario, in °C.

Thus there is a perfect correlation between the GCM response pattern and the
climate scenario. The only difference between them lies in the magnitude of the
climate scenario.
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4. May we use pattern scaling?

4.1 Introduction
In this chapter we examine the possibility of multiplying climate response patterns
by a scaler (global-mean annual temperature) to estimate changes under
unmodelled forcing scenarios. We use linear regression to construct the spatial
patterns. Linear regression has been used before to construct patterns of change on
centennial time scales (e.g. Hennessy et al., 1999). We build upon the earlier work
of Mitchell et al. (1999) in evaluating pattern scaling, and considerably extend their
work. We make a number of choices at the outset concerning the data that we use
to evaluate pattern scaling. In particular, we consider:
4 a single model (HadCM2),

4 not only temperature but also precipitation,

4 not only the scenarios with ensembles (Ga and Gd), but also – where possible –
the stabilisation scenarios,

4 not annual but seasonal (JJA) changes.
We do not merely consider how accurate scaling is, but we also examine the errors
introduced by pattern scaling in some detail, together with the sources of those
errors. We consider both the statistical and practical significance of the errors. We
consider variations in the accuracy of pattern scaling both over time and spatially.

We begin by discussing the relationships between global-mean climatic change
and the scaler, as the basis for all that follows (section 4.2). Non-linear behaviour
that arises in that discussion is treated further in section 4.3. We construct signal-
to-noise ratios to establish the extent to which there are patterns of response to
radiative forcing that may be identified against the background noise of internal
variability (section 4.4). These discussions are instructive preliminaries to the main
tasks of constructing the response patterns (section 4.5), and using them to
estimate climate changes. We examine the errors introduced by pattern scaling in
terms of both spatial patterns (section 4.6) and time-series (section 4.7).

We evaluate these errors in the context of the alternatives to pattern scaling by
comparing the errors introduced by pattern scaling with those introduced by
assuming that the global-mean applies at each grid-box (section 4.8). We also
calculate the additional errors that would be introduced by constructing a
response pattern from a single simulation rather than an ensemble (section 4.9).
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Following the conclusions (section 4.10) we add two appendices referred to in the
text.

4.2 Global-mean behaviour
We begin with the time series of global-mean JJA temperature and precipitation86

(Figure 4.1, top). The global climate changes vary among the four forcing
scenarios, so these scenarios provide a good opportunity to examine whether it is
reasonable to use pattern scaling to estimate changes under unmodelled forcing
scenarios. Because both precipitation and temperature data are available we may
examine whether it is legitimate to scale response patterns for a variable other
than temperature. However, in order for pattern scaling to be accurate there must
be an approximately linear relationship between the variable in question and the
scaler. We consider this relationship at the spatial scale of the global-mean by
plotting the same set of time-series (from Figure 4.1, top) against the scaler (Figure
4.1 bottom), and find that the relationship is indeed approximately linear.

Since the relationships between the scaler and seasonal climatic responses to
radiative forcing are close to linear for the global-mean, it is reasonable to consider
the same relationship at the spatial scale of the grid-box. For anomalies in °C or
mm/day the global-mean expresses the global average of the relationships
between grid-box anomalies and the scaler, so on the basis of Figure 4.1 we
conclude that on average, grid-box anomalies of temperature (°C) and
precipitation (mm/day) are linearly related to the scaler. However, this only
applies to anomalies expressed in °C and mm/day, not when the anomaly is a
percentage.

In Figure 4.2 we compare the relationships with the scaler of precipitation
anomalies calculated as:

4 a global-mean percentage change (left), and

4 the percentage change for each grid-box, averaged over the globe (right).
This comparison shows that although the former relationship is linear, the latter is
non-linear, which suggests that we will introduce errors by scaling response
patterns representing percentage changes in precipitation. We return to this
subject in section 4.3.

                                                            
86 Precipitation anomalies are expressed both in mm/day and as percentages, because either or
both may be useful in a particular region.
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For pattern scaling to be relevant, the scaler must relate to the grid-box anomalies
in a similar way across the range of forcing scenarios. Figures 4.1 and 4.2 (bottom)
suggest that in general, the relationships with the scaler are reasonably similar
from one forcing scenario to another. We quantify the similarities by calculating a
best-fit line87 for each variable and simulation (Figure 4.3).

Figure 4.3 shows that the relationships between the scaler and grid-box
temperatures in Ga and Gd are very similar; both scenarios warm in boreal
summer (JJA) with approximately 85% of the annual warming (Figure 4.3, top
right). However, the stabilisation scenarios diverge from Ga and Gd, suggesting
that as annual temperature is stabilised, boreal summer (JJA) continues to warm
relative to the other seasons. Therefore any JJA response pattern derived from the
stabilisation scenarios will be warmer than a JJA response pattern derived from
non-stabilisation scenarios. Senior and Mitchell (2000) reached a similar conclusion
from a simulation where CO2 was stabilised after doubling, and made a similar
connection with pattern scaling.

The various forcing scenarios exhibit relationships between global-mean
precipitation and the scaler that, although similar, are distinct from each other
(Figure 4.3, left). It is unlikely that the differences between scenarios are due to
internal variability. Firstly, the range between Ga 4 and s550 is 0.25% (or 0.007
mm/day) per degree of annual warming,88 whereas the range within the Ga
ensemble is only 0.04% (or 0.001 mm/day) per degree of annual warming.
Secondly, the order between the forcing scenarios corresponds to their rates of
increase in radiative forcing: The rate of enhancement of global precipitation (per
degree of annual warming) increases from Ga, through Gd and s750, to s550,
whereas the rate of increase in radiative forcing decreases from Ga, through Gd
and s750, to s550.

How might the rate of increase in radiative forcing have an inverse effect on the
rate of enhancement of global precipitation? This is an important question with
implications beyond pattern scaling, but because of the computational expense of
performing simulations for a variety of forcing scenarios it has not been closely

                                                            
87 The best-fit line (y=ax) is calculated by least squares regression and is constrained to pass
through the origin.
88 Hulme et al. (1998) made similar calculations, but the values calculated here are only broadly
comparable with those from Hulme et al. (1998), since they examined annual (not seasonal)
precipitation, for the period 1900-1996 (not 1860-2099).
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examined. However, it has been noted that the magnitude of surface temperature
change depends on not just the magnitude, but on the rate of increase in radiative
forcing (Kattenberg et al., 1996). We also know that much of the heat resulting
from any increase in radiative forcing goes into evaporating surface moisture
(Trenberth, 1999). The importance for response patterns of this temperature-
moisture connection may be judged by the fact that it is the limited moisture
available for evaporative cooling of the land that is partly responsible for the
simulated land-sea temperature contrast.89

It seems reasonable to suggest that the slower the rate of increase in radiative
forcing, the greater will be the warming of the ocean as a proportion of the total
warming; therefore evaporation and hydrological intensification will also be
greater. We demonstrate that the first element of this hypothesis is true for
HadCM2 from the Ga and Gd ensemble means by using the 1.5m air temperature
over the oceans as a proxy for sea surface temperatures. The reduced rate of
increase of radiative forcing in the Gd compared to the Ga scenario means that the
land warms less (per degree of global warming), and the oceans warm more.90

In Figure 4.4 we compare global-mean temperature and precipitation (in JJA) with
radiative forcing. It is interesting that the amount of warming itself depends on
the rate as well as the magnitude of the increase in radiative forcing (bottom left).
However, we are particularly interested in the comparison between temperature
and precipitation. We find that whereas the global-mean JJA temperature anomaly
increases by 11.9% between equivalent periods in Ga and Gd,91 the precipitation
anomaly increases by 18.4%.92 A similar contrast may be found in Figure 4.1
(bottom), where the dependence on the rate of increase in the scaler is – although
still slight – greater for precipitation than it is for temperature. Therefore we
conclude that not only does the amount of warming depend on the rate of change
in radiative forcing, but the hydrological intensification is even more dependent.

                                                            
89 Other important factors include the thermal inertia of the oceans, stronger feedbacks over land,
and changes in cloudiness (Kattenberg et al., 1996).
90 The numbers for Ga [Gd] are as follows: per degree of change in the scaler, the change in annual
temperature for 2070-2099 is 1.255°C [1.237°C] over land, and 0.873°C [0.881°C] over the oceans.
91 We make the comparison for the periods 2070-2099 (Gd) and 2027-2056 (Ga), when the additional
radiative forcing in each scenario is 4.52 Wm-2.
92 The temperature anomalies (°C) are 3.01 (Gd) and 2.69 (Ga). The precipitation anomalies (%) are

5.28 (Gd) and 4.46 (Ga).
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This evidence suggests that our hypothesis is correct: the slower the rate of
increase in radiative forcing, the greater will be the warming of the ocean as a
proportion of the total warming; therefore the evaporation and hydrological
intensification will also be greater. On this basis we expect to find that errors are
introduced when scaling a pattern from one scenario to estimate precipitation
changes in another scenario, because the intensification of the hydrological cycle
will depend on the rate of global warming as well as its magnitude.

Furthermore, we have identified from Figure 4.4 that the global temperature change
is also dependent upon the rate of increase in radiative forcing. Senior and
Mitchell (2000) found that in a stabilisation simulation the warming under a
doubling of CO2 increased over time due to cloud feedbacks in the southern
hemisphere; it appears from Figure 4.4 (bottom left) that the warming under a
doubling of CO2 may also vary between forcing scenarios. As Senior and Mitchell
(2000) point out with regard to variations in the effective climate sensitivity over
time, such variations are likely to be an important source of errors introduced by
pattern scaling. However, these particular errors cannot be investigated without
carrying out a full comparison of the values of the scaler simulated by GCMs and
simple climate models, which is beyond our scope here.93

4.3 Non-linear precipitation response
In section 4.2 we considered global-means, but we noted in passing that the global
average of grid-box precipitation percentage anomalies is a different statistic. We
plotted this statistic against time and global annual temperature (Figure 4.2, right),
and we calculated corresponding best-fit lines (Figure 4.3, bottom right). We have
already noted the non-linearity of this statistic’s relationship with the scaler
(Figure 4.2, bottom right), which is characteristic of each of the forcing scenarios
and appears to be consistent between them. It is worth noting that the non-
linearity makes it inevitable that the best-fit lines will differ between forcing
scenarios (Figure 4.3, bottom right),94 so the differences between best-fit lines do
not imply that the relationship between precipitation and the scaler is different
among the various forcing scenarios.95

                                                            
93 The interested reader is referred to Raper and Cubasch (1996) and Raper et al. (2001).
94 The non-linearity means that the gradients are chiefly dependent on the amount of radiative
forcing in the scenario, rather than on the relationship between precipitation and the scaler.
95 However, if we calculate a best-fit line for each grid-box in order to generate a response pattern,
the differences in gradient displayed in Figure 4.3 will be manifested in the derivation of different
response patterns from different forcing scenarios.
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Why is the global-mean linear when the grid-boxes are non-linear (Figure 4.2,
bottom)? We might express the same problem in a different way. Why are the
global-mean mm/day anomalies linear (Figure 4.1, bottom centre) when the
global-mean percentage anomalies are non-linear (Figure 4.2, bottom right)? It is
evident that we cannot offer an explanation while assuming that the precipitation
at each grid-box is linearly related to the scaler.96 Therefore the non-linearity
implies that – for at least some of the grid-boxes – the precipitation response
changes over time in relation to the scaler, and therefore in relation to radiative
forcing. It is these changes that make the percentage anomalies non-linear.
However, the non-linear changes at the grid-box level must balance over the globe
as a whole,97 because the global-mean changes remain linear.

We may represent the energy that drives the global hydrological cycle in terms of
global temperature, which is linearly related to radiative forcing, so it is not
surprising that global-mean precipitation is also linearly related to radiative
forcing (Figure 4.4). However, the regional manifestations of the hydrological
cycle are often characterised by discontinuities and thresholds, so neither would it
be surprising if a continuous global-scale increase in energy were to cause
discontinuous changes in precipitation in particular regions. The rate of global
precipitation change (as a function of the scaler) would not vary, but the rate of
precipitation change in individual regions would vary. We might hypothesise that
the initial response would be to increase precipitation rates in regions of high
precipitation, and that the later response would be to increase rates in regions of
previously low precipitation. In this case the percentage changes in precipitation
in the regions affected would initially be low, but then increase much more
sharply. Averaged over the globe, these hypothesised responses would give the
non-linear relationship described.

Is our hypothesis plausible? If surface temperature is increased due to increased
radiative forcing, among the consequences will be an increase in the water-holding
capacity of the atmosphere and an increase in evaporation. These hydrological
changes should increase the actual moisture content of the atmosphere and

                                                            
96 If the precipitation at each grid-box (as a percentage anomaly) were linearly related to the scaler
then the global average of the grid-box percentage anomalies would also be linearly related to the
scaler.
97 i.e. a disproportionate change in one region must be balanced by a disproportionate change in
one or more other regions.
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increase global precipitation. These expectations are consistent with observations:
the former has been widely observed in recent decades (e.g. Gaffen et al., 1991),
and the Second Assessment Report of the IPCC (Nicholls et al., 1996) reported a
small positive trend in precipitation over the 20th century. However, the regional
manifestations of these global trends are highly variable. On the one hand,
increased atmospheric moisture suggests more intense rainfall events, reasoning
that is consistent with observations (e.g. Karl and Knight, 1998). On the other
hand, naturally-occurring droughts are likely to be exacerbated by enhanced
potential evapotranspiration (e.g. Gregory et al., 1997). This reasoning supports the
first half of our hypothesis, that the initial increases in precipitation might be
located in regions of high precipitation.

The second half of our hypothesis, that the later response might be located in
regions of lower precipitation, is suggestive of dynamical changes bringing
precipitation to different regions, rather than intensity changes within the same
regions. Trenberth (1998) notes that dipole-like changes in precipitation patterns
should occur if mid-latitude storm tracks shift meridionally (e.g. Hurrell, 1995), or
if there are changes in the behaviour of ENSO.  It is uncertain why a change in
emphasis from intensity changes to dynamical changes should take place.  

We test our hypothesis using the Ga ensemble mean. By calculating the
precipitation anomaly (mm/day) for each grid-box for the periods 2010-2039
(‘2020s’) and 2070-2099 (‘2080s’) and dividing them by the global-mean
temperature anomalies for these periods, we obtain response patterns for the early
and late 21st century.98 We compare the difference between the response patterns
with the precipitation rates in the control simulation. We find that over the 21st

century the response in the wettest grid-boxes (in the control) diminishes, but the
response in the drier grid-boxes (in the control) is enhanced.99 Moreover, the
diminution and enhancement almost balance.100

                                                            
98 This piece of analysis anticipates our full description of the construction of response patterns in
section 4.5 (particularly Figure 4.17), so we do not present detailed reasoning or figures at this
point.
99 There are 324 grid-boxes (4.8%) with at least 8.0 mm/day in the control simulation, and 3501
grid-boxes (51.4%) with less than 2.0 mm/day. Between the 2020s and the 2080s the change in
response to radiative forcing in the wettest grid-boxes averages –0.217 mm/day (per degree of
global warming), and in the drier grid-boxes averages 0.017 mm/day.
100 The change in the wettest grid-boxes represents a change of –0.0103 mm/day (per degree of
global warming) in global-mean precipitation, whereas the change in the drier grid-boxes
represents a change of  0.0087mm/day.
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If our analysis is correct, then difficulties will be introduced in estimating
precipitation101 by scaling from one point in a forcing scenario to another point in
the same scenario. Any response pattern derived from an early part of a forcing
scenario might be different from one derived from a later part. Consequently the
application of the early response pattern to a later part of the forcing scenario will
introduce errors.

It is conceivable that if we derive a response pattern from a set of time series rather
than a single period,102 the pattern may even distort the real changes, by
displaying weakened versions of precipitation responses that are non-existent for
part of the scenario, and prominent features for another part. In other words,
estimates constructed by scaling the pattern are likely to err in one direction early
in a scenario, and err in the other direction later in the scenario. Since the majority
of the radiative forcing takes place after the 20th century, we expect the errors to be
greatest in the early and late parts of the 21st century, and smallest in the mid-21st

century. However, the cost to accuracy of constructing a response pattern using a
single period at the end of the forcing scenario rather than using a time series
would be even larger, because the pattern would represent a single extreme
period, rather than an average among the periods.

4.4 Signal-to-noise ratios
We have examined the relationship between climate changes and the scaler. We
may take our analysis a step further by examining the climate responses in the
context of internal variability, in the form of signal-to-noise ratios. By this method
we may evaluate the likelihood of being able to extract from the perturbed
simulations a pattern of response to increased radiative forcing that is distinct
from internal variability.

4.4a Spatial heterogeneity of response

We follow the approach adopted by Mitchell et al. (1999), who calculated signal-to-
noise ratios for temperature and precipitation response patterns. 103 Their ratio
                                                            
101 It is only for precipitation that we have examined percentage anomalies. It is possible that
percentage anomalies of temperature might show similar features.
102 i.e. We use one time series per grid-box, rather than one period per grid-box, and calculate a
best-fit line over time rather than simply dividing the period mean by the scaler.
103 They describe their method in their Appendix; the results are plotted in their Figures 1c (for
temperature) and 12 (for precipitation).
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provides a single global measure of the extent to which there is a spatially varying
response to increased radiative forcing. Under any such response, as radiative
forcing increases the grid-box anomalies will increasingly diverge from the global-
mean anomaly; thus the signal – the squared differences between the grid-box and
global-mean anomalies – increases. As radiative forcing increases and the response
pattern increasingly dominates internal variability, so the signal-to-noise ratio
increases.

4.4b Method of calculation

Mitchell et al. (1999) chose to use ten-year means in order to “filter out major
oscillations such as those due to El Niño / Southern Oscillation”, and in order not
to “smooth out any secular change in the [response] pattern” (p555). Mitchell et al.
(1999) also chose to calculate anomalies relative to the 1961-1990 mean “because it
is changes from the present day that are of interest to the impacts community,
rather than changes from the control simulation which represents pre-industrial
climate” (p555). However, the climatologist’s problem is to identify the response
pattern as robustly as possible. A strength of the pattern scaling technique is that
having identified that response pattern and scaled it, the problem of presenting
the estimated changes with reference to the desired base period is trivial.
Therefore we believe that if we can identify a response pattern more robustly than
Mitchell et al. (1999) were able to do, then we should do so.

Our initial objective is to identify the method of calculating anomalies that gives
the highest signal-to-noise ratios, so that we may identify response patterns as
clearly as possible. Therefore at this point we calculate annual signal-to-noise
ratios for two forcing scenarios (Ga and Gd) for the last part of the 21st century.
Except where we state otherwise, we calculate the signal (Equation 4.2.1), noise
(Equation 4.2.2), and signal-to-noise ratio (Equation 4.2.3) in precisely the same
way as Mitchell et al. (1999), using the same method of weighting grid-boxes
according to the spatial area they represent (Equation 4.2.4). We explain in
Appendix 4.1 why the results we obtained are different from those plotted in
Mitchell et al. (1999). Here we examine the dependence of the signal-to-noise ratios
we obtain on the choices we make in anomalising.

Mitchell et al. (1999) reported that the maximum signal-to-noise ratio for
precipitation in the Gd ensemble (in the 2090-2099 period)104 “barely achieves a
value of 2 to 3” (p572, cf. their Figure 12). On this basis they suggest that “many of

                                                            
104 The period mean was anomalised against the 1960-1989 period in the Ga ensemble.
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the regional changes in precipitation may not be significant” (p576). We carried
out a number of similar calculations (Figure 4.5, top centre):
(a) We repeated their calculation and obtained a value between four and five (left-

hand green bar). 105

(b) We increased the period length from 10 years to 30 years, and considered the
signal-to-noise ratio for the 2070-2099 period.106 Despite the mean forcing over
that period being smaller than for the 2090-2099 period, the precipitation
signal-to-noise ratio increased by about 15% in Gd to five and a half (central
green bar). The ratio increased because the decrease in noise due to a longer
period (25%)107 exceeded the decrease in signal (11%) from using a period with
smaller averaging forcing.

(c) Therefore we continued to use the 30-year period length, but this time we
anomalised the 2070-2099 period against the first 240 years of the control.108 We
found that the Gd precipitation signal-to-noise ratio increased by a further 80%
to almost ten (right-hand green bar), because not only did the noise decrease
further (by a further 27%),109 but the signal also increased (by a further 29%).

We conducted similar comparisons for temperature (Figure 4.5, top left), and for
unweighted temperature and precipitation (Figure 4.5, bottom), and found a
similar dependence of the signal-to-noise ratio on the period length and on the
base from which anomalies are constructed. These results indicate that we may

                                                            
105 Appendix 1 examines the differences between the Mitchell et al. (1999) and our own results.
106 We still anomalised the period mean against the 1960-1989 period in the Ga ensemble.
107 These bracketed percentages refer to the changes in weighted precipitation (mm/day) in the Gd
ensemble, but the same argument applies to all the variables, weighted or unweighted, and to both
ensembles.
108 Because Mitchell et al. (1999) anomalised against the period 1960-1989, they constructed their
control anomalies using bases within 140-year periods, so model drift did not influence the noise
they calculated. Here we constructed control anomalies for the final 1160 years using the first 240
years as our base (see footnote in Equations 4.2), so before anomalising we detrended the full 1400
years in each grid-box by removing the gradient from the best-fit line (by least squares regression)
through the time series. Thus we removed any model drift before calculating the anomalies on
which our estimate of the noise (Equations 4.2) is based.
109 In other words, the noise from the Mitchell et al. (1999) method (using the anomalies in the final
30-year periods (relative to the initial 30-year periods) in 140-year segments of the 1400-year
control), is reduced by 27% when we use our method of calculating noise (using the anomalies in
30-year periods (separated with 10-year gaps) in the final 1160 years of the 1400-year control,
relative to the first 240 years). This is probably due to a reduction in the noise from the base period

itself when we move from a 30-year base to a 240-year base.
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improve on the signal-to-noise ratios calculated by Mitchell et al. (1999) by using
30-year averaging and anomalising against the first 240 years of the control. It was
on the basis of the weak signal-to-noise ratios they found for precipitation that
Mitchell et al. (1999) argued that the regional precipitation responses were “at best
marginally significant” (p574). Therefore we conclude that the larger ratios we
have found suggest that many of the regional changes in precipitation may in fact
be significant after all, and that it is reasonable to attempt to scale them.

4.4c Examination of spatial heterogeneity

We now apply our modified method to time series of temperature and
precipitation for the full suite of forcing scenarios. We display the results in
Figures 4.6 and 4.7 for individual simulations and ensemble means respectively.
We may compare the seasonal (JJA) and annual signal-to-noise ratios for the 2080s
by comparing the final points plotted in Figure 4.7 (JJA) with the right-hand bars
in each panel of Figure 4.5 (annual). The differences between them are consistent
between variables: in each case the seasonal signal-to-noise ratio is slightly less
than its annual equivalent, as one might expect. The most critical decrease is in Gd
precipitation (%), where the 2080s ratio decreases from nine (annual) to six (JJA).
Since in the most critical case the signal-to-noise ratio at the end of the simulation
is as high as six, we expect to be able to identify seasonal precipitation response
patterns in a similar manner to the identification of annual temperature response
patterns by Mitchell et al. (1999).

The signal-to-noise ratios of the individual simulations (Figure 4.6) are much
smaller than those of the ensemble means (Figure 4.7), but they permit a fair
comparison between the ensembles and the stabilisation scenarios. It is
particularly noteworthy that the signal-to-noise ratios are very similar between
forcing scenarios at similar levels of global warming: the inter-scenario differences
appear to be no larger than those due to internal variability (Figure 4.6 bottom). In
particular, the signal-to-noise ratios of the unstabilised scenarios (Ga and Gd)
closely approximate to those of the stabilisation scenarios (s550 and s750) (Figure
4.6 bottom).

In section 4.2 we found that the relationship between seasonal global-mean
anomalies and global annual temperatures was approximately linear (Figure 4.1
bottom). That is not the case here, where the variables exhibit varying degrees of
non-linearity between seasonal signal-to-noise ratios and global annual
temperatures (Figure 4.6 bottom). The most obviously non-linear are the
precipitation (%) anomalies, but a careful visual inspection shows that the
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precipitation (mm/day) anomalies are also non-linear; it is possible that the
temperature anomalies are also non-linear, but if so the departure from linearity is
very small.

The differing degrees of non-linearity among the variables in Figure 4.6 complicate
any comparison of them, but it is reasonably accurate to state that at the same
scaler value, the temperature signal-to-noise ratios are between 25% and 50%
greater than the precipitation (mm/day) signal-to-noise ratios. In the lower part of
the scaler range, the precipitation signal-to-noise ratio for mm/day anomalies
exceeds that for percentage anomalies, but in the upper part of the range the
percentage ratio increases more swiftly, so that the percentage and mm/day ratios
are nearly equal by the end of the Ga scenario. The non-linear increases in
precipitation signal-to-noise ratios are consistent with our hypothesis (section 4.3)
that initial increases in precipitation rates in regions of high precipitation are
followed by increased rates in regions of low precipitation.

4.4d Grid-box responses

The signal-to-noise ratios described above provide us with a single global measure
of the extent to which there is a spatially heterogenous response to radiative
forcing. We may also treat the grid-boxes individually and calculate for each grid-
box the extent to which a response to radiative forcing can be identified from the
noise of internal variability. If we plot a single signal-to-noise ratio for each grid-
box, we may produce a pattern indicating the location of the regions where the
responses to radiative forcing are most clearly distinguished from noise. To
construct such a ratio (Equation 4.3.3) we use an ensemble mean as the signal
(Equation 4.3.1), and construct the noise (Equation 4.3.2) from the control standard
deviation for that grid-box.

The method of construction of these spatially-varying signal-to-noise ratios means
that the ratios are identical whether based on percentage or mm/day anomalies,
so we only plot the ratios for temperature (Figure 4.8) and precipitation (mm/day,
Figure 4.9). The need for ensembles restricts us to the Ga (top) and Gd (bottom)
forcing scenarios. We are also restricted to a single ratio for each grid-box on a
single plot,110 but we summarise the early and late 20th century in two separate
plots using ratios based on the 2020s (left) and 2080s (right). The magnitudes of
some of these ratios – when globally averaged – are much larger than the ‘pattern’

                                                            
110 If we were examining a particular region, it might be of greater interest to restrict the number of
grid-boxes, and to plot a time series for each grid-box of the ratios of overlapping 30-year periods.
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ratios calculated above because of the method of construction, but our concern
here is with the spatial differences rather than the magnitude.111

Zonal differences dominate the temperature signal-to-noise ratios (Figure 4.8); the
tropics and parts of the subtropics have the largest ratios.112 As the radiative
forcing increases through the forcing scenarios, so the signal-to-noise ratios
increase across most of the globe. The precipitation signal-to-noise ratios (Figure
4.9) do not have the same zonal structure as the temperature ratios; they vary
within latitudinal bands to the extent that in many places the polarity of the
response flips from one side of a continent or ocean to the other. The similarity
between these signal-to-noise patterns and the response patterns (introduced
below) indicates that for precipitation the pattern of the signal is a more important
influence on the signal-to-noise ratios than the pattern of the noise. As with
temperature, the increase in radiative forcing through the forcing scenarios
increases the magnitudes of the signal-to-noise ratios across most of the globe.

4.5 Response patterns
Our overall objective is to estimate climate changes by linearly scaling a response
pattern. We have shown that although grid-box temperature and precipitation are
linearly related to the scaler, for individual grid-boxes the precipitation response
may be non-linearly related to the scaler. We have also identified the regions
where those responses are most clearly identifiable from the noise of internal
variability. In this section we construct response patterns.

4.5a Initial patterns

                                                            
111 Figure 4.8 displays temperature signal-to-noise ratios greater than 90 for particular grid-boxes.
These are genuine results. Annual ratios are similarly large. In the final 30-year period of the 21st

century the annual anomaly in some grid-boxes (relative to the first 240 years of the control)
amounts to 10°C (for confirmation see Mitchell et al., 1998, Figure 11b). The standard deviation of
decadal means of annual temperature estimated from the control simulation is mostly 0.2°C or less
(for confirmation see Mitchell et al., 1999, Figure 5a). Thus the literature implies ratios of 50; these
ratios increase further when we reduce the noise to the level of a 30-year period, and when we
allow for the use of an ensemble.
112 There are two possible reasons for the zonal structure. One possible reason is that it results from
the noise; it is plausible that the noise might be larger in the extra-tropics than in the tropics, and
the signal is certainly dominated by the land-sea contrast (e.g. Mitchell and Johns, 1997). The other
possible reason is that the noise also has a land-sea contrast that cancels out the land-sea contrast in
the signal.
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Initially we construct response patterns using the entire length of run in the Ga
ensemble, by applying least squares regression to each grid-box in turn. Following
the results of our signal-to-noise analysis (section 4.4) we use 30-year period
means and anomalise against the first 240 years of the control. For each grid-box
we calculate a constant rate of change (a) in the variable (y) per degree of global
annual warming (x), using least squares regression. Rather than fitting to absolute
values of x and y, which would require an equation with two constants (y=ax+b),
we fit to the anomalies of x and y, for which we do not need an intercept (y=ax).
Our response pattern consists of the value of a in each box.

We construct response patterns for temperature113 and precipitation (Figure 4.10).
These response patterns are similar to the patterns of change considered in the
IPCC Second Assessment Report (Kattenberg et al., 1996), and are broadly
consistent with other coupled models. The warming over land is greater than over
the ocean. Warming is minimised in the North Atlantic and Southern Ocean
(except in the sea-ice areas) due to deep convection. The differences between the
response patterns for mm/day and percentage precipitation anomalies illustrate
the value of using both in any assessment of the response of precipitation to
radiative forcing. Most of the global increase in precipitation occurs in the tropics,
but not uniformly; in some tropical regions there are large increases in
precipitation while other regions become drier. There are also substantial increases
in precipitation in mid-latitudes, particularly in the southern hemisphere (for
which JJA is winter).

4.5b Sources of differences between temperature patterns

We recognise that if the response to radiative forcing changes during the course of
a forcing scenario, a response pattern constructed using the entire length of run
will not represent the response for particular periods of time as accurately as it
might otherwise do. Therefore we examine whether there are changes in the
response pattern during the 21st century. We extract response patterns for two
periods in the 21st century from the Ga ensemble and calculate the statistical
significance of the differences between them (Equations 4.4). We display the
results in Figure 4.11.114

                                                            
113 Mitchell et al. (1999) plotted (their Figure 2) a similar pattern for annual (not seasonal)
temperature using the period 1990-2099 (not 1860-2099).
114 We plot the 2020s pattern (top left). We also plot the differences between the patterns (top right),
the statistical significance of the differences (bottom left), and a measure that we call the
‘strengthening of the pattern’. For details of this final measure see Table 4.1.
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Figure 4.11 shows that the differences (top right) between the patterns from the
2020s (top left)115 and the 2080s are statistically significant in nearly half the grid-
boxes (bottom left). The largest changes during the 21st century are a relative
warming of the tropics at the expense of extratropics. As a measure of the
‘strengthening of the pattern’ we express the change in response during the 21st

century as a fraction of the 2020s pattern, but plot only those grid-boxes where the
change is statistically significant (bottom right). This pattern represents the
statistically significant strengthening (and weakening) of the response pattern
during the 21st century. (Table 4.1 gives further details of the meaning of this
pattern.) These changes in response during the course of the forcing scenario
imply that estimating changes by scaling response patterns will introduce errors.
The summary statistics in Figure 4.11 (caption) present two ways of sub-dividing
these changes:

 i. The statistically significant changes may be sub-divided into a reversal of the
direction of the response in 6.9% of the grid-boxes, a diminution of the
pattern’s strength in 18.3%, and an enhancement in 17.6%.116

 ii. The statistically significant changes may be sub-divided into those that are
small relative to the response itself, and those that are large. This is one
measure of the practical significance of the changes: a statistically significant
change may be practically insignificant if it is only a small change. Here we
arbitrarily select a change of a fifth as the boundary between small and large
changes: under this definition 32.2% of the grid-boxes show changes that are
both statistically and practically significant.

A further potential source of errors lies in the differences in response between one
forcing scenario and another. However, since there are changes in response
pattern within a single forcing scenario, we cannot compare response patterns
derived from the entire lengths of different forcing scenarios without contaminating
our comparison. Therefore we based our comparison on 30-year periods within
the forcing scenarios when the scaler is approximately the same:

                                                            
115 Note that the range of the scales is 2°C in both of the top plots.
116 The changes expressed here are to the spatial pattern of the seasonal temperature changes
accompanying a change in annual global-mean temperature. Thus a reversal in direction refers to a
change in the response from being smaller than the scaler to being larger (or vice versa). A
diminution [enhancement] of the pattern’s strength refers to a change in the temperature response
of the individual grid-box such that it becomes closer to [further from] the value of the scaler.
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4 To compare s550 and Ga we selected four independent periods from s550 and
four equivalent periods from the four Ga members.117

4 To compare s750 and Ga we repeated this procedure, selecting different
periods.

4 To compare Gd and Ga we selected a period from Gd (for all four realisations)
and an equivalent period from Ga (for all four realisations).

For each comparison we constructed a single response pattern from the four
periods from each forcing scenario, and subtracted the Ga pattern from the other
pattern (Figure 4.12).

Thus each plot in Figure 4.12 is a comparison of two patterns derived from
responses with the same scaler, but the scalers are not the same between the
various plots. Given the changes in response that occur within a forcing scenario,
the similarity between the three plots118 is therefore all the more remarkable (e.g.
Africa). The large-scale effect of stabilising global annual temperature, no matter
which forcing scenario is used, is to increase the rate of warming over the
southern oceans relative to the northern continents. In other words, the general
effect of stabilisation is to smooth out the regional contrasts in the Ga response
pattern (Figure 4.10 bottom), as recognised by Stouffer et al. (1989) and specifically
for HadCM2 (Mitchell et al., 2000; Senior and Mitchell, 2000). However, there are
regions where the stabilisation has the opposite effect and further enhances the
already enhanced warming (e.g. Amazonia and south-eastern Africa), or further
diminishes the already below-average warming (e.g. the Kuro Siwo area of the
Pacific).

We cannot calculate the statistical significance of the differences between the
response patterns because ensembles are not available for the stabilisation
scenarios (see Appendix 4.2 for details). However, we may express the statistical
significance of the differences between the Ga and Gd response patterns in a
similar manner to Figure 4.11 (Figure 4.13). It is noteworthy that the differences
between the Ga and Gd response patterns are statistically significant in only
13.6%, and the changes are greater than a fifth in only 8.0%, of the grid-boxes.
These proportions are much smaller than the 42.8% and 32.2% (respectively)
obtained for the differences between two periods from Ga (Figure 4.11). This may
                                                            
117 We have only one simulation for the stabilisation forcing scenario s550, so a pattern based on a
single period would be heavily dependent on internal variability.
118 In the top two plots, 88.3% of the grid-boxes have the same sign. In the left-hand plots, 78.6% of
the grid-boxes have the same sign.
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also be confirmed by a visual inspection: compare the set (i) magnitudes displayed
in Figure 4.11 (top right) with the set (ii) magnitudes in Figure 4.13 (top right).

We have already identified two sets of changes in the temperature response
pattern:
i. from one period to another within a single forcing scenario, and
ii. between one forcing scenario and another at periods with equivalent global

annual temperatures.
However, it is our intention to apply a single response pattern from a single
forcing scenario to different periods within different forcing scenarios. Therefore
we complete our examination of the temperature response patterns by comparing
the response patterns drawn from the entire Ga and Gd scenarios (Figure 4.14).

When we compare two patterns drawn from the full lengths of two different
forcing scenarios we expect both sets of changes (i. and ii. above) to contribute to
the differences between the patterns. A visual inspection of Figure 4.14 (top right)
reveals that the differences between the patterns are an amalgam of the differences
displayed in Figures 4.11 (e.g. Africa), and 4.13 (e.g. Europe). As we noted above,
the changes of set (ii) are smaller than those of set (i), and a cursory analysis
suggests that the changes of set (ii) are indeed slightly less influential here than
those of set (i).119 The number of grid-boxes with significant differences (22.6%) lies
between the examples already given, being less than for set (i) (Figure 4.11, 42.8%),
but more than for set (ii) (Figure 4.13, 13.6%). The proportion of grid-boxes with
significant changes greater than a fifth is only a tenth (10.6%, Figure 4.14), which
suggests that scaling a pattern from one scenario to estimate temperature  changes
in another scenario may be accurate in most cases.

4.5c Sources of differences between precipitation patterns

We repeat our comparison of response patterns for precipitation, both as mm/day
anomalies  (Figure 4.15) and as percentage anomalies (Figure 4.16). The number of
grid-boxes with significant differences between responses under Ga and Gd is
remarkably consistent between temperature and precipitation: in each case the
proportion is in the range 22.5% – 22.7% (Figures 4.14, 4.15, 4.16). However, more
of the statistically significant precipitation changes (about 18%) are greater than a
fifth than was the case for temperature. The differences between the precipitation

                                                            
119 The signs of each grid-box in Figure 4.14 (top right) were compared with those in Figures 4.11
(top right) and Figure 4.13 (top right). In the case of set (i) (Figure 4.11), 71.0% of boxes had the
same sign in Figure 4.14. For set (ii) (Figure 4.13), the statistic was 62.4%.
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responses under Ga and Gd are of a similar variety to those for temperature
discussed above. Some regions have a response to radiative forcing that is
diminished under a weaker rate of radiative forcing (e.g. the Caribbean dries less,
the Atacamba Desert moistens less). In other regions the response is enhanced
under a weaker rate of radiative forcing (e.g. the Arabian Peninsular dries more,
the Sahel moistens more).

To examine the differences between precipitation response patterns drawn from
different periods in the same forcing scenario, and from different forcing
scenarios, we calculated precipitation response patterns similar to the temperature
response patterns.120 We repeated our comparison of different periods in Ga
(Figure 4.17), and between periods in Ga and Gd with equivalent changes in the
scaler (Figure 4.18). Since precipitation is not the same variable as the scaler (as
was the case in the temperature patterns discussed above), the meaning of the
‘strengthening of the pattern’ plots (bottom right) is slightly different for
precipitation compared to temperature.121

It is most interesting that during the 21st century there are fewer significant
changes in the precipitation response pattern (34.0%, Figure 4.17) than in the
temperature response pattern (42.8%, Figure 4.11). Similarly, there are fewer
significant changes between the Ga and Gd patterns for precipitation (8.8%, Figure
4.18) than for temperature (13.6%, Figure 4.13). However, where significant
changes do occur they are much larger in proportion to the original pattern. Hence
the proportions of grid-boxes where the changes are both statistically significant
and greater than a fifth are almost identical for temperature and precipitation,
both for 21st century changes in Ga (32.2% and 33.0% respectively) and for changes
between Ga and Gd (both 8.0%).

4.6 Patterns of estimation error

                                                            
120 Specifically, we calculated response patterns from the 30-year periods in Ga centred on 2025,
2045, and 2085, and from 2073 in Gd.
121 Among the grid-box changes in precipitation are both moistening (positive) and drying
(negative) responses to radiative forcing. The seasonal (JJA) precipitation changes average 0.05
mm/day (or 2%) per degree of change in the scaler (Figure 4.1), but this global-mean does not
translate well into grid-box changes, which vary much more widely. Therefore we identify any
reversals from moistening to drying (or vice versa), and any diminution or enhancement of the
moistening (or drying). A reversal corresponds to ratio<-1 in Figures 4.15-4.18 (bottom right), and a
diminution [enhancement] corresponds to –1<ratio<0 [0<ratio].
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We have constructed response patterns for both temperature and precipitation,
and examined the variations in those patterns within and between forcing
scenarios. Now we estimate regional temperature and precipitation by scaling the
response patterns by global annual temperature (‘the scaler’), and we calculate
errors from pattern scaling by comparing the estimates with the model values. In
this section we examine the spatial patterns of error, and in the next (4.7) we
examine time-series of error.

We may express our statistical model as follows: we estimate the grid-box
temperature or precipitation anomaly (y) by multiplying the response (a, as
calculated in section 4.5) by the scaler (x) through the relationship y=ax+h+e’,
where the error in estimation is divided into the systematic error (h) and noise (e’).
By this method grid-box anomalies may be estimated for any period in any forcing
scenario, by scaling a GCM response pattern by the annual global-mean
temperature from a simple climate model. The magnitude of h will depend on two
factors in particular:

 i. The variations in the spatial pattern of response over the course of the forcing
scenario from which the response pattern is extracted.

 ii. The variations in the spatial pattern of response between the forcing scenarios
from which it is extracted, and for which the estimate is made.

We begin by extracting a response pattern from an entire forcing scenario (Ga,
Figure 4.10), and scaling it to estimate the regional temperature and precipitation
for particular periods under the same forcing scenario. By using an ensemble we
reduce e’ to a minimum, and by estimating for the same forcing scenario from
which the response pattern was drawn we eliminate component (ii) of h. The
remaining error is e’ plus component (i) of h, which we plot for temperature
(Figure 4.19, top) in a comparable manner to Mitchell et al. (1999).122 We isolate
component (i) of h from e’ by calculating the statistical significance of the error
(Figure 4.19, bottom). Ours is a slightly different method from that of Mitchell et al.
(1999, their Figure 5), who simply divided the error by the standard deviation in
the control. We calculated the theoretical sampling distribution of the error to
permit us to describe the statistical significance of the errors in terms of the

                                                            
122 See Figure 4 in Mitchell et al. (1999). Although they estimated annual temperatures for decadal
means, the magnitudes and patterns of error that we obtain are comparable to theirs.
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number of standard deviations from ‘no error’ that the errors represent (Equations
4.5).123

We described in section 4.5 (Figure 4.11) how the temperature response pattern
changes during the 21st century. When we calculate a response pattern based on
the entire length of simulation under the scenario,124 the pattern may be thought of
as an average between the responses at the beginning and end of the 21st century.
Therefore when – as here – we scale such a response pattern to estimate regional
temperatures during the 21st century, the estimate errs in one direction early in the
century, and errs in the other direction late in the century. This explains the anti-
correlation between the top two plots in Figure 4.19,125 and the correlation between
those plots and the plot of the difference between response patterns in the 2020s
and 2080s (Figure 4.11, top right).126 In section 4.5 we found that the response
patterns for the 2020s and 2080s were significantly different from each other (at the
2s level) for over 40% of the grid-boxes (Figure 4.11). Since here we are subtracting
the 2020s and 2080s temperature patterns from a scaled response pattern that
averages between those temperature patterns, the proportion of grid-boxes with
significant estimation errors is much smaller than 40% (Figure 4.19, bottom).

In the method described above we followed Mitchell et al. (1999) in estimating the
level of internal variability under perturbation (sM in Equations 4.5) from the
control. However, if there is a response to radiative forcing not only in the mean
but also in higher order statistics, it may be more appropriate to estimate sM from
the perturbed ensemble itself. Therefore in Figure 4.20 (left) we plot two versions
of the statistical significance of the error in estimating 2080s temperature
anomalies: that obtained by calculating sM from the control (top left),127 and from
                                                            
123 Here we calculate sM (Equations 4.5) from the control. We discuss below the calculation of sM

from the ensemble.
124 It might be argued that the response pattern would be defined more robustly using simply the
2070-2099 period. We do not believe that to be true. Firstly, if there are any non-linearities in the
response over time (as we know there are), using solely the 2070-2099 period would optimise the
response pattern to that period in that forcing scenario. This would make the pattern less accurate for
other periods in the same forcing scenario, and for other forcing scenarios. Secondly, by using data
for the full 240 years we are greatly increasing the quantity of data that we are using to define the
response pattern, which should make the pattern less dependent upon internal variability and
therefore more robust than merely using the 2070-2099 period.
125 The correlation coefficient between the top two plots in Figure 4.19 is –0.86.
126 The correlation coefficient between Figures 4.19 (top left) and 4.11 (top right) is 0.97.
127 This plot is a duplicate of Figure 4.19 (bottom right).
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the Ga ensemble (bottom left). The effect of calculating sM from the ensemble is to
increase the proportion of boxes with significant errors by about 4% of the total,
implying that the estimate of internal variability from the ensemble is smaller than
that from the control.128 There are two possible causes for this that we discuss
further below:
(a) part of the climatic response to radiative forcing is a decrease in temperature

variability (at 30-year time scales);
(b) the intra-ensemble variance is an under-estimate of temperature variability.

In Figure 4.20 (right) we express the error as a fraction of the estimate and mask
this proportion by the error significance. This statistic has a similar meaning to the
‘strengthening of the pattern’ statistic calculated in section 4.5. The proportion of
grid-boxes where the error is both statistically significant and more than a fifth of
the estimate itself is very small: less than 6%. If we accept the arbitrary boundary
of a fifth as determining – in some sense – the practical significance of the error,
we may conclude that scaling the Ga pattern gives an accurate estimate of the
temperature anomalies in Ga in the 2080s, for the errors are both statistically and
practically significant in fewer than 6% of the grid-boxes.

We repeat this analysis for precipitation anomalies (mm/day, Figure 4.21).129 We
find a similar anti-correlation between the error patterns for precipitation in the
early and late 21st century (not plotted) to that we found for temperature (Figure
4.19). The proportion of grid-boxes with statistically significant errors (Figure 4.21)
is slightly smaller – by 3-5% – than for temperature (Figure 4.20). However, the
proportion of grid-boxes with both statistically and practically significant errors130

is 21.3% (Figure 4.21), which is much higher than for temperature. As with
temperature, the effect of employing the Ga ensemble to estimate internal
variability rather than the control simulation is to reduce internal variability and
hence increase the proportion of grid-boxes with statistically significant errors, in
this case by about 2% (Figure 4.21).

                                                            
128 It is not true to state that the estimate of internal variability is smaller from the ensemble than
from the control because of the different sample sizes, for these are population estimates that have
been adjusted for sample size bias.
129 The equations to calculate the significance of the errors are identical for mm/day and percentage
anomalies, so we only calculate for mm/day.
130 The practical significance is defined by our arbitrary measure of a fifth of the estimate.
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We now apply the Ga response patterns to the task of estimating temperature
(Figure 4.22) and precipitation (Figure 4.23) patterns under the Gd forcing
scenario. A visual inspection of the 2080s anomalies from the Gd ensemble (top
left) and the estimate from scaling the Ga pattern (top right) gives a strong
indication of the accuracy of pattern scaling. The statistically significant errors
(bottom left) are confined to a small proportion of the grid-boxes (13.8% for
temperature and 10.7% for precipitation). A still smaller proportion have errors
that are both statistically significant and larger than a fifth of the modelled
anomaly (1.8% for temperature and 8.9% for precipitation).

4.7 Time-series of estimation errors

4.7a Estimates of internal variability

We begin with a slight but necessary diversion: we consider whether to use
estimates of internal variability (sM in Equations 4.5) based on the perturbed
ensembles or based on the control simulation. We found from Figures 4.21 and
4.22 that the estimate of internal variability from the Ga ensemble was less than
that obtained from the control simulation, and suggested two possible reasons:
(a) part of the climatic response to radiative forcing is a decrease in temperature

variability (at 30-year time scales);
(b) the intra-ensemble variance is an under-estimate of temperature variability.

We investigate this further  by plotting sM; we globally average sM at each grid-
box (Figure 4.24) for:
4 temperature (left) and precipitation (centre),

4 each overlapping period for the Ga (blue) and Gd (green) ensembles, and

4 the set of 30-year periods in the control (dotted black).
There is no obvious trend in temperature variability (left), which is consistent with
a shift in the entire probability distribution in response to radiative forcing. Since
the internal variability of temperature is consistently less in the ensembles than in
the control, it is likely that the intra-ensemble variance is an under-estimate of the
temperature variability in the model on this 30-year time scale.

The ensembles also underestimate the internal variability of precipitation early in
the scenarios, but the level of precipitation variability rises during the scenarios.
Because of the nature of precipitation, its variability generally varies in proportion
to its mean (a property that statisticians call heteroscedasticity). In order to
examine whether or not the increase in precipitation variability is heteroscedastic,
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we calculate the coefficient of variation131 for each grid-box and period in the
ensembles, and for each grid-box in the control, and globally average the
coefficient (Figure 4.24, right). If the coefficient of variation were constant, any
changes in variability would be heteroscedastic; however there is a trend in the
coefficient of variation, which suggests that the heteroscedasticity of the
precipitation only explains part of the increase in variability under the scenarios.

Since the intra-ensemble variance appears to be an under-estimate of the model
variability, we calculate sM (Equations 4.5) from the control in the analyses that
follow. The changes in precipitation variability under radiative forcing imply that
the significances at the end of the scenarios will be slightly too large relative to the
start of the scenarios. Our discussion of the changes in variability under increased
radiative forcing will be taken further in chapter 5.

4.7b Time-series of estimation errors

In section 4.6 we used pattern scaling to estimate climate changes for particular
time periods, and displayed the results as spatial plots. In this section we estimate
climate changes for overlapping 30-year periods, summarise the results into a
single measure, and plot them as time-series.

We present a set of four figures (4.25-4.28). We constructed four response patterns
for each variable using the four forcing scenarios; in each case we constructed the
pattern from the entire set of overlapping 30-year periods available from the
simulation or ensemble. For each figure we estimated:
4 the temperature (4.25-4.26) or precipitation (4.27-4.28),

4 in Ga (4.25, 4.27) or Gd (4.26, 4.28),

4 for each overlapping 30-year period,

4 by scaling each of the four patterns.132

We present three different statistics, each of which is plotted against time (top)
and against the scaler (bottom):
4 The left-hand plots show the global-mean of the error at each grid-box (the

‘mean error’). When the error equals zero (indicated by the dotted black line in

                                                            
131 The coefficient of variation is calculated using absolute values, not anomalies, and is the
standard deviation divided by the mean.
132 In each figure the colour of the lines represents the pattern that has been scaled to provide the
estimate, not the estimate itself. Ga is blue, Gd is green, s550 is red, and s750 is brown.
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the left-hand plots) the implication is not that there are no errors, but that the
sum of the positive errors is balanced by the sum of the negative errors.

4 The central plots show the global-mean of the magnitude of the error at each
grid-box (the ‘error sizes’).

4 The right-hand plots show the global-mean of the significance of the error at
each grid-box (the ‘significances’, Equations 4.5). The significance of the grid-
box error is expressed in standard deviations. Significances are only calculated
for Ga and Gd, the only scenarios with ensembles.

The first point to note is that pattern scaling introduces errors even in the absence
of radiative forcing. This may be seen by inspecting the first decades in Figures
4.25 and 4.27 (left and centre). These errors stem from two principal causes:
(a) Internal variability introduces differences between any generalised pattern and

the pattern at a particular point in time;
(b) Differences between the patterns of climate change accompanying global-mean

temperature changes arising from natural variability (as in the control or early
in the perturbed simulations) and arising from anthropogenic increases in
greenhouse gases (later in the perturbed simulations).

On the basis of the left-hand plots we estimate the global-mean errors to amount
to ±0.03°C or ±0.005 mm/day, which exhibit variability on all time scales,
including the centennial. The average magnitudes of the grid-box errors are 0.1°C
or 0.07 mm/day (central plots).

The errors under additional radiative forcing are much larger than under
unperturbed conditions. Global-mean errors (left-hand plots) may be multiplied
many times over to ±0.1°C or ±0.03 mm/day, and average magnitudes may triple
to 0.3°C or 0.2 mm/day (central plots). Again there are two principal causes for
these increases in error:
(c) Non-linearities in the global-mean climate changes that accompany a particular

change in the scaler.
(d) Non-linearities in the responses of individual grid-boxes (which may or may

not cancel out to leave a linear change in the global-mean).

4.7b Estimates made for scenario X by scaling a pattern from X

We consider in particular the estimates made using a pattern from the same
scenario.133 In each case (Figures 4.25-4.28, top left) there is an oscillation in the
error during the course of the 21st century as radiative forcing increases. We
                                                            
133 The blue lines in Figures 4.25 and 4.27, and the green lines in Figures 4.26 and 4.28.
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overestimate the temperature changes early in the 21st century, and underestimate
them late in the 21st century. In other words, seasonal (JJA) temperature has a non-
linear relationship with the scaler that is not unlike an exponential curve. When
we turn to precipitation we find that the estimates of Ga and Gd changes (Figure
4.27 blue, 4.28 green, both top left) also show this oscillation, but in opposite
directions: for Ga [Gd] the estimate is too dry [moist] in the early 21st century, and
too moist [dry] in the late 21st century. The explanation may be found in Figure 4.1
(bottom centre): the scaling errors result from the deviations of these lines from
linearity. It appears from Figures 4.27 and 4.28 that these errors in estimating
precipitation may not exceed those that would be obtained from sources (a) and
(b).

We found in section 4.5 that there are differences between the response patterns at
different periods within a forcing scenario (e.g. Figures 4.11, 4.17), and we noted
then that these would introduce errors to pattern scaling. In section 4.6 we found
such errors when we scaled a pattern to estimate changes in the same scenario (e.g.
Figure 4.19). Above we found a similar oscillation in the global-mean error during
the 21st century. The figures134 show the changes in the average magnitudes of the
grid-box errors, in which the oscillation may be seen again. Pattern scaling
approximates the non-linear responses in linear terms, and since the response
patterns are constructed from the entire length of simulation the best-fit line
passes between the non-linear extremes. Therefore the average error at individual
grid-boxes is maximised at the beginning and end of the 21st century, and
minimised in the 2050s.

When we calculate the statistical significance of the grid-box errors,135 we find that
averaged over the globe as a whole these errors do not exceed two standard
deviations. The error significances are maximised at the end of the 21st century, so
we use Figures 4.20 and 4.21 to assess the errors that are most statistically
significant. We find that the proportion of grid-boxes where the error is
statistically significant is only a quarter.136 There are even fewer grid-boxes where
the error is both statistically significant and larger than a fifth of the estimated
value.137

                                                            
134 See the blue lines in Figures 4.25 and 4.27, and the green in 4.26 and 4.28 (all top centre).
135 See the blue lines in Figures 4.25 and 4.27, and the green in 4.26 and 4.28 (all top right).
136 The proportions are 27.5% for temperature (Figure 4.20) or 24.3% for precipitation (4.21).
137 The proportions are 5.6% for temperature (Figure 4.20) or 21.2% for precipitation (4.21).
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4.7c Estimates made for scenario X by scaling a pattern from Y

We found in section 4.5 that there are significant differences between response
patterns extracted from the Ga and Gd ensembles (e.g. Figures 4.14 and 4.15). We
noted in section 4.6 the significant errors that were consequently introduced by
pattern scaling (e.g. Figures 4.22 and 4.23). Here we present time-series of the
errors introduced by pattern scaling from one scenario to the other,138 and also by
pattern scaling from the stabilisation scenarios to the ensembles.139

The global-mean errors are larger than when scaling a pattern from the same
scenario. This is because the non-linearities in the responses mean that the
response in each scenario is best approximated by a pattern extracted from itself
rather than a different scenario. The Ga patterns are warmer and drier than the Gd
patterns (Figure 4.3, top), so when the Ga pattern is too warm in the early 21st

century (Figure 4.25, top left, blue), the Gd pattern actually provides a better
estimate (green). However, as the 21st century progresses and the Ga simulations
warm faster, the Ga pattern underestimates the warming and therefore the Gd
pattern underestimates it even more. This transition may be seen even more
clearly in the average magnitudes of the grid-box errors (Figure 4.25, top centre).
A similar transition occurs for precipitation (Figure 4.27).

The rapid growth in error at the end of the Ga scenario is because the Ga pattern –
and even more the Gd pattern – is unable to represent the exponential change.
However, because the exponential response does not advance as far under Gd as
under Ga (for an illustration see Figure 4.6, bottom), the Ga pattern gives a better
approximation of the Gd response than is the case vice versa. Therefore although
the Ga pattern does not approximate the Gd response as well as the Gd pattern
itself, it is still reasonably accurate (Figures 4.26 and 4.28). The globally averaged
error significance (top right) is only a single standard deviation at the end of the
21st century. The proportion of grid-boxes with statistically significant errors that
this represents is only a tenth,140 and the proportion where the errors are also
larger than a fifth of the estimated value is even smaller.141 The greater accuracy

                                                            
138 See the green lines in Figures 4.25 and 4.27, and the blue in Figures 4.26 and 4.28.
139 See the red (s550) and brown (s750) lines in Figures 4.25-4.28. We cannot calculate error
significances because these require ensembles of patterns (see Appendix 4.2).
140 The proportions are 13.8% for temperature (Figure 4.22) or 10.6% for precipitation (Figure 4.23).
141 The proportions are 1.8% for temperature (Figure 4.22) or 8.9% for precipitation (Figure 4.23).
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found when scaling from Ga to Gd than vice versa may be described as the
superiority of interpolation over extrapolation.142

Under stabilisation the rate of global-mean change (relative to the scaler) further
warms and moistens (Figures 4.1, 4.3), particularly the moistening in s550; so the
global-mean errors from scaling the stabilisation patterns are also warmer and
moister than those from scaling the ensemble patterns.143 However, there is a
contrast between s550 and s750 in the growth of the errors in individual grid-
boxes (Figures 4.25-4.28, top centre) because of the different amounts of global
warming in them as they stabilise. Because s750 warms more than s550 it
progresses further along the exponential response (e.g. Figure 4.6, bottom), so the
errors it introduces are larger early in the 21st century than late in the 21st century,
whereas the opposite is the case for s550. Although we are unable to calculate the
statistical significance of these errors because of the lack of ensembles for the
stabilisation scenarios, the similarities between the top centre and top right plots
for Ga and Gd (Figures 4.25-4.28) lead us to suggest that there may not be
substantially more grid-boxes with significant errors than when scaling the Ga and
Gd patterns.

4.8 Added value from scaling
We have evaluated pattern scaling principally in terms of the errors in its
estimates. However, often regional climate scenarios must be developed for
forcing scenarios for which there are no GCM simulations.144 In such cases some
form of scaling cannot be avoided, the only alternative (other than refraining from
presenting any information at all) being to assume that there is no pattern to the
global climatic change and to present the user with a global temperature anomaly.
In these circumstances it is reasonable to evaluate the accuracy of scaling in
estimating regional climate changes in the model against the accuracy of this
assumption.145

                                                            
142 We extrapolate when we construct a pattern from a relatively weak forcing scenario and scale it
to estimate changes under a relatively strong forcing scenario. To interpolate is to estimate in the
opposite direction.
143 Compare the red/brown lines with the blue/green lines in Figures 4.25-4.28 (top left).
144 Although the Casino-21 project (Allen, 1999) and the Hadley Centre (UKMO/DETR, 2000) have
plans to perform hundreds of model simulations, the emphasis is on different models rather than
different forcing scenarios.
145 We recognise that the pattern of regional climate changes exhibited by the GCM may not
accurately reflect the actual response of the climate system, and that the GCM pattern may actually
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For temperature we construct an additional response pattern to those constructed
from the four forcing scenarios in HadCM2, in which each grid-box is set to 0.86°C
per degree of global warming.146 Similarly, for precipitation we construct a pattern
where each grid-box is set to 0.043 mm/day per degree of global warming. We
scale these patterns and calculate the absolute errors in an identical manner to that
employed in Figures 4.25-4.28, and we plot the results in Figure 4.29 (temperature)
and 4.30 (precipitation). For both temperature and precipitation the absolute errors
from the new patterns (black lines) greatly exceed the errors from estimating by
scaling response patterns (coloured lines).

We acknowledge that a small number of statistically significant errors are
introduced in scaling from one forcing scenario to another, particularly when
extrapolating rather than interpolating. However, the errors are much less than
under the assumption that there is no pattern to global climate change.

4.9 Single simulations
We follow Mitchell et al. (1999) in asking “how accurately can one approximate the
ensemble mean response using a single simulation” (p562)? This is relevant not
just for our analysis in this chapter, where we have scaled patterns derived from
single stabilisation scenarios (section 4.7), but for a later chapter (7) when we scale
patterns for individual simulations available from a number of GCMs.

Here we construct response patterns for each individual ensemble member, scale
them, and calculate the error between each estimate and the modelled ensemble
mean. In Figures 4.31 and 4.32 we plot the globally averaged magnitudes of the
individual grid-box errors,147 both for the individual ensemble members (thin
lines) and for the ensemble means (thick lines). The difference between the errors
obtained from individual members and the ensemble means gives an indication of
the component of the error from internal variability (e’ in section 4.6) when
estimating by scaling a pattern from a single simulation. The figures (4.31, 4.32)

                                                                                                                                                                                        
be no more accurate than one of these assumptions. However, our aim here is to evaluate the
accuracy of scaling in approximating the GCM responses, whether or not the GCM accurately
represents the response of the climate system. The analysis described here should not be
understood as an evaluation of the climate scenarios developed under different methods, but as an
evaluation of scaling as a method in developing climate scenarios.
146 0.86 is the global-mean JJA warming per degree of global annual warming in Ga (Figure 4.3).
147 This statistic is equivalent to that plotted in Figures 4.25-4.28 (centre).
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show that e’ only contributes a small proportion of the error. On this basis it
appears reasonable to scale patterns constructed from single simulations.

4.10 Conclusions
In this chapter we have examined the possibility of scaling climate change patterns
by annual global-mean temperature to estimate changes under unmodelled
forcing scenarios. In many respects we have followed the lead of Mitchell et al.
(1999), particularly in:
4 calculating signal-to-noise ratios that represent the spatial heterogeneity of the

climate response to additional radiative forcing;148

4 using least squares regression to calculate response patterns;149

4 calculating the estimation errors from scaling a response pattern from the same
forcing scenario;150

4 calculating the estimation errors from scaling a response pattern from a
different forcing scenario.151

Therefore it is not surprising that in many respects we have obtained similar
results to Mitchell et al. (1999):
4 the grid-box errors when scaling the Ga temperature pattern to estimate Ga

changes have typical magnitudes of 0.1-0.2°C, and are maximised at the end of
the 21st century;152

4 the grid-box errors when scaling the Ga temperature pattern to estimate Gd
changes also have typical magnitudes of 0.1-0.2°C. 153

However, we have shown that pattern scaling is accurate in many more ways than
Mitchell et al. (1999) showed:

4 pattern scaling is accurate for seasonal means, not just annual means; 154

4 pattern scaling is accurate for most grid-boxes, not just sub-continental
regions;155

                                                            
148 Compare their Appendix with our section 4.4, their Figures 1c and 12 with our Figure 4.7.
149 Compare their Appendix with our section 4.5, their Figure 2 with our Figure 10 (bottom left).
150 Compare their Figure 4 with our Figure 4.19 (top).
151 Compare their Figure 7 with our Figures 4.22 and 4.23 (top).
152 Compare their Figure 4 with our Figure 4.25 (top centre, blue).
153 Compare their Figure 7 with our Figure 4.27 (top centre, blue).
154 Compare their Figure 7 with our Figure 4.27 (top centre, blue).
155 Compare their Table II with our Figure 4.22 (bottom left).



74

4 signal-to-noise ratios that represent the spatial heterogeneity of the climate
response to additional radiative forcing are large for precipitation, not just
temperature; 156

4 pattern scaling is accurate for precipitation, not just temperature.157

We have also paid close attention to the errors that are introduced by pattern
scaling. In section 4.6 we described the errors in terms of the equation:
y=ax+h+e’.158 In section 4.7 we outlined four potential sources of error, the first
being e’, and the final three contributing to h.
(a) Internal variability introduces differences between any pattern from a long

period of time, and a pattern from a particular point in time;
(b) There may be differences between the patterns of climate change

accompanying global-mean temperature changes arising from natural
variability (as in the control or early in the perturbed simulations) and those
arising from anthropogenic increases in greenhouse gases (later in the
perturbed simulations).

(c) There may be non-linearities in the global-mean climate changes that
accompany a particular change in the scaler.

(d) There may be non-linearities in the responses of individual grid-boxes (which
may or may not cancel out to leave a linear change in the global-mean).

We found that internal variability – (a) in the list above – made a relatively small
contribution to the total errors from pattern scaling.159 Therefore we are reasonably
confident that internal variability will not greatly add to the errors when we use
single simulations – such as for the stabilisation scenarios in this chapter, or for
patterns derived from various GCMs in chapter 7.160 We found in section 4.7 that
combining (a) and (b) gives global-mean errors of ±0.03°C or ±0.005 mm/day; the
average magnitudes of the individual grid-box errors are 0.1°C or 0.07 mm/day.
These errors may increase under radiative forcing because of sources (c) and (d).

                                                            
156 Compare their Figure 12 with our Figure 4.7 (centre).
157 Compare Figures 4.20 and 4.21, and compare Figures 4.26 and 4.28 (both blue).
158 The algebraic signs represent the modelled value (y), the estimate (ax) derived from the response
(x) multiplied by the scaler (a), the systematic error (h), and the error from internal variability (e’).
159 See section 4.9 and Figures 4.31, 4.32.
160 In the case of chapter 7, this assumes that internal variability plays a similar role in other models
to that which it plays in HadCM2.
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The global-mean climate changes that accompany a particular change in the scaler
are not entirely linear. This is demonstrated by the global-mean errors that are
introduced by scaling a pattern from one scenario to estimate changes in
another,161 and more directly by Figure 4.3. Consequently the response patterns err
in one direction early in the 21st century, and in the other direction late in the 21st

century.

There are also strong non-linearities in the responses of individual grid-boxes, and
therefore there are also changes in the spatial pattern of response during the 21st

century. This was demonstrated by the non-linear relationships between the
signal-to-noise ratios and the scaler (Figures 4.6, 4.7), and later by calculating
response patterns for particular periods in the 21st century and comparing them
(Figures 4.11, 4.17). This latter experiment showed that more than a third of the
grid-boxes experience statistically significant changes in response during the 21st

century: 42.8% (temperature) and 34.0% (precipitation). These changes in response
add further to the errors introduced by scaling a response pattern from Ga to
estimate changes in Ga: at the end of the 21st century a quarter of the grid-boxes
have statistically significant errors (27.5% for temperature and 24.3% for
precipitation).

However, we recognise that not all statistically significant errors may be
practically significant. Unlike statistical significance, practical significance is
context-dependent, so we cannot make a universal definition of practical
significance. Therefore we arbitrarily define an error that exceeds a fifth of the
estimated value as being practically significant, and identify the proportions of
grid-boxes that are simultaneously statistically and practically significant. In
practice this means that pattern scaling for all other grid-boxes may be treated as
being accurate with an error margin of ±20%. We find that when scaling a
response pattern from Ga to estimate changes in Ga at the end of the 21st century,
the errors are both statistically and practically significant in only 5.9%
(temperature) or 21.3% (precipitation) of grid-boxes (Figures 4.20, 4.21).

The differences between response patterns extracted from equivalent periods in
different forcing scenarios are much smaller than the differences between patterns
within a forcing scenario.162 Such differences are due to the dependence of the
spatial climate response on the rate, not just the amount, of change in the scaler.

                                                            
161 See Figures 4.25 and 4.27 (top left).
162 Compare Figures 4.13 and 4.18 with Figures 4.11 and 4.17.
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The differences between response patterns extracted from the entire length of
simulation in different forcing scenarios are a combination of all the different
sources we have described above.163 The same sources introduce errors into scaling
a pattern from one forcing scenario to estimate changes in another forcing
scenario. Such errors are minimised when interpolating from a stronger forcing
scenario (e.g. Ga) to a weaker (e.g. Gd), rather than extrapolating in the opposite
direction.164 When interpolating, the errors at the end of the 21st century are both
statistically and practically significant in only a small proportion of the grid-boxes
(Figures 4.22, 4.23): 1.8% (temperature) or 8.9% (precipitation).

We were hampered in our assessment of the stabilisation scenarios by the lack of
any ensembles for them, but we did ascertain that compared to the Ga and Gd
scenarios:

4 their global-means have slightly less linear relationships with the scaler (Figure
4.1);

4 their rates of global-mean response are slightly more dependent on the rate of
increase in the scaler (Figure 4.3);

4 their spatial patterns of response are similarly heterogenous (Figure 4.6);

4 their differences from Ga in the spatial pattern of response are similar to Gd
(Figure 4.12);

4 the global-mean errors introduced by pattern scaling are larger, but it is
possible that there are not substantially more grid-boxes with statistically
significant errors (Figures 4.25-4.28).

On the basis of our work we may give an affirmative answer in response to the
question posed in the chapter title, namely ‘May we use pattern scaling?’ We also
add that pattern scaling is much more accurate than assuming that the global-
mean response holds for individual grid-boxes (section 4.8), which may be the
only alternative in some cases. However, we also recognise the limitations of our
work:
4 we have only examined a single season (JJA);

4 we have only considered a single model (HadCM2);

4 we have not attempted to include sulphate aerosols;

4 we have only considered temperature and precipitation;

                                                            
163 See Figures 4.14 and 4.15.
164 For example, compare the blue lines in Figures 4.26 and 4.28, with the green lines in Figures 4.25
and 4.27.
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4 we have only four members in each ensemble;

4 we have not considered any period after climate has been fully stabilised.
The most important limitation is that we have evaluated pattern scaling on the
assumption that HadCM2 perfectly represents the climate system.

There are a number of ways in which our work might be extended. Some
opportunities are offered by the list of limitations given above. Other
opportunities are taken in the chapters that follow.

It is possible that further work would reveal similarities between the evolving
climatic responses to increased radiative forcing under different forcing scenarios.
For example, the changes over time in the pattern of response in one stabilisation
scenario might correspond to those in another. In that case a superior form of
scaling might use two parameters: one parameter might estimate the unstabilised
response as a function of the scaler (as we have done here), and an additional
parameter might estimate the stabilising component of the response, perhaps as a
function of the gradient of the scaler.

The suggestion above would be a complex method of scaling. A simpler method,
but still more complex than that employed in this chapter, might be to expand the
linear equations, by which the response is estimated and the pattern scaled, to
quadratic equations. Scaling quadratically would enable us to incorporate many of
the non-linear changes within a single forcing scenario. Perhaps the critical factor
in both these suggestions might be the extra amount of information (i.e. ensemble
members) required to construct stable estimates of the second constants.
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Appendix 4.1

In this appendix we compare the signal-to-noise ratios that we obtained with those
plotted by Mitchell et al. (1999). The method that we followed (Equations 4.2) was
exactly that described by Mitchell et al. (1999, Appendix), so one might expect the
results we obtained (Figure 4.5) to be identical to those plotted by Mitchell et al.
(1999, Figures 1c, 12), but they are not. For temperatures, they obtained signal-to-
noise ratios for Ga and Gd of 15.5 and 6.5 respectively, whereas we obtained 11.0
and 7.2. For precipitation (mm/day anomalies) they obtained 7.4 and 2.7, whereas
we obtained 6.4 and 4.0. Having checked our method and calculations carefully
and found them to be correct, we examined those of Mitchell et al. (1999).

According to the Appendix and the text in Mitchell et al. (1999), “all the
temperature changes are calculated relative to the mean over 1961 to 1990” (p555).
However, the graphs (e.g. Figure 1) express the changes relative to the 1990-1999
decadal mean, because the time series were “reset” to make the 1990s zero (John
Mitchell, pers. comm.). A side-effect of this “zeroing” was to reduce the plotted
global temperature change over 1990-2099 from that calculated by about 10%,
because effectively only 1995-2095 is plotted (John Mitchell, pers. comm.). This is
confirmed by other published results (e.g. Mitchell and Johns, 1997, Figure 2b;
Mitchell et al., 2000, Figure 1) where the global temperature changes for the full
period 1990-2099 are 10% greater than those plotted in Mitchell et al. (1999, Figure
1b), and with which our calculations are in agreement. Since a similar “zeroing” is
applied to the signal-to-noise ratios (Figure 1c), a similar side-effect will be
introduced to the signal-to-noise ratios. This will affect the comparison of the
results we obtained with those plotted by Mitchell et al. (1999).

However, we suspect that the “zeroing” is not the only difference between the
published method and plotted results in Mitchell et al. (1999). It is suspicious that
although the ratio between the Ga and Gd global mean temperatures is only 1.7
(their Figure 1b, in approximate agreement with the values we obtained), the ratio
between the Ga and Gd weighted signals increases to 2.4 (their Figure 1c), whereas
the ratio we obtained remained close to 1.7. A similarly large unexplained increase
is apparent for precipitation (their Figure 12). Although it is conceivable that the
large increase in the ratio is a genuine result, the implication would be that under
a faster rate of increase in radiative forcing, the regional contrasts are much
greater than at the same global mean temperature under a slower rate of forcing.
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However, when we test this implication, we find that the regional contrasts in
temperature vary little between different radiative forcing scenarios. We
established this by taking the temperature anomaly patterns for Ga and Gd for the
30-year periods centred on 2045 and 2073 respectively165, and calculating the
weighted global-mean and global weighted signal for each ensemble (Equation
4.2.1). As expected, the weighted global-mean anomaly was almost identical for
the two forcing scenarios (with a ratio between them of 1.00656); the interesting
result was that the global weighted signals from the two forcing scenarios were
even closer to being identical (the ratio was 1.00314). We conclude from this result
that the regional temperature contrasts vary little between different forcing
scenarios, when periods of equivalent temperature are considered. Hence we
consider it unlikely that the ratio between the global temperature means of Ga and
Gd should be so greatly exceeded by the ratio between their signals, as suggested
by the plots in Mitchell et al. (1999).

Therefore we consider it probable that the signal-to-noise ratio plots in Mitchell et
al. (1999) are erroneous. The source of the errors is a matter for conjecture, but we
suggest a single deviation from the published method that may explain why the
signal-to-noise ratios differ so widely from those that we obtained. Our suggestion
is simply that the square-root operation in their Equation A.2 (or our Equation
4.2.1) was accidentally omitted. By using their published sampling error for the
temperature pattern (their Figure 3b, which is close to our estimate), and by
adopting our own estimate of the sampling error for the precipitation (mm/day)
pattern, we obtained to a reasonable approximation the signals used by Mitchell et
al. (1999). When we applied the square rooting operation to each of the signals (Ga
and Gd for temperature and precipitation) and recalculated the signal-to-noise
ratios, we obtained values for which Ga and Gd were in the correct proportion to
each other, and values that were within 10% of those that we obtained. At least
some of the remaining differences may be explained by the “zeroing” discussed
above.

We raised these matters with John Mitchell personally. After an initial
investigation he concluded that the signal-to-noise ratios plotted in Mitchell et al.
(1999) were definitely erroneous, although he was unable at that time to precisely
identify the source of the errors or the correct values (John Mitchell, pers. comm.).
Therefore we conclude that the differences between the signal-to-noise ratios that

                                                            
165 These periods have equivalent global mean temperatures under both forcing scenarios.
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we obtained and those plotted by Mitchell et al. (1999) should not cause us
concern.



81

Appendix 4.2

In this appendix we demonstrate that our method of calculating the statistical
significance of differences between response patterns (Equations 4.4) requires that
ensembles are used to construct the response patterns. Our method (Equations 4.4)
hinges on our ability to estimate sA

2 and sB
2, for which we require a sample (i.e.

ensemble) with more than one member. If only a single simulation is available for
B (as in the case for the HadCM2 stabilisation scenarios) then we are unable to
estimate sB

2 using that simulation.

A solution would be possible if sA
2 and sB

2 were very similar, in which case we
might use sA

2 (which we are able to estimate using the A ensemble) as an
approximation for sB

2. If we are able to assume that for all practical purposes sA
2 =

sB
2,166 then the pattern difference when Abar is subtracted from Bi is distributed as

follows:
D ~ N (mB – mA, (sA

2/4 + sA
2) )

     or D ~ N (mB – mA, 5sA
2/4 )

We cannot investigate the validity of the assumption for the HadCM2 stabilisation
scenarios – for which it is required – precisely because of the lack of any
ensembles. However, we can investigate the validity of the assumption using the
temperature response patterns of the Ga and Gd ensembles.

We calculated sA (Ga) and sB (Gd) for each grid-box using the entire 240-year
simulations, and plotted them and the differences between them in Figure 4.A2.1.
There are substantial differences between sA and sB over the globe as a whole;
when averaged over the globe, sB is 29.3% greater than sA. Of individual grid-
boxes, nearly a third have values of sB that are twice as large or only half as much
as their values of sA. We repeated our comparison for response patterns drawn
from periods in Ga and Gd with equivalent global annual temperatures, and
obtained similar results (Figure 4.A2.2). Since sA (Ga) and sB (Gd) are not
equivalent, it does not seem reasonable to assume that the variances of the
stabilisation scenarios are equivalent to that of Ga.

We may complete our comparison by quantifying the effects of making the
assumption that sA

2 = sB
2 on the significance of the differences in response pattern.

                                                            
166 In other words, we assume that the internal climate variability under the A forcing scenario is
similar to that under the B forcing scenario.
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The statistic against which we measure the differences in response pattern is D,
the pattern difference when one ensemble mean pattern is subtracted from
another (Equations 4.4). Here the variance of D without the assumption is (sA

2/4 +
sB

2/4), and with the assumption it is (sA
2/2). We calculate the significance of D

with and without the assumption, and plot the differences between them (Figure
4.A2.3 top). The differences between sA (Ga) and sB (Gd) described above suggest
that the variance of D will depend on whether or not the assumption is made.
Making the assumption does indeed introduce an error: when globally averaged,
the number of standard deviations represented by D decreases by 16.8%.
Therefore when we divide the response pattern difference by D to obtain the
significance of the difference in standard deviations from the mean, the number of
significant differences is erroneously large (Figure 4.A2.3 bottom). By adopting the
assumption, the number of grid-boxes that fall outside the ±2s limits and are
therefore stated to have climate responses in Ga and Gd that are significantly
different at the 95% level, rises from 22.6% to 30.4%. Therefore we conclude that
sA

2 ≠ sB
2, and that any assumption to the contrary is likely to introduce substantial

errors into any estimation of the significance of the differences in response
patterns.

A second conceivable solution is to divide up the single simulation into a number
of consecutive periods, and to estimate sB

2 by treating them as a pseudo-ensemble.
This is feasible if we may assume that the periods are statistically independent and
a random sample of a single distribution. The first assumption is warranted if we
split the periods in time; for s550, we might select 30-year periods centred on 2120,
2160, 2200, and 2240, as we have already done (section 4.5). However, the second
assumption is only warranted if the climate system is not responding to any
perturbation. Although we commonly make this assumption for a control
simulation, it is not so easily justified for the HadCM2 stabilisation scenarios, since
the climate system is still responding to radiative forcing and is not stabilised until
the very end of the scenario, if at all. 167 Therefore it does not seem reasonable to
apply this second solution to the HadCM2 stabilisation scenarios.

                                                            
167 For s550, the climate system is still responding to radiative forcing in the selected periods: global
annual temperature anomalies (against the control) are still rising (Figure 4.1, top left), from 2.79°C
in the period centred on 2020, to 3.06°C in 2160, 3.16°C in 2200, and 3.30°C in 2240. Senior and

Mitchell (2000) found that temperatures continued to rise for 800 years after stabilisation of CO2

concentrations at double pre-industrial levels.



83

Equations 4.1
1. Global temperature anomaly (a, °C) for a single 30-year period mean (j) in a

single simulation (m).

2. Global precipitation anomaly (a, mm/day) for a single 30-year period mean (j)
in a single simulation (m).

3. Global precipitation anomaly (a, %) for a single 30-year period mean (j) in a
single simulation (m).

4. Globally-averaged regional precipitation anomaly (a, %) for a single 30-year
period mean (j) in a single simulation (m).168

                                                            
168 The difference between (3) and (4) is that in (3) we calculate the global-mean before we
anomalise it, whereas in (4) we calculate the anomaly of each grid-box before averaging into a
global-mean. For absolute anomalies (not percentage anomalies), the methods are identical.
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Equations 4.2
1. Temperature (°C) or precipitation (mm/day) signal (sMj) for the pattern of 30-

year period mean (j) anomalies (a) from an ensemble mean (M).

2. Pattern noise corresponding to 4.2.1. A signal (scj) is constructed for each
period169 (c=1…nc) in the 1400-year control, using 4.2.1 but with subscript c
replacing subscript M. The noise is based on the mean of those signals.170

3. The pattern signal-to-noise ratio, for a single 30-year period (j) from an
ensemble mean (M), is simply171:

4. Either of two sets of weights (w) may be applied. In the ‘unweighted’ set an
equal weighting is given to all grid-boxes (wi=1). The ‘weighted’ set gives a
weight to each grid-box that is proportional to its surface area:

                                                            
169 If the anomalies (a) in 4.2.1 are based on the first 240 years of the control, the remaining 1160
years of the control are divided into 40-year sequential segments, and the periods in 4.2.2 (c=1…nc)
are the first 30 years of each segment. If the anomalies (a) in 4.2.1 are referenced to the period 1960-
1989 from the Ga ensemble, the control is divided into ten 140-year segments, and the periods in

4.2.2 (c=1…nc) are the periods in each segment corresponding to that in 4.2.1 (e.g. last 30 years in

segment when period in 4.2.1 is 2070-2099).
170 We understand this to be the method of Mitchell et al. (1999, p578); their temperature sampling
error (their Figure 3b) appears sufficiently close to our result to confirm this.
171 The noise is divided by two because the signal is averaged over four ensemble members.
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Equations 4.3
The grid-box signal-to-noise ratio is constructed differently to the pattern signal-
to-noise ratios described in Equations 4.2.

1. Temperature (°C) or precipitation (mm/day) grid-box (i) signal (sMij) for a
single 30-year period mean (j) from an ensemble.

2. Grid-box (i) noise (sij) corresponding to 4.3.1, using the set of periods172

(c=1…nc) in the 1400-year control.

3. The grid-box (i) signal-to-noise ratio for a single 30-year period (j) from an
ensemble is simply173:

                                                            
172 If the anomalies (a) in 4.2.1 are referenced to the first 240 years of the control, the remaining 1160
years of the control are divided into 40-year sequential segments, and the periods in 4.2.2 (c=1…nc)
are the first 30 years of each segment. If the anomalies (a) in 4.2.1 are referenced to the period 1960-
1989 from the Ga ensemble, the control is divided into ten 140-year segments, and the periods in

4.2.2 (c=1…nc) are the periods in each segment corresponding to that in 4.2.1 (e.g. last 30 years in

segment when period in 4.2.1 is 2070-2099).
173 The noise is divided by two because the signal is averaged over four ensemble members.
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Equations 4.4
To evaluate the statistical significance of the difference between two response
patterns, it is necessary to calculate the theoretical distribution obtained when one
random variable (a single response pattern) is subtracted from another. Thus we
may calculate the number of standard deviations that the difference represents.
This is a fairly simple procedure when the patterns are derived from ensembles.

We may calculate a temperature response pattern from a single simulation (m) in
either one of two different ensembles (A and B), and represent it as belonging to a
random variable (Pm). Since the patterns are constructed from 30-year means, we
assume (under the central limit theorem) that they are distributed normally. By
estimating the mean (mm) and variance (sm

2) of the population of patterns, we may
quantify the random variables to which the patterns belong.

PmA ~ N (mmA, smA
2) PmB ~ N (mmB, smB

2)
However, we are more interested in the ensemble mean patterns, which we
represent as belonging to new random variables (PM):

PMA ~ N (mmA, smA
2/4) PMB ~ N (mmB, smB

2/4)
We may define the difference between the ensemble mean patterns as another
random variable (P(B-A)). Under our null hypothesis that there is no systematic
difference between the two ensemble-mean patterns:

P(B-A) ~ N (0, (smA
2/4 + smB

2/4) )

Since we may estimate the mean (mm) and variance (sm
2), we may quantify the

random variable P(B-A). Therefore we may calculate the significance of the
difference between ensemble mean response patterns in terms of the standard
deviation of the difference expected from internal variability.
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Equations 4.5
To evaluate the statistical significance of the error in estimating by pattern scaling,
it is necessary to calculate the theoretical distribution obtained when one random
variable (the simulated pattern) is subtracted from another (the estimated pattern).
Thus we may calculate the number of standard deviations that the difference (the
error) represents, which is a fairly simple procedure when estimating for an
ensemble.

We may represent the simulated pattern for a single simulation (m) as belonging
to a random variable (Sm). When this pattern is a 30-year mean we assume (under
the central limit theorem) that it is distributed normally:

Sm ~ N (mmS, smS
 2)

We define our estimate of the simulated pattern as another random variable (Em):
Em ~ N (mmE, smE

 2)
However, we are more interested in estimating ensemble means, for which we
define new random variables:

SM ~ N (mmS, smS
 2/4)

EM ~ N (mmE, smE
 2/4)

We may define the difference between SM and EM as another random variable
(DM). Under our null hypothesis that there is no systematic error in the estimate
from pattern scaling:

DM ~ N ( 0, (smS
 2/4 + smE

 2/4) )
Therefore we may calculate the significance of any errors that we find in terms of
the standard deviation of the error expected from internal variability.

We estimate smE by estimating for each individual ensemble member: we multiply
the response pattern from a single member by the scaler from the same member.
There are two options for estimating smS:
1. from the control, using a sample of 30-year periods (with 10-year gaps);
2. from the ensemble, using the sample of four members.
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Table 4.1
The changes represented by the ‘strengthening of pattern’ plots.

2020s 2080s diff. stren. meaning
– – – – – – >0 negative response becomes more negative
– – – + <0 negative response becomes less negative
– – + +++ <-1 negative response becomes less negative to

the extent of changing sign
+ + – – –– <-1 positive response becomes less positive to the

extent of changing sign
+ + + – <0 positive response becomes less positive
+ + + + + + >0 positive response becomes more positive

The comparison may be between response patterns from two 21st century periods
in the same forcing scenario (as here), or between response patterns from two
different forcing scenarios (in which case substitute ‘Ga’ and ‘Gd’ for ‘2020s’ and
‘2080s’ respectively). If the comparison is for temperature response patterns the
values in the patterns are first reduced by one, so that a zero value in the pattern
represents a response equal to the annual global-mean temperature.

The first two columns represent the sign of the response in a particular grid-box
and the number of symbols represents the magnitude. The third column
represents the sign of the change in response during the 21st century.174 The fourth
column identifies whether the response is becoming stronger (+) or weaker (–)
during the 21st century.175 The fourth column is plotted with a mask derived from
the statistical significance of the third column; so as plotted it represents the
statistically significant strengthening (and weakening) of the response pattern
during the 21st century.

                                                            
174 In relevant figures the difference between the 2080s and 2020s is plotted in the top right.
175 This measure is the 2080s minus 2020s difference, divided by the 2020s pattern. We call it the
‘strengthening of the response’ and plot it in the bottom right.
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Figure 4.1
Time-series of global-mean JJA temperature and precipitation.

temperature (°C)

temperature (°C)

precip (mm/day)

precip (mm/day)

precip (%)

precip (%)

model: HadCM2
simulations: Ga 1, Ga 2, Ga 3, Ga 4,  Gd 1, Gd 2, Gd 3, Gd 4, s550, s750
base period: the first 240 years of the control
anomalies: temp (°C, Equation 4.1.1, left), 

prec (mm/day, Equation 4.1.2, centre), 
prec (%, Equation 4.1.3, right); 

season: JJA
temporal: means of overlapping 30-year periods
spatial: global-mean anomalies
x-axis: period mid-year (top), period scaler (°C: bottom)
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Figure 4.2
Contrast between global-mean and grid-box JJA precipitation.

global prec

global precip

grid-box prec

grid-box prec

model: HadCM2
simulations: Ga 1, Ga 2, Ga 3, Ga 4,  Gd 1, Gd 2, Gd 3, Gd 4, s550, s750
base period: the first 240 years of the control
anomalies: global-mean prec (%, Equation 4.1.3, left) 

average of all grid-box prec (%, Equation 4.1.4, right)
variables: JJA precipitation anomalies (%)
temporal: means of overlapping 30-year periods
x-axis: period mid-year (top), period scaler (°C: bottom)
duplication: the left plots are identical to the Figure 4.1 right plots
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Figure 4.3
Best-fit gradients from Figures 4.1 and 4.2.

global-mean prec (mm/day)

global-mean prec (%) global-mean temp (°C)
grid-box prec (%)

model: HadCM2
simulations: Ga 1, Ga 2, Ga 3, Ga 4,  Gd 1, Gd 2, Gd 3, Gd 4, s550, s750
variable: gradient (a) of best-fit line (y=ax) calc by least squares regression
y scaler (annual global-mean temperature)
x as specified below
top left: global-mean JJA temperature (°C) from Figure 4.1 (bottom centre)
top right: global-mean JJA precipitation (mm/day) from Figure 4.1 (bott. left)
bott. left: global-mean JJA precipitation (%) from Figure 4.1 (bottom right)
bott. right: grid-box JJA precipitation (%) from Figure 4.2 (bottom right)
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Figure 4.4
Global JJA temperature and precipitation in terms of radiative forcing.

precip (mm/day)

temp (°C)

precip (%)

model: HadCM2
simulations: Ga 1, Ga 2, Ga 3, Ga 4,  Gd 1, Gd 2, Gd 3, Gd 4
anomalies: JJA means of overlapping 30y periods, relative to first 240y of control

global-mean temp (°C, Equation 4.1.1, bottom left), 
global-mean prec (mm/day, Equation 4.1.2, top left), 
global-mean prec (%, Equation 4.1.3, top right);

x-axis: radiative forcing anomaly (Wm-2)
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Figure 4.5
Pattern signal-to-noise ratios for annual means.

wei. temp (°C)
unw. temp (°C)
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model: HadCM2
simulations: Ga ensemble mean, Gd ensemble mean
variable: pattern signal-to-noise ratios for annual means (Equations 4.2)
weightings: area-weighted (top plots), unweighted (bottom plots)
anomalies: temp (°C, left plot), prec (mm/day, centre plot), prec (%, right plot)
signal: 2090-99 anomaly (left bar), 2070-99 anomaly (centre & right bars)
base: 1960-89 mean (left & centre bars), first 240y of con (right bar)
noise: 140y segments of control (left & centre bars)

30y periods (10y gaps) in detrended final 1160y of control (right bar)
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Figure 4.6
Time-series of pattern signal-to-noise ratios for individual simulations.

temp (°C)

temp (°C)

prec (mm/day)

prec (mm/day)

prec (%)

prec (%)

model: HadCM2
simulations: Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
variable: pattern signal-to-noise ratios (Equations 4.2)
signal: JJA anomalies of overlapping 30y per., relative to first 240y of con.:

temperature (°C, left), precip (mm/day, centre) precip (%, right)
noise: from 30y periods (10y gaps) in detrended final 1160y of control
x-axis: period mid-year (top), period scaler (°C, bottom)
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Figure 4.7
Time-series of pattern signal-to-noise ratios for ensembles.

temp (°C)

temp (°C)
prec (mm/day)

prec (mm/day)

prec (%)
prec (%)

model: HadCM2
simulations: Ga ensemble mean; Gd ensemble mean
variable: pattern signal-to-noise ratios (Equations 4.2)
signal: JJA anomalies of overlapping 30y per., relative to first 240y of con.:

temperature (°C, left), precip (mm/day, centre) precip (%, right)
noise: from 30y periods (10y gaps) in detrended final 1160y of control
x-axis: period mid-year (top), period scaler (°C, bottom)
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Figure 4.8
Grid-box signal-to-noise ratios for ensemble mean temperatures.

Ga 2020s

Gd 2020s

Ga 2080s

Gd 2080s

model: HadCM2
variable: signal-to-noise ratios for grid-box temperatures (Equations 4.3):

Ga ensemble mean (top) and Gd ensemble mean (bottom)
2020s (left) and 2080s (right)

signal: JJA anomalies for 2020s and 2080s, relative to first 240y of control
noise: from 30y periods (10y gaps) in detrended final 1160y of control
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Figure 4.9
Grid-box signal-to-noise ratios for ensemble mean precipitation (mm/day).

Ga 2020s

Gd 2020s

Ga 2080s

Gd 2080s

model: HadCM2
variable: signal-to-noise ratios for grid-box precipitation (Equations 4.3):

Ga ensemble mean (top) and Gd ensemble mean (bottom)
2020s (left) and 2080s (right)

signal: JJA anomalies for 2020s and 2080s, relative to first 240y of control
noise: from 30y periods (10y gaps) in detrended final 1160y of control
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Figure 4.10
Response patterns from Ga for precipitation and temperature.

precipitation

pattern (mm/day)
temperature
pattern (°C )

precipitation

pattern (%)

model: HadCM2
simulations: Ga 1+2+3+4
anomalies: JJA for overlapping 30y periods, relative to first 240y of control
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x)
variables: temp (°C, bottom left), prec (mm/day, top left), prec (%, top right)
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Figure 4.11
Response patterns for temperature from two different periods in Ga.

2020s response pattern

significance of top right

patterns: 2080s – 2020s

strengthening of pattern

model: HadCM2
simulations: Ga 1,2,3,4
anomalies: JJA temperature (°C), relative to first 240y of control
patterns: 30y anomalies divided by scaler: for 2020s (top left) and 2080s
difference: 2080s pattern – 2020s pattern (top right)
significance: difference expressed in standard deviations (bottom left, Eq. 4.4)
masking: boxes selected where sig > 2s or sig < -2s (total: 2918 boxes = 42.8%)

sig > 2s in 1825 boxes (26.8%); sig < -2s in 1093 boxes (16.0%)
adj. patt.: 2020s pattern – 1.0 for each grid box
ratio: difference divided by adjusted pattern and masked (bottom right)

ratio<-1 (6.9%), -1<ratio<0 (18.3%), 0<ratio (17.6%)
ratio<-0.2 (19.1%), -0.2<ratio<0.2 (10.6%), 0.2<ratio(13.1%)
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Figure 4.12
Differences between temperature response patterns from Ga and other scenarios.

patterns: s550 — Ga

patterns: Gd — Ga

patterns: s750 — Ga

model: HadCM2
simulations: Ga 1+2+3+4, Gd 1+2+3+4, s550, s750
anomalies: JJA temperature (°C), relative to first 240y of control
temporal: 30y periods with equivalent scalers for each comparison176

period patt.: grid-box period mean divided by scaler (°C per °C)
mean patt.: the mean of all four period patterns from a scenario
difference: scenario mean pattern -- appropriate Ga pattern (plotted)

                                                            
176 For s550 (top left) we selected the 30-year periods (with global annual temperatures in °C in

brackets) centred on 2120 (2.79), 2160 (3.06), 2200 (3.16), and 2240 (3.30). The equivalent periods in
Ga were 2045 (2.81), 2052 (3.05), 2056 (3.18), and 2059 (3.29). For s750 (top right) we selected 2110
(3.19), 2150 (3.59), 2190 (4.11), and 2230 (4.23). The equivalent periods in Ga were 2056 (3.18), 2068
(3.61), 2082 (4.11), and 2085 (4.23). For Gd (bottom) we selected 2073 (2.78), and for Ga we selected
2045 (2.81).
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Figure 4.13
Response patterns for temperature from equivalent periods in Ga and Gd.

Ga pattern

significance of top right

patterns: Gd – Ga

strengthening of pattern

model: HadCM2
simulations: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA temperature (°C), relative to first 240y of control
patterns: 30y anomalies divided by scaler: for Ga 2045 (top left) and Gd 2073
difference: Gd 2073 pattern – Ga 2045 pattern (top right)
significance: difference expressed in standard deviations (bottom left, Eq. 4.4)
masking: boxes selected where sig > 2s or sig < -2s (total: 925 boxes = 13.6%)

sig > 2s in 615 boxes (8.8%); sig < -2s in 310 boxes (4.5%)
adj. patt.: Ga pattern – 1.0, for each grid box
ratio: difference divided by adjusted pattern and masked (bottom right)

ratio<-1 (2.0%), -1<ratio<0 (6.7%), 0<ratio (4.9%)
ratio<-0.2 (4.6%), -0.2<ratio<0.2 (5.6%), 0.2<ratio(3.4%)
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Figure 4.14
Response patterns for temperature from the entire Ga and Gd scenarios.

Gd pattern

significance of top right

patterns: Gd – Ga

strengthening of pattern

simulations: HadCM2: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

for Ga and Gd (top left)
difference: Gd pattern – Ga pattern (top right)
significance: difference expressed in standard deviations (bottom left)
masking: boxes selected where sig > 2s or sig < -2s (total: 1542 boxes = 22.6%)

sig > 2s in 632 boxes (9.3%); sig < -2s in 910 boxes (13.4%)
adj. patt.: Ga pattern – 1.0, for each grid box
ratio: difference divided by adjusted pattern and masked (bottom right)

ratio<-1 (1.5%), -1<ratio<0 (11.3%), 0<ratio (9.8%)
ratio<-0.2 (6.3%), -0.2<ratio<0.2 (11.9%), 0.2<ratio(4.3%)
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Figure 4.15
Response patterns for precip. (mm/day) from the entire Ga and Gd scenarios.

Gd pattern

significance of top right

patterns: Gd – Ga

strengthening of pattern

simulations: HadCM2: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

for Ga and Gd (top left)
difference: Gd pattern – Ga pattern (top right)
significance: difference expressed in standard deviations (bottom left)
masking: boxes selected where sig > 2s or sig < -2s (total: 1545 boxes = 22.7%)

sig > 2s in 606 boxes (8.9%); sig < -2s in 939 boxes (13.8%)
ratio: difference divided by Ga pattern and masked (bottom right)

ratio<-1 (2.3%), -1<ratio<0 (10.0%), 0<ratio (9.9%)
ratio<-0.2 (10.4%), -0.2<ratio<0.2 (4.3%), 0.2<ratio(7.5%)
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Figure 4.16
Response patterns for precip. (%) from the entire Ga and Gd scenarios.

Gd pattern

significance of top right

patterns: Gd – Ga

strengthening of pattern

simulations: HadCM2: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA prec (%) for overlapping 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

for Ga and Gd (top left)
difference: Gd pattern – Ga pattern (top right)
significance: difference expressed in standard deviations (bottom left)
masking: boxes selected where sig > 2s or sig < -2s (total: 1532 boxes = 22.5%)

sig > 2s in 604 boxes (8.9%); sig < -2s in 928 boxes (13.6%)
ratio: difference divided by Ga pattern and masked (bottom right)

ratio<-1 (2.3%), -1<ratio<0 (10.1%), 0<ratio (10.0%)
ratio<-0.2 (10.5%), -0.2<ratio<0.2 (4.5%), 0.2<ratio(7.5%)
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Figure 4.17
Response patterns for precipitation from two different periods in Ga.

2020s response pattern

significance of top right

patterns: 2080s – 2020s

strengthening of pattern

model: HadCM2
simulations: Ga 1,2,3,4
anomalies: JJA precipitation (mm/day), relative to first 240y of control
patterns: 30y anomalies divided by scaler: for 2020s (top left) and 2080s
difference: 2080s pattern – 2020s pattern (top right)
significance: difference expressed in standard deviations (bottom left, Eq. 4.4)
masking: boxes selected where sig > 2s or sig < -2s (total: 2316 boxes = 34.0%)

sig > 2s in 1427 boxes (20.9%); sig < -2s in 889 boxes (13.0%)
ratio: difference divided by 2085 pattern and masked (bottom right)

ratio<-1 (7.4%), -1<ratio<0 (10.4%), 0<ratio (16.2%)
ratio<-0.2 (17.0%), -0.2<ratio<0.2 (0.9%), 0.2<ratio(16.0%)
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Figure 4.18
Response patterns for precipitation from two equivalent periods in Ga and Gd.

Ga response pattern

significance of top right

patterns: Gd – Ga

strengthening of pattern

model: HadCM2
simulations: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA temperature (°C), relative to first 240y of control
patterns: 30y anomalies divided by scaler: for Ga 2045 (top left) and Gd 2073
difference: Gd 2073 pattern – Ga 2045 pattern (top right)
significance: difference expressed in standard deviations (bottom left, Eq. 4.4)
masking: boxes selected where sig > 2s or sig < -2s (total: 598 boxes = 8.8%)

sig > 2s in 435 boxes (6.4%); sig < -2s in 163 boxes (2.4%)
ratio: difference divided by Ga 2045 pattern and masked (bottom right)

ratio<-1 (1.0%), -1<ratio<0 (2.5%), 0<ratio (5.3%)
ratio<-0.2 (3.2%), -0.2<ratio<0.2 (0.7%), 0.2<ratio(4.8%)



107

Figure 4.19
Errors in estimating Ga temperature from scaling the Ga pattern.

2020s scaling error

significance of top left

2080s scaling error

significance of top right

simulations: HadCM2 Ga 1,2,3,4
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x)
estimate: pattern * scaler for Ga 2020s and 2080s
error: estimate – modelled value: 2020s (top left), 2080s (top right)
significance: error expressed as s (Equations 4.5, sM from control)

2020s (bottom left): 1210 (17.8%) of boxes where mag. > 2s

2080s (bottom right): 1876 (27.5%) of boxes where mag. > 2s
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Figure 4.20
Errors in estimating 2080s Ga temperature from scaling the Ga pattern.

significance with control s

significance with Ga s

proportion (mask=top left)

proportion (mask=bott. left)

errors: as calculated in Figure 4.19 (top right)
significance: error expressed as s (Equations 4.5)

sM from control: 1876 (27.5%) of boxes >2s or <-2s (top left)177

sM from ensemble:  2123 (31.1%) of boxes >2s or <-2s (bott. left)
ratio: error / modelled: masked by left-hand plots (right plots)
(top right) ratio<-1 (0.2%), -1<ratio<0 (16.3%), 0<ratio (11.0%)

ratio<-0.2 (3.5%), -0.2<ratio<0.2 (21.9%), 0.2<ratio(2.1%)
(bott. right) ratio<-1 (0.3%), -1<ratio<0 (17.0%), 0<ratio (13.9%)

ratio<-0.2 (3.6%), -0.2<ratio<0.2 (25.3%), 0.2<ratio(2.3%)

                                                            
177 This plot is identical to Figure 4.19 (bottom right).
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Figure 4.21
Errors in estimating 2080s Ga precipitation from scaling the Ga pattern.

significance with control s

significance with Ga s

proportion (mask=top left)

proportion (mask=bott. left)

errors: as calculated in Figure 4.19 (top right), but for prec (mm/day)
significance: error expressed as s (Equations 4.5)

sM from control: 1659 (24.3%) of boxes >2s or <-2s (top left)
sM from ensemble:  1780 (26.1%) of boxes >2s or <-2s (bott. left)

ratio: error / modelled: masked by left-hand plots (right plots)
(top right) ratio<-1 (2.4%), -1<ratio<0 (14.5%), 0<ratio (7.5%)

ratio<-0.2 (14.6%), -0.2<ratio<0.2 (3.1%), 0.2<ratio(6.6%)
(bott. right) ratio<-1 (2.4%), -1<ratio<0 (14.8%), 0<ratio (9.0%)

ratio<-0.2 (14.3%), -0.2<ratio<0.2 (4.8%), 0.2<ratio(7.0%)
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Figure 4.22
Errors in estimating 2080s Gd temperatures from scaling the Ga pattern.

modelled

significance of error

estimate

error / modelled

simulations: HadCM2: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
modelled: as simulated, Gd in 2080s (top left)
pattern: a from best-fit line (y=ax) from Ga anomalies (y) and scaler (x)
estimate: Ga pattern * Gd 2080s scaler (top right)
error: estimate – modelled
significance: error expressed as s (Equations 4.5, sM from control) (bottom left)
ratio: error / modelled, masked by error significance (bottom right)

ratio<-1 (0.1%), -1<ratio<0 (7.8%), 0<ratio (5.9%)
ratio<-0.2 (0.2%), -0.2<ratio<0.2 (12.0%), 0.2<ratio(1.6%)
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Figure 4.23
Errors in estimating 2080s Gd precipitation from scaling the Ga pattern.

modelled

significance of error

estimate

error / modelled

simulations: HadCM2: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
modelled: as simulated, Gd in 2080s (top left)
pattern: a from best-fit line (y=ax) from Ga anomalies (y) and scaler (x)
estimate: Ga pattern * Gd 2080s scaler (top right)
error: estimate – modelled
significance: error expressed as s (Equations 4.5, sM from control) (bottom left)
ratio: error / modelled, masked by error significance (bottom right)

ratio<-1 (1.5%), -1<ratio<0 (5.8%), 0<ratio (3.3%)
ratio<-0.2 (5.6%), -0.2<ratio<0.2 (1.8%), 0.2<ratio(3.3%)
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Figure 4.24
Changes in multi-decadal grid-box variability in Ga and Gd.

temperature sd

temperature sd

precipitation sd

precipitation sd

precipitation cv

precipitation cv

model: HadCM2
simulations: 1400y control; Ga 1,2,3,4; Gd 1,2,3,4
anomalies: JJA means of overlapping 30-year per., relative to first 240y of con.
grid-box sd: pop. standard deviation for each period in Ga 1,2,3,4, Gd 1,2,3,4

pop. standard deviation for 30y periods (10y gaps) in detrended con.
global sd: grid-box sd averaged for temp (°C, left) and prec (mm/day, centre)
grid-box cv: grid-box sd / mean for each period in Ga 1,2,3,4, Gd 1,2,3,4

grid-box sd / mean for 30y periods (10y gaps) in detrended con.
global cv: grid-box cv averaged for prec (mm/day, right)
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Figure 4.25
Errors in estimating Ga temperatures from scaling various patterns.

mean error

mean error

error sizes

error sizes

significances

significances

model: HadCM2
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
box error: estimate – modelled value, for each box
mean error: global-mean of box errors (left)
error sizes: average magnitude of box errors (centre)
significance: significance of each box error (Eq. 4.5, sM from con.), averaged (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.26
Errors in estimating Gd temperatures from scaling various patterns.

mean error

mean error

error sizes

error sizes

significances

significances

model: HadCM2
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
box error: estimate – modelled value, for each box
mean error: global-mean of box errors (left)
error sizes: average magnitude of box errors (centre)
significance: significance of each box error (Eq. 4.5, sM from con.), averaged (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.27
Errors in estimating Ga precipitation from scaling various patterns.

mean error

mean error

error sizes

error sizes

significances

significances

model: HadCM2
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
box error: estimate – modelled value, for each box
mean error: global-mean of box errors (left)
error sizes: average magnitude of box errors (centre)
significance: significance of each box error (Eq. 4.5, sM from con.), averaged (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.28
Errors in estimating Gd precipitation from scaling various patterns.

mean error
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error sizes

error sizes

significances

significances

model: HadCM2
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
pattern: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
box error: estimate – modelled value, for each box
mean error: global-mean of box errors (left)
error sizes: average magnitude of box errors (centre)
significance: significance of each box error (Eq. 4.5, sM from con.), averaged (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.29
Errors in estimating Ga and Gd temperatures under global-mean hypothesis.

estimating Ga: error sizes

estimating Ga: error sizes

estimating Gd: error sizes

estimating Gd: error sizes

model: HadCM2
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
patterns: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
plus pattern where all boxes =0.86 (global-mean)

Ga estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
Gd estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
Ga box error: Ga estimate – Ga modelled value, for each box
Gd box error:Gd estimate – Gd modelled value, for each box
error sizes: average magnitude of Ga box errors (left), Gd box errors (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.30
Errors in estimating Ga and Gd precipitation under global-mean hypothesis.

estimating Ga: error sizes

estimating Ga: error sizes

estimating Gd: error sizes

estimating Gd: error sizes

model: HadCM2
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
patterns: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1,2,3,4; Gd 1,2,3,4; s550; s750
plus pattern where all boxes =0.043 (global-mean)

Ga estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
Gd estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
Ga box error: Ga estimate – Ga modelled value, for each box
Gd box error:Gd estimate – Gd modelled value, for each box
error sizes: average magnitude of Ga box errors (left), Gd box errors (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.31
Errors in estimating Ga and Gd temperatures from using single simulations.

 estimating Ga: error sizes

estimating Ga: error sizes

estimating Gd: error sizes

estimating Gd: error sizes

model: HadCM2
anomalies: JJA temp (°C) for overlapping 30y per., relative to first 240y of con.
patterns: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1, Ga 2, Ga 3, Ga 4; Gd 1, Gd 2, Gd 3, Gd 4 (thin)
Ga 1,2,3,4; Gd 1,2,3,4 (thick)

Ga estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
Gd estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
Ga box error: Ga estimate – Ga modelled value, for each box
Gd box error:Gd estimate – Gd modelled value, for each box
error sizes: average magnitude of Ga box errors (left), Gd box errors (right)
x-axis: period mid-year (top), period scaler (bottom)
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Figure 4.32
Errors in estimating Ga and Gd precipitation from using single simulations.

 estimating Ga: error sizes

estimating Ga: error sizes

estimating Gd: error sizes

estimating Gd: error sizes

model: HadCM2
anomalies: JJA prec (mm/day) for overlap. 30y per., relative to first 240y of con.
patterns: a from best-fit line (y=ax) from anomalies (y) and scaler (x):

Ga 1, Ga 2, Ga 3, Ga 4; Gd 1, Gd 2, Gd 3, Gd 4 (thin)
Ga 1,2,3,4; Gd 1,2,3,4 (thick)

Ga estimate: for overlapping 30y periods in Ga: each pattern * Ga scaler
Gd estimate: for overlapping 30y periods in Gd: each pattern * Gd scaler
Ga box error: Ga estimate – Ga modelled value, for each box
Gd box error:Gd estimate – Gd modelled value, for each box
error sizes: average magnitude of Ga box errors (left), Gd box errors (right)
x-axis: period mid-year (top), period scaler (bottom)



121

Figure 4.A2.1
Standard deviations of the temperature response patterns for Ga and Gd.

GaX

difference (GdX—GaX)

GdX

fraction (GdX/GaX)

model: HadCM2
simulations: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: temperature (°C) relative to first 240y of control
season: JJA
temporal: means of overlapping 30-year periods
patterns: for each member, using all periods, in °C per °C
stdev: standard dev. of Ga patterns (top left, global-mean: 0.0365)

standard dev. of Gd patterns (top right, global-mean: 0.0472)
difference: top right minus top left (bottom left), 

top right as a fraction of top left (bottom right), where:
<0.5: 535 boxes (7.8%)
>2.0: 1474 boxes (21.6%)
both: 2009 boxes (29.5%)
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Figure 4.A2.2
Standard deviations of the temperature response patterns for Ga and Gd.

GaX (2045)

difference (GdX—GaX)

GdX (2073)

fraction (GdX/GaX)

model: HadCM2
simulations: Ga 1,2,3,4; Gd 1,2,3,4
anomalies: temperature (°C) relative to first 240y of control
season: JJA
temporal: means of 30-year periods centred on 2045 (Ga) and 2073 (Gd)
patterns: each mem., anomaly divided by global annual mean, (°C per °C)
stdev: standard dev. of Ga patterns (top left, global-mean: 0.0643)

standard dev. of Gd patterns (top right, global-mean: 0.0652)
difference: top right minus top left (bottom left), 

top right as a fraction of top left (bottom right), where:
<0.5: 1242 boxes (18.2%)
>2.0: 966 boxes (14.2%)
both: 2208 boxes (32.4%)
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Figure 4.A2.3
Effect of assumption (sA

2 = sB
2) on D and significances of pattern differences.

D stdev. diff. (ass.—no ass.)

sig. diff. (ass.—no ass.)

D stdev. fract. (ass.—no ass.)

sig. fract. (ass.—no ass.)

assumption: Ga and Gd response pattern variances are equal (sA
2 = sB

2)
D : Gd response pattern – Ga response pattern
sA ,sB : as in Figure 4.A2.1 (top)
D variance: sA

2/2 (without ass.) and sA
2/4 + sB

2/4 (with ass.)
D stdev: stdev. of D (with ass.) minus stdev. of D (without ass.) (top left)

and as a fraction of stdev. of D (without ass.) (top right)
D sig: sig. of D in stdev. from the mean (D divided by D stdev.)

sig. of D (with ass.) minus sig. of D (without ass.) (bottom left)
and as a fraction of sig. of D (without ass.) (bottom right)

errors in sig: 1806 boxes (26.5%) in error by at least 0.5s

963 boxes (14.1%) in error by at least 1.0s

787 boxes (11.5%) the sig. at least double the correct sig.
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5. May we scale the distribution?

5.1 Introduction
In chapter 4 we investigated the possibility of using pattern scaling to estimate
changes in grid-box means on 30-year time scales. Our interest in this chapter lies
in the possibility of applying pattern scaling not merely to the mean, but to the
entire probability distribution. Therefore we are interested in higher statistical
moments, such as the variance, skewness, and kurtosis.

We might think of the means we estimated in chapter 4 from a single 30-year
period in two equally valid ways:

 i. as an estimate of a multi-decadal mean from a sample of one;
 ii. as an estimate of an inter-annual mean from a sample of thirty.

From the viewpoint of chapter 4 this choice does not matter. However, it becomes
relevant when we consider not merely the mean of the probability distribution,
but also higher order statistics such as the variance:

 i. for a multi-decadal variance we would calculate the means of corresponding
30-year periods from an ensemble (size n), and calculate the variance between
them with a sample size of n;

 ii. for an inter-annual variance we would calculate the variance among the
individual seasonal means in a 30-year period,178 giving a sample size of 30
for a single simulation, and n* 30 for an ensemble (size n).179

Since our ensembles only have four members, we are likely to find it difficult to
obtain stable estimates of changes in multi-decadal probability distributions.
Therefore in this chapter we discuss the estimation of changes in inter-annual
probability distributions. We examine seasonal (JJA) changes in temperature (°C)
and precipitation (mm/day) at the grid-box scale, using the same HadCM2
simulations as in chapter 4.

We begin by calculating globally-averaged time series for the variance, skewness,
and kurtosis (section 5.2). The magnitude of the internal variability suggests that

                                                            
178 In order to remove any influence from the changes in mean during a 30-year period, it would be
necessary to detrend the 30-year period before using it to estimate the inter-annual variability.
179 In practice we estimate higher-order statistics from an ensemble by averaging between the inter-
annual statistics estimated (using the sample size of 30) from each of the ensemble members.
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we need ensembles in order to calculate the higher statistical moments with an
acceptable level of stability, so we limit our analysis in this chapter to the Ga and
Gd ensembles. In section 5.3 we calculate response patterns that approximate the
behaviour of the higher order statistics. The failure of the response patterns to
explain much of the variability in skewness and kurtosis leads us to limit the
analyses that follow to the inter-annual variance. In section 5.4 we estimate the
changes in inter-annual variance under increased radiative forcing by scaling the
response patterns by annual global-mean temperature (the ‘scaler’). In section 5.5
we draw together the results from chapters 4 and 5 by presenting the grid-boxes
where the errors introduced through estimating means and variances by pattern
scaling are neither statistically or practically significant. If we assume normality
then pattern scaling provides an accurate method for representing changes in the
entire probability distribution for such grid-boxes. We draw together our
conclusions in section 5.6.

5.2 Globally-averaged moments
The motive for our investigation is the possibility of using pattern scaling to
estimate changes not merely in the mean, but in the entire distribution. Therefore we
build upon our discussion of the mean in chapter 4 by considering the variance
(Equations 5.1), Pearson’s measure of skewness (Equations 5.2), and a standard
measure of kurtosis (Equations 5.3). Taking each Ga ensemble member in turn, we
calculate these statistics for each grid-box and each overlapping 30-year period.
We then average the grid-box statistics across the globe to obtain the time-series of
individual simulations plotted in Figure 5.1, together with the average of those
four time-series. Thus each value plotted for an individual simulation is itself the
average of the variance (or skewness or kurtosis) calculated at each grid-box from
the 30 seasonal (JJA) means in that period, after detrending that period.180

The most striking difference between these time-series and the equivalent time-
series plotted for the mean (Figure 4.1) lies in the much larger magnitude of
internal variability relative to any response to increased radiative forcing. The
magnitude of internal variability suggests that we need an ensemble, not merely a
single simulation, in order to provide stable estimates of the higher statistical
                                                            
180 The detrending is a vital step. If we do not detrend, changes in the long-term mean will interfere
with our estimate of the inter-annual variance. It is not even sufficient to detrend the entire time-
series at a grid-box at once, since any non-linearities in the response to radiative forcing will hinder
the effectiveness of the detrending. The only effective method is to individually detrend each 30-
year period at each grid-box, relative to the scaler (not time).
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moments. Therefore we restrict our analysis in this chapter to the Ga and Gd
ensembles; we do not consider the stabilisation scenarios.

In Figure 5.2 (blue lines) we replot the ensemble means from Figure 5.1, and add
the equivalent statistics from the Gd ensemble (green lines). We repeat the same
method for precipitation (Figure 5.3). The level of internal variability, even in the
ensemble means, is such that it is difficult to identify any responses to radiative
forcing in the temperature statistics with any certainty; however, it appears that
there may be slight increases in inter-annual variance and skewness over the globe
as a whole (Figure 5.2). The small changes in Figure 5.2 do not imply that there are
no changes in the temperature statistics for pattern scaling to estimate, because
changes of one sign in one region may be cancelled out in these global averages by
changes of the opposite sign in another region.

By way of contrast with temperature, the increases in all the inter-annual statistics
for precipitation are clearly identifiable from internal variability (Figure 5.3). This
is not surprising; the heteroscedasticity of precipitation is such that changes in
higher order statistics accompany any changes in mean precipitation.

The non-Gaussian values of the skewness and kurtosis parameters for
precipitation – and the changes in them – are such that we cannot assume that the
inter-annual distribution of precipitation is Gaussian. This introduces two
complications:
1. Routine statistical analyses (such as for hypothesis testing) that assume that the

distribution is normal will produce results that are erroneous to the extent that
the distribution is not normal.

2. If the mean and the variance of the modelled distribution are estimated by
scaling, and a probability distribution is estimated from those two statistics, the
estimated distribution will be erroneous to the extent that the modelled
distribution is not normal. However, it is still of interest to estimate higher
statistical moments for precipitation, not least because it may prove possible to
describe inter-annual precipitation in terms of another probability distribution.

5.3 Response patterns
In chapter 4 (section 4.5) we calculated spatial patterns that described the response
of temperature and precipitation means to increased radiative forcing. Here we
calculate spatial patterns that describe the responses for inter-annual variance,
skewness, and kurtosis.
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We begin by describing the inter-annual variance of Ga temperatures. For each
grid-box and each Ga simulation we use least squares regression to calculate a
best-fit line between the scaler (x) and the inter-annual variance derived from
overlapping (detrended) 30-year periods (y). We fit to an equation of the form
y=ax+b (where a and b are constants). We also calculate r, the product-moment
correlation coefficient. We then calculate the ensemble mean of the four values of
a, b, r obtained from the four simulations. Thus we obtain three patterns (Figure
5.4):

4 the ‘response’ pattern consists of the value of a in each grid-box, and represents
the rate of change in variance as a function of the scaler (top left);

4 the ‘initial’ pattern consists of the value of b in each grid-box, and represents
the variance under pre-industrial radiative forcing (top right);

4 the ‘variance explained’ pattern consists of the value of r2 in each grid-box
(bottom left).

The initial pattern (top right) shows a marked land-sea contrast: the variance is
greatest over the northern continents and smallest in the Arctic, but there is also a
region of high variance over the Southern Ocean associated with sea-ice. The
response pattern (top left) also shows a marked land-sea contrast; the largest rates
of increase in variance under increased radiative forcing generally occur in the
regions where the variance is already large (top right). In the parts of the Southern
Ocean associated with the largest increases in temperatures (Figure 4.10, bottom
left) the sea ice retreats, leading to a substantial decrease in variance in these
regions (Figure 5.4, top left). In half (50.4%) of the grid-boxes the response to
increased radiative forcing explains at least half of the variability in the variance
(Figure 5.4, bottom left). Moreover, the regions with the largest rates of change in
variance (Figure 5.4, top left) are among the regions where the response to
increased radiative forcing explains the largest proportion of the variability in the
variance (Figure 5.4, bottom left). Therefore it appears reasonable to attempt to
estimate the inter-annual variance under increased radiative forcing by scaling this
pattern.

We also calculated an equivalent set of patterns for the Gd ensemble (Figure 5.5).
We plot the Gd response pattern (top right) next to the Ga response pattern (top
left). The similarity between the different forcing scenarios may be seen by visual
inspection. However, although the spatial patterns are similar, they have different
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magnitudes.181 The Gd response is weaker than the Ga response (bottom left), and
explains less of the variability.182 The differences between the forcing scenarios are
significant in 20.3% of the grid boxes (bottom right). The slight increase in inter-
annual variability over the oceans in Ga is less in Gd, and the substantial increase
over the continents in Ga is much less in Gd. The Southern Ocean sea-ice retreats
much less in Gd than in Ga, so the inter-annual variance also decreases much less
in Gd than in Ga. Moreover, the spatial coherence of the differences suggests that
the differences are not merely artefacts of internal variability. Therefore it seems
likely that the magnitude of the response of inter-annual temperature variability
depends to some extent on the rate of increase in radiative forcing.

We apply the same method to precipitation. We calculate an equivalent set of
patterns for Ga precipitation (Figure 5.6) and compare the Ga and Gd response
patterns (Figure 5.7). The initial pattern (Figure 5.6, top right) shows that the
regions where the inter-annual variance is relatively large are generally regions
where precipitation amounts are also relatively great.183 This is not merely the case
in the tropics, but also in extratropical mountainous regions, such as the Andes,
Alps, and Scandinavia. The effects of ENSO on the inter-annual variance in
precipitation do not appear to be particularly large, judging from the regions with
the largest variance, despite the strength of the model ENSO (Tett et al., 1997). The
reason is probably that the effects of ENSO are not dominant in this particular
season (JJA).184 As with temperature, in half (51.8%) of the grid-boxes the response
to increased radiative forcing explains at least half of the variability in the
variance, and it is generally where the responses are largest (Figure 5.6, top left)
that they explain the largest proportion of the variability in the variance (bottom
left).

The Ga and Gd patterns are broadly similar (Figure 5.7)185 and the differences
between patterns are significant in only 9.4% of the grid-boxes. We introduced

                                                            
181 The average magnitudes are 0.156 (top left) and 0.147 (top right) °C2 per °C.
182 In Gd the response to increased radiative forcing explains at least half of the variability in the
variance in only 30.2% of the grid-boxes.
183 The climatological (JJA) precipitation from the HadCM2 control is displayed in Johns et al. (1997)
Figure 19b.
184 The seasons when, and regions where, precipitation is most strongly related to ENSO are
documented in Ropelewski and Halpert (1987, 1989). Their findings are summarised in their
Figures 21 (1987) and 18 (1989).
185 The average magnitudes are 0.185 (top left) and 0.174 (top right) (mm/day)2 per °C.
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heteroscedasticity186 in section 4.6, and we see it here in the close relationship
between the precipitation mean and variance.187

Once again we have concentrated on the differences between patterns rather than
their similarities. Nonetheless the patterns have strong similarities, particularly
spatially. Therefore we expect the estimates to be reasonably accurate if we scale a
response pattern from a different forcing scenario.

Finally, we apply the same methods to skewness and kurtosis. We summarise the
results in Figure 5.8 by plotting the proportion of the variability explained by the
skewness (left) and kurtosis (right) patterns for temperature (top) and
precipitation (bottom). The very low proportions obtained suggest that in most
grid-boxes there is little or no recognisable response to increased radiative forcing
that might prove amenable to pattern scaling. The precipitation plots (Figure 5.8,
bottom) are slightly more promising than the temperature plots. However, even so
most of the response pattern for the skewness (Figure 5.9, top left) is noise, and
noise strongly influences most of the grid-boxes in the kurtosis response pattern
(Figure 5.9, bottom left). Therefore we do not attempt to apply pattern scaling to
the skewness and kurtosis, but limit our analysis to the inter-annual variance.

5.4 Estimating the variance
In this section we scale the response patterns calculated in section 5.3 to estimate
changes in inter-annual variance, first of temperature and then of precipitation.
The ‘changes’ are from the ‘pre-industrial’ variance, which we define as the initial
patterns in Figures 5.4 (temperature) and 5.6 (precipitation).

5.4a Estimating temperatures

We present our estimates of the changes in the inter-annual variance of
temperature under Ga in Figures 5.10 (the 2020s) and 5.11 (the 2080s).
4 The modelled anomaly (top left) is the mean inter-annual variance among the

four ensemble members for that period, minus the pre-industrial variance.
4 The estimated anomaly (top right) is the response pattern from Ga multiplied

by the Ga scaler, minus the pre-industrial variance.
                                                            
186 A variable is heteroscedastic when its standard deviation varies in proportion to its mean.
187 Compare Figure 5.6 (top left) with Figure 4.10 (top left). Also consider the difference plots:
compare Figure 5.7 (bottom left) with Figure 4.15 (bottom left). Furthermore, consider the relative
weakness (compared to Ga) of the mean Gd precipitation response to radiative forcing (Figure 4.15,
top right), and the relative weakness of the variance response (Figure 5.7, bottom left).
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4 The error (bottom left) is the estimated anomaly minus the modelled anomaly.

4 The error significance (bottom right) follows Equations 4.5.188

A visual inspection of the modelled (top left) and estimated (top right)  inter-
annual variances in Figures 5.10 and 5.11 suggests that the scaling method is
broadly accurate in estimating temperatures throughout the 21st century.
However, pattern scaling does introduce some errors (bottom left), and a visual
inspection suggests that many of the errors change sign during the 21st century; as
when estimating the means in chapter 4, we suggest that slight non-linearities in
the response to increased radiative forcing are responsible. These errors are larger
as a proportion of the estimated values than was the case in chapter 4.189 However,
the internal variability in the inter-annual variance is very large, so the errors are
only statistically significant in a small proportion (about 8%) of the grid-boxes.

We extend our analysis to the Gd ensemble, estimating inter-annual variances of
temperatures as follows:

4 for Ga using patterns from Gd (Figure 5.12),

4 for Gd using patterns from Ga (Figure 5.13),
4 for Gd using patterns from Gd (Figure 5.14).
In these figures we plot the error (top) and its significance (bottom) for the 2020s
(left) and 2080s (right).

When we again estimate changes using a pattern drawn from the same scenario
(Gd, Figure 5.14) the errors from pattern scaling again arise from non-linearities in
the response, and are statistically significant in a similar proportions of grid-boxes
to the Ga case (Figures 5.10, 5.11). However, when we estimate changes in one
forcing scenario using the patterns in another (Figures 5.12, 5.13) there are
increases both in the errors themselves, and in the proportion of grid-boxes where
these errors are statistically significant. The reason is – as we noted in section 5.3 –
that the response to increased radiative forcing in Gd is weaker than in Ga,
particularly over the continents (Figure 5.5). Therefore when we extrapolate,190 the
estimated variance is generally too small (Figure 5.12). Although the errors are
larger over land (top), the errors are most significant over the oceans (bottom),
                                                            
188 In Equations 4.5 the random variables representing statistics from a single simulation (Mi and Ei)
represent multi-decadal means, but here they represent inter-annual variances. We estimate sM

from the same period in the ensemble.
189 We demonstrate this in Figures 5.24-5.27, which are described below.
190 We estimate the Ga inter-annual variance by scaling the Gd response pattern.
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presumably because the background level of inter-annual variance is generally
smaller over the oceans (Figure 5.4, top right). When we interpolate,191 the errors
are smaller because the smaller Gd scaler does not magnify the difference between
the Ga and Gd response patterns to the same extent (Figure 5.13). Thus in the
2080s the error from interpolation is statistically significant in only 11.5% of the
grid-boxes, whereas the proportion from extrapolation is 18.5%.

We present time-series of the errors in estimating Ga and Gd in Figures 5.15 and
5.16 respectively.192 We estimate the average error introduced by pattern scaling in
the absence of increased radiative forcing by inspecting the first century displayed
in these figures (top left); it amounts to ±0.08 °C2. When we estimate the variance
under increased radiative forcing by scaling the response pattern from the same
scenario,193 the average error increases slightly to ±0.10 °C2, reflecting either slight
non-linearities in the global response or enhanced internal variability. The average
magnitude of the errors remains approximately constant at 0.12-0.17° C2 (centre),
and the average significance amounts to less than a standard deviation (right).

When we estimate the variance by scaling the response pattern from a different
scenario there are larger increases in the error magnitudes and significances.194

When we extrapolate we obtain smaller estimates of the Ga variance (Figure 5.15,
left, green lines) because of the weaker response in Gd compared to Ga. Similarly,
when we interpolate we obtain larger estimates of the Gd variance (Figure 5.16,
left, blue lines). The errors from extrapolating are much larger than from
interpolating: the average magnitude of the error only increases to 0.2 °C2 when
interpolating for the 2080s, whereas when we extrapolate it doubles to 0.3 °C2.

5.4b Estimating precipitation

We present equivalent results for precipitation in Figures 5.17-5.23. The results are
broadly similar to those we obtained for temperature. We summarise the results
from the spatial plots (Figures 5.17-5.21) as follows:
4 Pattern scaling gives broadly accurate estimates of changes in inter-annual

variance.195

                                                            
191 We estimate the Gd inter-annual variance by scaling the Ga response pattern.
192 The equivalent figures for estimating multi-decadal means (4.25 and 4.26) were discussed in
section 4.7.
193 See the blue lines in Figure 5.15 and green lines in Figure 5.16.
194 See the green lines in Figure 5.15 and blue lines in Figure 5.16.
195 See Figures 5.17 and 5.18 (top).
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4 The errors when estimating changes by scaling a response pattern from the
same forcing scenario are statistically significant in a few more grid-boxes than
was the case for temperature.196

4 There is a change in the sign of the error in many regions during the 21st

century that is similar to that obtained for temperature.197

4 When we scale a response pattern from one forcing scenario to estimate
changes under another forcing scenario the errors introduced by pattern
scaling increase, and are significant in 10-20% of the grid-boxes.198

4 In the 2080s, the errors introduced by pattern scaling are smaller when
interpolating than when extrapolating.199

We summarise the results from the time series (Figures 5.22, 5.23) as follows:

4 The error in the absence of radiative forcing amounts to ±0.06 (mm/day)2 when
averaged over the globe, with an average magnitude of 0.08-0.12 (mm/day)2.

4 When we estimate changes by scaling a response pattern from the same forcing
scenario the average error increases in Ga (not Gd) to ±0.09 (mm/day)2. The
large non-linearities in the response to increased radiative forcing in individual
regions are such that the error magnitudes increase, doubling in Ga by the end
of the 21st century. However, these errors remain small in relation to internal
variability.

4 When we estimate changes by scaling a response pattern from a different
forcing scenario the errors increase further, more so when extrapolating (green
lines in Figure 5.22) than when interpolating (blue lines in Figure 5.23).

5.4b Estimating changes in the inter-annual variance

The evidence presented in this section suggests that it is feasible to scale patterns
of change in the inter-annual variance from one forcing scenario to another for a
large proportion of HadCM2 grid-boxes. The error is never statistically significant
in more than a fifth of the grid-boxes. Moreover, if one interpolates rather than
extrapolates (e.g. estimating for Gd using Ga patterns rather than vice versa), this
proportion improves considerably. Nonetheless unless ensemble sizes are
increased, the inter-annual variance cannot be estimated with the same precision
as the multi-decadal mean because of the large internal variability.

                                                            
196 See Figures 5.17 and 5.18 (bottom right), and 5.21 (bottom).
197 Compare bottom left in Figures 5.17 and 5.18.
198 See Figures 5.19 and 5.20 (bottom).
199 Compare bottom right in Figures 5.19 and 5.20.
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5.5 Estimating changes in the distribution
We may also infer from the evidence presented in the previous section that it may
be possible to estimate changes in inter-annual probability distributions,
particularly of temperature, at the grid-box scale. If we may estimate both the
mean and the inter-annual variance with reasonable accuracy,200 then under the
assumption of normality we may estimate the distribution itself. The values that
we obtained for skewness and kurtosis parameters in section 5.3 suggest that this
assumption may hold good for temperature, but perhaps not for precipitation.
Nonetheless, it may prove possible to identify a theoretical probability distribution
that gives a good fit for inter-annual precipitation.201 In this case the accuracy with
which we may estimate the precipitation variance suggests that we might obtain
similar accuracy for the parameters of this other probability distribution.

In this section we summarise the extent to which it is possible to simultaneously
estimate changes in both mean and variance, by drawing together some of the
results from chapters 4 and 5. As we noted in chapter 4, although it is possible to
give a strict definition of the statistical significance of any error, the practical
significance is context-dependent. Therefore we adopt an arbitrary threshold for
practical significance: an error that amounts to 20% of the estimated value is said
to be practically significant.

In chapter 4 we presented the estimates for the 2080s of changes in Gd mean
temperature (Figure 4.22) and precipitation (Figure 4.23) that we obtained by
scaling the Ga response patterns (i.e. the interpolation case). In particular we
presented plots (bottom right) showing the ratio of error to modelled value for the
grid-boxes where the error was statistically significant. These plots enable us to
estimate the proportion of grid-boxes with errors from pattern scaling that are
both statistically and practically significant. We repeat this method not just for the
2080s, but also for the 2020s, and not just for the mean, but also for the inter-
annual variance. We present our results in Figures 5.24-5.27:
4 temperature (5.24 and 5.25) and precipitation (5.26 and 5.27),

4 2020s (5.24 and 5.26) and 2080s (5.25 and 5.27),

4 mean (top left) and inter-annual variance (top right).

                                                            
200 The former condition was addressed in chapter 4, the latter in this chapter.
201 One candidate is the gamma distribution.
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We go one step further in Figures 5.24-5.27 by combining these results. For each
variable, time period, and grid box we compare the error (as a proportion of the
estimated value) in estimating the mean with that from estimating the inter-
annual variance. We plot the larger magnitude (bottom left) and then mask out all
grid-boxes where the larger magnitude does not exceed 0.2 (bottom right). Thus
we identify for each variable and time period the grid-boxes where we are able to
estimate changes in both the mean and variance without any errors that are both
statistically and practically significant; these are the grey boxes in the bottom right
plots. The grid-boxes where there are statistically and practically significant errors
are in the minority, up to a fifth for temperature and up to a third for precipitation.

In most cases the estimates of the mean (top left) and the variance (top right)
contribute approximately equal numbers of grid-boxes with statistically significant
errors. However, a much larger proportion of the statistically significant errors in
estimating the variance are also practically significant than is the case when
estimating the mean. The estimates of temperature and precipitation also have
approximately equal numbers of grid-boxes with statistically significant errors.
Similarly, the difference between temperature and precipitation lies in the larger
proportion of the statistically significant errors in precipitation that are also
practically significant.

We conclude that to a large extent it is possible to simultaneously estimate
changes in both mean and variance at the grid-box scale. In the majority of grid-
boxes pattern scaling does not introduce errors that are both statistically and
practically significant, whether in estimating the mean or the inter-annual
variance. The proportions where there are such errors are limited to a fifth
(temperature) or a third (precipitation). On this basis we suggest that changes in
inter-annual probability distributions, particularly of temperature, may be
estimated at the grid-box scale.

5.6 Conclusions
We recognise that much of the value in climate scenarios may lie in changes in
distributional parameters other than the mean. In this chapter we have examined
whether or not we may scale patterns of higher-order statistics in a similar manner
to the method for means examined in chapter 4, with the aim in mind of applying
pattern scaling to changes in probability distributions. To our knowledge this has
not been attempted before. Our analyses have been conducted on seasonal (JJA)
inter-annual probability distributions of temperature (°C) and precipitation
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(mm/day).  Our initial investigations suggested that a single simulation was
insufficient to extract stable estimates of higher-order statistics, so we restricted
our analysis to the perturbed ensembles. Our investigation of the skewness and
kurtosis parameters suggested that the responses to increased radiative forcing
explained a very small proportion of the variability, so we concentrated our
attention on changes in inter-annual variance.

Our results suggest that it is indeed practical to scale a response pattern of inter-
annual variance from one scenario to estimate changes in inter-annual variance
under another scenario. Although the errors are much larger (in proportion to the
modelled value) than was the case when estimating means, they are never
significant in more than a fifth of the grid-boxes. In general, the precipitation
estimates are at least as accurate as the temperature estimates. For both
precipitation and temperature the response to increased radiative forcing is
weaker in Gd than in Ga, so errors are introduced when estimating one scenario
using patterns from the other. These errors are smaller when interpolating
(estimating Gd using the Ga patterns) than when extrapolating (estimating Ga
using the Gd patterns).

When we combined our estimates of the mean and inter-annual variance for the
interpolation case we found that the errors introduced by pattern scaling were
both statistically and practically significant in only a minority of grid-boxes: up to
a fifth (temperature) or up to a third (precipitation). On this basis we suggest that
changes in inter-annual probability distributions, particularly of temperature, may
be estimated at the grid-box scale. To do this for precipitation requires further
consideration to be given to the distributional form that is most appropriate to
inter-annual precipitation. However, the accuracy of estimating changes in the
variance from pattern scaling suggests that other distributional parameters might
also be accurately estimated.

If it is possible to estimate changes in a probability distribution using pattern
scaling, then we may exploit this ability when constructing climate scenarios:
(a) We may present estimated changes in probability distributions for forcing

scenarios not simulated by GCMs.
(b) We may apply Monte Carlo techniques to the generation of climate

‘projections’ at regional scales. We may combine probabilities in different
elements of the ‘cascade’ of uncertainty202 using Bayesian statistics, and exploit

                                                            
202 See section 2.3 for our discussion of the ‘cascade’ of uncertainty.
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the highly complex integrals by random sampling.203 However, rather than
terminating our evaluation of the cascade at global-mean temperature, as we
might otherwise be forced to do by the lack of large samples of regional climate
changes from GCMs, through pattern scaling we may extend our evaluation of
the cascade to regional climate changes.204

Some further directions in which our work might be extended are common to the
work described in chapter 4:
4 we might examine seasons other than JJA;

4 we might examine variables other than precipitation and temperature;

4 we might examine time scales other than the inter-annual;

4 if ensembles were available for stabilisation scenarios we might examine the
accuracy of estimates made for them.

As in chapter 4, we point out that we have restricted our analysis to scenarios of
greenhouse gases alone, and that further complexity is introduced by the
introduction of spatially-varying radiative forcings such as that from sulphate
aerosols.205 We also recognise that pattern scaling possesses some of the limitations
of the GCMs it represents:

 i. the credibility of the results from pattern scaling depends on the credibility of
the GCM, particularly at regional scales;

 ii. if the GCM does not represent the full range of conceivable changes –
including abrupt changes – then neither will the results from pattern scaling.

However, the credibility of the models on regional scales – limitation (i) – depends
partly on the definition of ‘regions’ that we adopt. Therefore in chapter 6 we
examine the extent to which the accuracy of scaling is dependent on the spatial
scale and on the aggregation of grid-boxes into regions.206 Limitation (ii) may be
partly addressed by including a number of GCMs in any assessment of future
climate.207 Therefore in chapter 7 we examine whether we may apply pattern
scaling to models other than HadCM2.

                                                            
203 See section 2.4 for our discussion of the roles of Bayesian statistics and Monte Carlo techniques.
204 Huntingford and Cox (2000) have already taken a step in this direction by constructing an
analogue model to HadCM3 that relates radiative forcing to land surface variables.
205 See section 2.8 for our discussion of the importance of sulphate aerosols to pattern scaling.
206 See section 2.10 for our discussion of the spatial choices that influence our results.
207 See section 2.11 for our discussion of the value of using multiple GCMs.
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Equations 5.1
1. The interannual variance (s2) of the seasonal anomalies (a) for a particular time

slice (j, length in years ny) and grid-box (i) for a single simulation (m):

2. The interannual variance (s2) of the seasonal anomalies (a) for a particular time
slice (j, length in years ny) and grid-box (i) for an ensemble (M, size nm):
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Equations 5.2
Following Francis (1979) section 2.7.2

1. Pearson’s measure of skewness is given as follows:
skewness = (mean – mode) / standard deviation

 For moderate skewness the following relation approximately holds:
mode = mean – 3 (mean – median)

Therefore since we are calculating for a set of values from a continuous
distribution, to make the skewness more stable we estimate it in terms of the
median rather than the mode:

skewness = 3 (mean – median) / standard deviation
This is a dimensionless statistic, evaluating to:

4 zero for a Gaussian distribution;

4 negative for a left-skewed distribution;

4 positive for a right-skewed distribution.

2. The interannual skewness of the seasonal anomalies (a) for a particular time
slice (j, length in years ny) and grid-box (i) for a single simulation (m):

Equation 5.2.1;
the mean and standard deviation are as expressed in Equation 5.1.1;
the median is the mid-value when the values (nj) are ranked.

3. The interannual skewness of the seasonal anomalies (a) for a particular time
slice (j, length in years ny) and grid-box (i) for an ensemble (M, size nm):

mean of the skewness values from the individual members of the ensemble,
as calculated in Equation 5.2.2
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Equations 5.3
Following Francis (1979) section 2.7.2

1. The standard measure of kurtosis is given by:
kurtosis = M4 / (M2)2

For a Gaussian distribution this expression evaluates to three, so we calculate
our measure of kurtosis as follows:

kurtosis = (M4 / (M2)2) – 3
This is a dimensionless statistic, evaluating to:
4 zero for a Gaussian distribution;

4 negative values for a platykurtic (relatively less peaked) distribution;

4 positive values for a leptokurtic (relatively peaked) distribution.

2. The mth statistical moment about zero (M’m) of the seasonal anomalies (a) for a
particular time slice (j, length in years ny) and grid-box (i) for a single
simulation (m):

3. The 2nd and 4th statistical moments about the mean (M2, M4) are given by:
M2 = M’2 – (M’1)2

M4 = M’4 – 4 M’1 M’3 + 6(M’1)2 M’2 – 3(M’1)4

4. The interannual kurtosis of the seasonal anomalies (a) for a particular time slice
(j, length in years ny) and grid-box (i) for a single simulation (m):

Equations 5.3.1- 5.3.3

5. The interannual kurtosis of the seasonal anomalies (a) for a particular time slice
(j, length in years ny) and grid-box (i) for an ensemble (M, size nm):

mean of the kurtosis values from the individual members of the ensemble,
as calculated in Equation 5.3.4
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Figure 5.1
Statistics for 30-year slices of seasonal temperatures from Ga.

variance

variance

skewness

skewness

kurtosis

kurtosis

simulations: HadCM2 Ga 1, Ga 2, Ga 3, Ga 4, mean of Ga statistics
diagnostic: grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
statistics: interannual variance (Equations 5.1, left) from 30 values, 

interannual skewness (Equations 5.2, centre) from 30 values,
interannual kurtosis (Equations 5.3, right) from 30 values

x-axis: period mid-year (top), period global annual temp (°C: bottom)
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Figure 5.2
Statistics for 30-year slices of seasonal temperatures from Ga and Gd.

variance

variance

skewness

skewness

kurtosis

kurtosis

simulations: HadCM2 mean of Ga statistics, mean of Gd statistics
diagnostic: grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
statistics: interannual variance (Equations 5.1, left) from 30 values, 

interannual skewness (Equations 5.2, centre) from 30 values,
interannual kurtosis (Equations 5.3, right) from 30 values

x-axis: period mid-year (top), period global annual temp (°C: bottom)
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Figure 5.3
Statistics for 30-year slices of seasonal precipitation from Ga and Gd.

variance

variance

skewness

skewness

kurtosis

kurtosis

simulations: HadCM2 mean of Ga statistics, mean of Gd statistics
diagnostic: grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
statistics: interannual variance (Equations 5.1, left) from 30 values, 

interannual skewness (Equations 5.2, centre) from 30 values,
interannual kurtosis (Equations 5.3, right) from 30 values

x-axis: period mid-year (top), period global annual temp (°C: bottom)
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Figure 5.4
The patterns of temperature interannual variance from the Ga ensemble.

Ga response pattern (a)

Ga variance explained (r2)

Ga initial pattern (b)

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
patterns: a (top left), b (top right), r2 (bottom left)
r2 > 0.5: proportion of grid-boxes is 50.4% (Ga, bottom left), 30.2% (Gd)
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Figure 5.5
The response of temperature interannual variance in Gd compared with Ga.

Ga response pattern (a)

top right—top left

Gd response pattern (a)

significance of difference

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
responses: a for the Ga ensemble (top left) and Gd ensemble (top right)

average magnitudes are 0.156°C (Ga) and 0.147°C (Gd)
difference: a from Gd 1+2+3+4 minus a from Ga 1+2+3+4 (bottom left)
diff sig: difference expressed in standard deviations (bott. right, Eq. 4.4)
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Figure 5.6
The response of precipitation interannual variance in Ga.

Ga response pattern (a)

Ga variance explained (r2)

Ga initial pattern (b)

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
patterns: a (top left), b (top right), r2 (bottom left)
r2 > 0.5: proportion of grid-boxes is 51.8% (Ga, bottom left), 40.8% (Gd)
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Figure 5.7
The response of precipitation interannual variance in Gd compared with Ga.

Ga response pattern (a)

diff. (top right—top left)

Gd response pattern (a)

significance of difference

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
responses: a for the Ga ensemble (top left) and Gd ensemble (top right)
difference: a from Gd 1+2+3+4 minus a from Ga 1+2+3+4 (bottom left)
diff sig: difference expressed in standard deviations (bott. right, Eq. 4.4)
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Figure 5.8
The variance explained by the temperature and precipitation response patterns.

temperature skewness (r2)

precipitation skewness (r2)

temperature kurtosis (r2)

precipitation kurtosis (r2)

simulations: HadCM2 Ga 1+2+3+4
diagnostic: grid-box JJA temperature (top, °C) and prec (mm/day, bottom)
original: overlapping 30y periods, each detrended
statistics: interannual skewness (Equations 5.2)

interannual kurtosis (Equations 5.3)
patterns: y=ax+b where y is original statistic and x is the scaler
plots: r2 of skewness (left) and kurtosis (right)
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Figure 5.9
The precipitation response patterns from Ga.

precipitation skewness (a)

precipitation kurtosis (a)

precipitation skewness (b)

precipitation kurtosis (b)

simulations: HadCM2 Ga 1+2+3+4
diagnostic: grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
statistics: interannual skewness (Equations 5.2) (top)

interannual kurtosis (Equations 5.3) (bottom)
patterns: y=ax+b where y is original statistic and x is the scaler
plots: a (left) and b (right)
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Figure 5.10
The estimated temperature interannual variance in Ga in the 2020s.

Ga 2020s anomaly

error

estimated anomaly

error significance

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
modelled: 2020s variance – pre-industrial (top left)
estimated: b + (a * Ga scaler for 2020s) – pre-industrial (top right)
error: estimated – modelled (bottom left)
error sig: error in standard deviations (bott. right, Eq. 4.5)

114 boxes (1.7%) <-2s ; 412 boxes (6.0%) >2s
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Figure 5.11
The estimated temperature interannual variance in Ga in the 2080s.

Ga 2080s anomaly

error

estimated anomaly

error significance

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
modelled: 2080s variance – pre-industrial (top left)
estimated: b + (a * Ga scaler for 2080s) – pre-industrial (top right)
error: estimated – modelled (bottom left)
error sig: error in standard deviations (bott. right, Eq. 4.5)

325 boxes (4.8%) <-2s ; 198 boxes (2.9%) >2s
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Figure 5.12
The estimated temperature interannual variance in Ga by scaling Gd pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Gd
modelled: 2020s [or 2080s] variance – pre-industrial
estimated: b + (a * Ga scaler for 2020s [or 2080s]) – pre-industrial
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 427 boxes (6.3%) <-2s ; 282 boxes (4.1%) >2s

2080s (bott. right): 1073 boxes (15.7%) <-2s ; 189 boxes (2.8%) >2s
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Figure 5.13
The estimated temperature interannual variance in Gd by scaling Ga pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Ga
modelled: 2020s [or 2080s] variance – pre-industrial
estimated: b + (a * Gd scaler for 2020s [or 2080s]) – pre-industrial
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 114 boxes (1.7%) <-2s ; 862 boxes (12.6%) >2s

2080s (bott. right): 145 boxes (2.1%) <-2s ; 644 boxes (9.4%) >2s
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Figure 5.14
The estimated temperature interannual variance in Gd by scaling Gd pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Gd
modelled: 2020s [or 2080s] variance – pre-industrial
estimated: b + (a * Gd scaler for 2020s [or 2080s]) – pre-industrial
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 131 boxes (1.9%) <-2s ; 457 boxes (6.7%) >2s

2080s (bott. right): 207 boxes (3.0%) <-2s ; 127 boxes (1.9%) >2s
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Figure 5.15
The estimated temperature interannual variance in Ga.

error

error

error sizes

error sizes

significances

significances

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance  of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b (y=variance,x=scaler) for Ga 1+2+3+4 and Gd 1+2+3+4
modelled: variance – pre-industrial
estimated: b + a * Ga scaler – pre-industrial
error: each box, and then globally averaged:

estimated – modelled (left), and its magnitude (centre)
error magnitude in standard deviations (right)

x-axis: period mid-year (top), period mean scaler (°C, bottom)
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Figure 5.16
The estimated temperature interannual variance in Gd.

error

error

error sizes

error sizes

significances

significances

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance  of grid-box JJA temperature (°C)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b (y=variance,x=scaler) for Ga 1+2+3+4 and Gd 1+2+3+4
modelled: variance – pre-industrial
estimated: b + a * Gd scaler – pre-industrial
error: each box, and then globally averaged:

estimated – modelled (left), and its magnitude (centre)
error magnitude in standard deviations (right)

x-axis: period mid-year (top), period mean scaler (°C, bottom)
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Figure 5.17
The estimated precipitation interannual variance in Ga in the 2020s.

Ga 2020s anomaly

error

estimated anomaly

error significance

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
modelled: 2020s variance – pre-industrial (top left)
estimated: b + (a * Ga scaler for 2020s) – pre-industrial (top right)
error: estimated – modelled (bottom left)
error sig: error in standard deviations (bott. right, Eq. 4.5)

185 boxes (2.7%) <-2s ; 605 boxes (8.9%) >2s
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Figure 5.18
The estimated precipitation interannual variance in Ga in the 2080s.

Ga 2080s anomaly

error

estimated anomaly

error significance

simulations: HadCM2 Ga 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler
modelled: 2080s variance – pre-industrial (top left)
estimated: b + (a * Ga scaler for 2080s) – pre-industrial (top right)
error: estimated – modelled (bottom left)
error sig: error in standard deviations (bott. right, Eq. 4.5)

371 boxes (5.4%) <-2s ; 271 boxes (4.0%) >2s
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Figure 5.19
The estimated precipitation interannual variance in Ga by scaling Gd pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Gd
modelled: 2020s [or 2080s] variance – pre-industrial (top left)
estimated: b + (a * Ga scaler for 2020s [or 2080s]) – pre-industrial (top right)
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 285 boxes (4.2%) <-2s ; 469 boxes (6.9%) >2s

2080s (bott. right): 838 boxes (12.3%) <-2s ; 479 boxes (7.0%) >2s
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Figure 5.20
The estimated precipitation interannual variance in Gd by scaling Ga pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Ga
modelled: 2020s [or 2080s] variance – pre-industrial (top left)
estimated: b + (a * Gd scaler for 2020s [or 2080s]) – pre-industrial (top right)
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 223 boxes (3.3%) <-2s ; 984 boxes (14.4%) >2s

2080s (bott. right): 285 boxes (4.2%) <-2s ; 473 boxes (6.9%) >2s
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Figure 5.21
The estimated precipitation interannual variance in Gd by scaling Gd pattern.

2020s error

2020s error significance

2080s error

2080s error significance

simulations: HadCM2 Gd 1+2+3+4
diagnostic: interannual variance of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b where y is original variance and x is the scaler, for Gd
modelled: 2020s [or 2080s] variance – pre-industrial (top left)
estimated: b + (a * Gd scaler for 2020s [or 2080s]) – pre-industrial (top right)
error: estimated – modelled for 2020s (top left) and 2080s (top right)
error sig: error in standard deviations (bottom, Eq. 4.5)

2020s (bott. left): 111 boxes (1.6%) <-2s ; 515 boxes (7.6%) >2s

2080s (bott. right): 192 boxes (2.8%) <-2s ; 118 boxes (1.7%) >2s
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Figure 5.22
The estimated precipitation interannual variance in Ga.

error

error

error sizes

error sizes

significances

significances

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance  of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b (y=variance,x=scaler) for Ga 1+2+3+4 and Gd 1+2+3+4
modelled: variance – pre-industrial
estimated: b + a * Ga scaler – pre-industrial
error: each box, and then globally averaged:

estimated – modelled (left), and its magnitude (centre)
error magnitude in standard deviations (right)

x-axis: period mid-year (top), period mean scaler (°C, bottom)
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Figure 5.23
The estimated precipitation interannual variance in Gd.

error

error

error sizes

error sizes

significances

significances

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: interannual variance  of grid-box JJA precipitation (mm/day)
original: overlapping 30y periods, each detrended
variance: inter-annual variance of 30 values, averaged among 4 simulations
patterns: y=ax+b (y=variance,x=scaler) for Ga 1+2+3+4 and Gd 1+2+3+4
modelled: variance – pre-industrial
estimated: b + a * Gd scaler – pre-industrial
error: each box, and then globally averaged:

estimated – modelled (left), and its magnitude (centre)
error magnitude in standard deviations (right)

x-axis: period mid-year (top), period mean scaler (°C, bottom)
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Figure 5.24
Significant errors in estimating Gd 2020s temperature from the Ga pattern.

errors in mean

combined errors

errors in variance

combined errors > 20%

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: grid-box JJA temperature (°C) mean and interannual variance
errors: error in estimate of Gd 2020s by scaling Ga response pattern
significance: error / modelled, masked by statistical significance (top)
combined: maximum absolute value of top left and top right (bottom left)
comb > 20%: bottom left where values are greater than 0.2

threshold exceeded in 19.9% of boxes
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Figure 5.25
Significant errors in estimating Gd 2080s temperature from the Ga pattern.

errors in mean

combined errors

errors in variance

combined errors > 20%

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: grid-box JJA temperature (°C) mean and interannual variance
errors: error in estimate of Gd 2080s by scaling Ga response pattern
significance: error / modelled, masked by statistical significance (top)
combined: maximum absolute value of top left and top right (bottom left)
comb > 20%: bottom left where values are greater than 0.2

threshold exceeded in 12.4% of boxes
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Figure 5.26
Significant errors in estimating Gd 2020s precipitation from the Ga pattern.

errors in mean

combined errors

errors in variance

combined errors > 20%

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: grid-box JJA precipitation (mm/day) mean and interannual variance
errors: error in estimate of Gd 2020s by scaling Ga response pattern
significance: error / modelled, masked by statistical significance (top)
combined: maximum absolute value of top left and top right (bottom left)
comb > 20%: bottom left where values are greater than 0.2

threshold exceeded in 36.3% of boxes
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Figure 5.27
Significant errors in estimating Gd 2080s precipitation from the Ga pattern.

errors in mean

combined errors

errors in variance

combined errors > 20%

simulations: HadCM2 Ga 1+2+3+4, Gd 1+2+3+4
diagnostic: grid-box JJA precipitation (mm/day) mean and interannual variance
errors: error in estimate of Gd 2080s by scaling Ga response pattern
significance: error / modelled, masked by statistical significance (top)
combined: maximum absolute value of top left and top right (bottom left)
comb > 20%: bottom left where values are greater than 0.2

threshold exceeded in 18.0% of boxes
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6. May we regionalise?

6.1 Introduction
In chapters 4 and 5 we have examined the possibility of scaling spatial patterns of
climate change by the global annual temperature, with the aim of enhancing a
probabilistic approach to climate scenario construction. Our analysis in those
chapters dealt with a single model (HadCM2) at the grid-box scale. Our use of
individual grid-boxes did not imply that the model’s representation of climatic
change accurately represents the real world at the level of the individual grid-
box.208 Indeed, we did not discuss the extent to which a model is consistent with
the real world; instead we examined the extent to which the model exhibits a
consistent – and scaleable – pattern of change between forcing scenarios at the
grid-box scale.

However, doubts over the credibility of GCMs on regional scales are of critical
importance for the credibility of climate scenarios. Moreover, the literature
contains a wide variety of approaches to the definition of ‘regions’ for climatic
purposes.209 Therefore the question that we address in this chapter has a wider
relevance beyond pattern scaling. We ask whether we may aggregate grid-boxes
into regions for the purpose of providing scaled estimates of future regional
climate change for climate scenarios. We might put this in abbreviated form: may
we regionalise (GCM output)?

To address this question we consider the climate changes found in regions rather
than in individual grid-boxes. There is a near-infinite number of possible ‘regions’
that we might construct on the HadCM2 grid.210 Yet the climate scenarios that we
construct may depend on the principles we employ in constructing regions. There
are two key issues involved if we are to select grid-boxes using objective
principles:

                                                            
208 However, at least some climate modellers expect to be able to detect anthropogenic climate
change at all spatial scales by the end of the 21st century (e.g. Stott and Tett, 1998). Moreover,
Osborn et al. (1999b) found that HadCM2 accurately represents observed climate at the grid-box
scale for at least some grid-boxes. See Mitchell and Hulme (1999) for a review of scientific views on
the credibility of GCMs at regional scales.
209 We documented some of these approaches in section 2.10.
210 We define a ‘region’ as an aggregation of one or more grid-boxes.
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4 the spatial scale: how many grid-boxes should be aggregated together?

4 the zoning: which particular grid-boxes should be aggregated together?

In order to investigate these issues we construct a number of sets of regions
(section 6.2). In section 6.3 we consider the similarities and differences between the
region sets. In the next three sections we examine the effects that our choices of
spatial scale and zonation have on our estimates of climate:
4 We consider the amount of information that is lost through regionalising, using

measures of information loss that are independent of responses to increased
radiative forcing (section 6.4).

4 We consider the effects of regionalising on signal-to-noise ratios in the context
of increased radiative forcing (section 6.5).

4 We apply pattern scaling to the different region sets and compare the
accuracies achieved (section 6.6).

In the final section (6.7) we draw our conclusions.

6.2 Region set construction
The reason for constructing different region sets is to compare the effects the
different principles of aggregation have on our estimates of climate change.
Therefore it is important that our region sets are similar, except regarding the
principles of aggregation they employ. We specify a number of requirements with
which each region set must comply. Each region set must be:

4 on the HadCM2 model grid;
4 comprised of the 2271 land boxes in the model;211 each box must be included,

and no other boxes may be included;

4 each grid-box must be allocated to precisely one region.

In the paragraphs below we describe the reasons for constructing each of our
seven region sets and the principles by which each was constructed. These
principles are summarised in Table 6.1.

1. Land Boxes. This region set provides a reference set against which each of the
other region sets may be compared. It treats each of the 2271 land boxes as a
region constituted solely by that box.

                                                            
211 The total of 2271 excludes the single grid-box at the South Pole.
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2. Countries. Many assessments of climate-related impacts are conducted using
regions representing national boundaries. In this region set we allocate each grid-
box to a region that represents a single country. National boundaries form the sole
basis on which a grid-box is allocated to one region rather than another, so the
spatial scale varies with the size of a country. Each grid-box is assigned to the
country that has the single largest share of the surface area within that grid-box. 212

One constraint that governs how political boundaries are understood is the
requirement that any single region must be made up of a contiguous set of grid-
boxes.213 Hence where countries hold sovereignty over areas of land that are
distinct from the ‘mainland’ (such as Alaska or Kaliningrad), the separated
territories are treated as regions in their own right, with their own political
boundary. In some cases the allocation of a grid-box to one region rather than
another depends on which country is judged to hold sovereignty of disputed
territories (such as Kashmir or Tibet).

3. Giorgi. The set of regions described in Giorgi and Francisco (2000) was used as
the basis for a region set employing the principles followed in the construction of
the IPCC regions. The set of regions defined by Giorgi and Francisco (2000) was
not precisely the same as the evolving set in the IPCC reports in the 1990s,214 but
those authors consciously followed the lead of the IPCC set in constructing their
own set: this was the case not merely in their zoning215 and scale216 choices, but

                                                            
212 Shares of area in a grid-box were judged by visual inspection of a political map overlaid onto the
HadCM2 grid. Shares of area do not include ocean areas within a grid-box, but they do include any
internal bodies of water. This rule is based on a particular extension to the general rule of national
boundaries: internal waters fall within the sovereignty of a nation, but the sovereignty of coastal
waters is often not clear.
213 With reference to the model grid, a region is said to be contiguous when all its constituent grid-
boxes adjoin the whole at least one corner. A region may still be considered contiguous if it
contains boxes representing the coast and adjacent islands, or an archipelago.
214 Although the Third Assessment Report of the IPCC is expected to incorporate the set of regions
defined by Giorgi and Francisco (2000).
215 The rectangular regions in Mitchell et al. (1990) were selected “to represent a range of climates”
(p155). Giorgi and Francisco (2000) selected “regions of simple shape” that “represent different
climatic regimes and physiographic settings” (p172).
216 Mitchell et al. (1990) considered “several regions of about 4,000,000 km2” (p155). In fact, four of
their five regions are larger than 4,000,000 km2, and the average area is larger than 5,000,000 km2.
Giorgi and Francisco (2000) selected a “manageable number” of rectangles of a similar size, each
side of which amounted to “several thousand km” (p172).
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also in the similarity of some of their regions.217 We use as our basis the Giorgi and
Francisco (2000) set rather than the IPCC set because the former comes much
closer to covering the globe than the latter.218 We are only able to use the Giorgi
and Francisco (2000) set as a basis, rather than simply reproducing it, because of
the omissions in their set. We accounted for Antarctica simply by making it a
single region; the surface area it represents lies within the range of the other
regions in the set. More notable were the land boxes omitted from the Giorgi and
Francisco (2000) set but not explicitly mentioned by them.219 The requirements that
we have laid down for all our region sets are such that the missing boxes must be
incorporated. We did this in a way that tampers with the boundaries from Giorgi
and Francisco (2000) as little as possible: the missing grid-boxes were all added to
existing regions, the regions are still formed by the land boxes within non-
overlapping rectangles, and they still represent the areas originally intended.

4. Large Geometric. The Giorgi set described above inherits from Giorgi and
Francisco (2000) the use of climatic information to define the regions. Those
authors admitted that theirs “was a subjective choice, and different regional
configurations could be devised” (p172). In our sixth and seventh sets, described
below, we use alternative sources of climatically-related information to devise
“different regional configurations”. In this set and the next we provide the means
of examining whether the use of climatically-related information actually adds
value to the regional configuration chosen. We achieve this by covering the land
grid-boxes outside Antarctica220 with the same number of regions (21) as were
employed in our Giorgi set. However, rather than employing climatic criteria, each

                                                            
217 Among the “criteria” for selection followed by Giorgi and Francisco (2000) is that “some of the
regions are close” to the IPCC set (p172). (Is this a criterion or a coincidence?) They note Australia
(which is identical); SE Asia, Central North America, and the Mediterranean Basin (all of which are
similar but not identical); and East Asia (which is not similar at all; the IPCC region corresponds to
parts of six of Giorgi and Francisco’s regions).
218 The intention of Giorgi and Francisco (2000, p170) was to cover “all land areas of the globe (with
the exception of Antarctica)”. At its greatest extent during the 1990s (Kattenberg et al., 1996), the
IPCC set only covered a third of the non-Antarctic land grid-boxes in HadCM2.
219 In their introduction Giorgi and Francisco (2000, p170) claimed to cover “all land areas of the
globe (with the exception of Antarctica)”, but later they watered down this claim: “we wanted to
approximately cover all land areas” (p172, our italics). In fact a number of land grid-boxes were
omitted, representing SE Alaska, the Caribbean islands, S Central America, New Zealand, N
Siberia, and Iceland.
220 We selected regions for Antarctica that represented surface areas and grid-box totals comparable
to the other 21 regions.
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region is based on a rectangle of grid-boxes221 selected with as much geometric
efficiency as possible:
4 to cover a similar number of land grid-boxes in each rectangle;

4 to minimise the inclusion of coastal seas within each rectangle;

4 to avoid any overlap between rectangles.
Thus the spatial scale of the regions is the same in both this set and the Giorgi
set,222 but the zoning is different.

5. Small Geometric. The countries in the world cover a wide range of sizes, and
that range of spatial scales is reflected in the Countries region set. However, given
the importance of the choice of spatial scale, it is appropriate to examine particular
spatial scales more closely. The Large Geometric set provides an opportunity to
examine regions containing approximately 60 to 90 grid-boxes. To complement
these larger spatial scales we construct a Small Geometric set using identical
zoning principles to those employed for the Large Geometric Set, but constraining
the regions outside Antarctica223 to contain between 20 and 30 grid-boxes, at an
average of 25 grid-boxes. It should be noted that since the two Geometric sets and
the Countries set have been zoned without any climatically-relevant information,
they may be treated as being zoned in the same way. Therefore for zone-
independent examinations of spatial scale we have available both a wide range of
spatial scales (the Countries set) and more detailed examinations of two particular
spatial scales (the Geometric sets).

6. Topographic. Having provided region sets that will permit us to examine the
choice of spatial scale, we provide two further region sets that will permit us to
examine the value of employing climatically-related information in zoning. Here
we zone on the basis of the model topography. Topography is an important
climatological influence both in the real world and in GCMs, particularly for
precipitation. It therefore seems plausible that we might – in some sense – improve
our region set by selecting regions that represent topographic units in the model.
                                                            
221 The rectangles are made up of both land and ocean grid-boxes from HadCM2, but the region
corresponding to a rectangle only includes the land grid-boxes within that rectangle.
222 That is, the mean spatial scale of the regions is the same in both our Giorgi and Large Geometric
sets. The range and standard deviation of sizes is much less within the Large Geometric set than it is
in the Giorgi set.
223 For the Large Geometric set the region sizes for Antarctica represented a compromise between
equality in the number of grid-boxes, and in surface area, with the Rest of the World. In the Small
Geometric set the numbers of grid-boxes in the Antarctic regions are the same as in the Rest of the
World, with no attention paid to surface areas.
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In order to make an effective evaluation of the effects of zoning thus we construct
the non-Antarctic regions224 at the same spatial scale as was employed in the Small
Geometric set.225 An example of the information we use is given in Figure 6.1.226

Each region is zoned to represent a single topographic unit of the appropriate
spatial scale. The topographic unit might be a mountain range (e.g. Andes), plain,
river basin (e.g. Amazonia), coastline (e.g. Caribbean coast), peninsular (e.g. Central
America), or archipelago. The regions are contiguous and as compact as possible,
although if a marked topographic feature is present its outline is followed despite
its irregularities.

Climatic. The zoning of the Giorgi set is loosely climatic, to the extent that the
regions appear to be constructed on the basis of areas of coherence under present
conditions. We take this approach to its reasonable limits by carrying out a
principal component analysis on the HadCM2 control simulation, and identifying
regions that exhibit coherent variability in the control. If much of the climate
change in response to radiative forcing is manifested through modes of natural
variability,227 it is possible that the optimal method of zoning may be to base the
regions on the modes of natural variability in the control. We had to make a
number of choices in the principal component analysis:
4 Variable. We used near-surface (1.5m) temperatures only. This was partly for

simplicity, partly because this provided sufficient information to identify
appropriately-sized regions, and partly because the Topographic set is more
suited to identifying changes in precipitation than in temperatures, which
therefore complements this set.

4 Season. Although in practice information for each of the seasons is likely to be
required, it is unlikely that a specific region set would be constructed for each
season. Therefore we used annual means.

4 Averaging Period. We selected the multi-decadal time period as being of
primary interest, and smoothed the time series of annual temperature at each
grid-box with a 30-year Gaussian filter.

                                                            
224 In the Topographic set the surface areas of the regions in Antarctica fall within the range of the
Rest of the World, with no attention paid to the number of grid-boxes.
225 In the Small Geometric set the number of grid-boxes in a non-Antarctic region averaged 25, with
a range of 20-30. In the Topographic set the average is still 25, but the range is larger (15-35) to
allow more flexibility in the attempt to represent topographic units. Some sub-arctic regions are
allowed larger numbers of grid-boxes.
226 The HadCM2 topography was overplotted on the HadCM2 land-sea mask, and major rivers
were also overplotted. These plots were used to identify the topographic features.
227 One advocate of this theory is Tim Palmer. For examples see Palmer (1993) and Corti et al. (1999).
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4 Detrending. Since there is a small amount of drift in the control228 we
detrended the smoothed time series: we calculated the best-fit line (y=ax+b) by
least squares regression and removed the gradient from the time series.

A principal components analysis229 was carried out on each of eight rectangles of
continental size.230 An example of the information we used is given for South
America in Figure 6.2; the information was utilised as follows:
4 The first four components were retained. (In South America PC 1 was of little

use for region selection because its projection consisted mainly of a land-sea
contrast.)

4 The contribution of each component was proportional to the proportion of the
total variance that it explained.

4 Regions were selected on the basis of their coherence in control variability, as
judged from the components that explained the largest proportion of the total
variance.

4 In some places a large area exhibited coherence in one component, but
contained a bipole in another component. (The high latitudes of South America
form a single area in PC 4, but are split between Patagonia and the Pampas in
PCs 2 and 3.) In such cases distinct regions were formed.

4 Where there were similar boundaries between centres of variability in two or
more components, the precise boundary was primarily determined by the
component explaining the largest proportion of variance. (For example, the
northern boundary of the Patagonian region was determined primarily by PC 2
rather than PC 3.)

There were no constraints upon the size of a region, except that each had to
contain at least half-a-dozen grid-boxes and be smaller than a continent. Neither
were there any constraints upon the shape or contiguity of a region, except that
coherence was preferred where it was reasonable.

6.3 Comparing region sets
Global plots of the region sets constructed in section 6.2 are displayed in Figures
6.3 and 6.4. Plots for South America to complement those in Figures 6.1 (bottom
left) and 6.2 (bottom right) are given in Figure 6.5. Summary statistics for each

                                                            
228 Johns et al. (1997) found a slight drift of +0.02°C per century during the first 400 years of the
control simulation.
229 Carried out on 1400 years using the Karhunen-Loeve expansion on the covariance matrix.
230 Between them the rectangles covered almost all the land boxes of the HadCM2 grid, together
with adjacent ocean grid-boxes; each contained between 400 and 1000 grid-boxes.
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region set (including a breakdown of the land area into Antarctica and the Rest of
the World) are displayed in Table 6.2, which provides the basis for the inter-
comparison of the spatial scales of the region sets. The figures provide the basis for
the inter-comparison of the zonal configurations of the region sets.

6.3a Comparison of groups

There are substantial similarities between the region sets. The spatial scales that
we chose are such that five of the sets fall into two distinct groups:

4 a large-scale group (Giorgi and Large Geometric),
4 a small-scale group (Small Geometric, Topographic, and Climatic).
The large-scale group was formed because we made the Large Geometric set
equivalent in scale to the Giorgi set. The Small Geometric and Topographic sets
were also deliberately made equivalent in scale, but this was not the case with the
Climatic set, which was controlled by the spatial scales within the principal
components analysis.

The Countries set is different, covering all spatial scales. It includes a large number
of very small regions231, so it has as many as 130 regions.232 Nonetheless, the region
in the Countries set with the largest surface area (Russia) is comparable in size to
the largest in the Giorgi set (North Asia).

However, there are also differences in spatial scale within the two groups. The
range and variability of size are much less within the Large Geometric set than in
the Giorgi set.233 Outside Antarctica the Climatic set has slightly larger regions
than the rest of the small-scale group, and there is more variability in size among
the regions.234

6.3b Antarctica

                                                            
231 There are fifty regions containing fewer than four grid-boxes.
232 Although 130 is a large number of regions, it is, of course, far less than the number of countries
in the world. Thus many countries are unrepresented. This region set is not intended to provide a
climate scenario for every country, but to allow us to investigate the effects on climate scenarios of
zoning using political boundaries.
233 For the range, see Table 6.2 (‘Rest of World’). Despite the Large Geometric and Giorgi sets
having the same number of non-Antarctic regions, the standard deviations of region size (in boxes)
for the Large Geometric set is only a fifth (11.70) of that for the Giorgi set (54.13).
234 The standard deviations of region size (in boxes) for the non-Antarctic regions are as follows:
Small Geometric = 2.46, Topographic = 9.03, Climatic =14.00.
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There are a number of different ways of treating Antarctica. Antarctica is singled
out because of its representation on the HadCM2 grid: although it accounts for less
than 9% of the surface area of the land grid-boxes, it accounts for nearly 30% of the
grid-boxes (Table 6.2 ‘Summary’).235 In the Countries and Giorgi sets it is a single
region: it is the largest in terms of grid-boxes, but not in terms of surface area. The
other sets (Table 6.2 ‘Antarctica’) divide it into between 4 and 25 regions,
depending on whether the balance struck with the Rest of the World is in terms of
grid-boxes or surface area.

6.3c Large-scale group

A visual inspection of the zonal configuration in the Giorgi set reveals how
influenced it has been by climatological and topographic considerations; consider,
for example, the division between the Mediterranean basin and Northern Europe,
or its identification of the monsoonal areas of India and the Gulf of Guinea (Figure
6.3 bottom left). The zoning of the Large Geometric set pays no regard to such
considerations:236 Northern Africa and Europe are separated, Europe is treated as a
whole, and ‘East Africa’ extends as far north as the Caspian Sea (Figure 6.4 top
left). However, despite the different principles employed, in some areas the
configuration of land and sea forces the zonal configurations of both sets into
similar patterns (e.g. Figure 6.5, right).

6.3d Small-scale group

The Small Geometric set (Figure 6.4, top right) pays the same disregard to climatic
considerations as the Large Geometric set, although the effects are not as great
since the regions are much smaller. In contrast, the Topographic set (Figure 6.4,
bottom left), which is equivalent in size to the Small Geometric set, picks out many
physiographic features that influence climate processes. If we take South America
as an example, we find that unlike the Small Geometric set (Figure 6.5, bottom
left), the Topographic set (Figure 6.1, bottom left) identifies the Andes, Brazilian
Highlands, Amazon basin, and Pampas. However, the constraints of spatial scale
meant that the attempt to identify each region with a single topographic feature
was not entirely successful. Examples include the following (see Figure 6.1,
bottom left):

                                                            
235 This is because the HadCM2 grid does not vary the number of longitudinal grid-boxes with
changing latitude, so the area represented by a grid-box varies with latitude.
236 Some of the boundaries look non-geometric on the global plot (Figure 6.4 top left); they are in
fact straight lines on the HadCM2 grid, but appear as curves on this equal-area plot. For examples,
compare South America on the global (Figure 6.4 top left) and local (Figure 6.5 bottom right) plots.
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4 islands are treated as part of a mainland region (e.g. Caribbean islands);

4 some regions are a composite of topographic features (e.g. the inclusion of the
southern-most Andes in the Patagonian region);

4 some regions only represent part of a single topographic feature (e.g. the
Siberian Plain in Figure 6.4, bottom left).

The Climatic set (Figure 6.4, bottom right) does not identify topographic features
nearly as well as the Topographic set. For example, in South America the zonal
configuration of the Climatic set (Figure 6.2, bottom right) is more similar to the
Small Geometric set (Figure 6.5, bottom left) than it is to the Topographic set
(Figure 6.1, bottom left). However, the Climatic set does identify areas of coherent
variability in the control surface temperatures (Figure 6.2). The regions are mostly
spatially contiguous237 and compact238 (Figure 6.4, bottom right).

In summary, varying combinations of region sets are similar in either their spatial
scale or else in their principles of zonation, but are different in other respects. A
range of spatial scales are included among them, and principles of zonation that
incorporate varying amounts of climatically-relevant information. Therefore these
region sets provide a suitable basis on which to evaluate the effects of spatial scale
and zonation on climate scenario construction.

6.4 Information loss
Our aim in this chapter is to compare the relative worth of different principles by
which we might select regions. There are a number of different bases on which we
might make such a comparison. In this section we employ a measure of the
information that is lost through aggregating grid-boxes together.

6.4a Measure of information loss

Information is lost at the individual grid-box level when we aggregate grid-box
values into a regional mean. The ‘information’ to which we refer is not the
response to increased radiative forcing, but the difference between the grid-box
value and the global-mean – i.e. the spatial pattern. The extent to which
information is lost by regionalising provides a measure of the worth of

                                                            
237 There are some exceptions, notably in Europe, where the Balkans are separated from the rest of
Southern Europe, and where Britain is separated from Northern Europe.
238 Again, there are some exceptions, notably Japan, central America, and the Namib Desert.
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regionalising. Therefore we compare the various region sets using the loss of
information incurred in their construction.

Our measure of the loss of temperature information is a RMSE,239 in which the
‘error’ is the difference between a grid-box anomaly and the regional anomaly to
which that grid-box contributes (Equation 6.1.1). This measure is not suitable for
precipitation because of precipitation’s heteroscedasticity, so our measure of the
loss of precipitation information is the coefficient of variation among the grid-box
values within a region (Equation 6.1.2). Our standard for comparison is the loss of
information in the final 30-year period (the 2080s) of the HadCM2 Ga ensemble
mean in boreal summer (JJA).

In Figures 6.6 (temperature) and 6.7 (precipitation) we plot the loss of information
in each region. We plot the loss of information against the size of the region
because of the relationship between the loss of information and the number of
grid-boxes in a region. We plot separately the region sets zoned using climatic (top
right)240 and non-climatic (top left)241 information; thus we may determine whether
the differences between the region sets are due merely to different spatial scales,
or also to the principles employed in zonation. We also plot the Climatic (Figure
6.6) and Topographic (Figure 6.7) sets separately (bottom left) because it is for
these sets that the zonation is most likely – in our judgement – to influence the
amount of loss of information. We give a global summary in Figure 6.8.242

6.4b Logarithmic relationship with region size

There is a logarithmic relationship between a region’s size and the loss of
information incurred in its construction (Figure 6.8):
4 for a region containing a single grid-box there is no loss of information by

regionalising,
4 as grid-boxes are added the spread of values within the region rapidly

increases;

                                                            
239 ‘RMSE’ denotes root-mean squared error.
240 The climate-related group is comprised of the Giorgi, Topographic, and Climatic sets.
241 The non-climatic group is comprised of the Countries and Geometric sets.
242 In Figure 6.8 we plot the average loss of information (weighted by region size) for each region
set against the mean region size. We make the comparison for temperature (top) and precipitation
(bottom). Since they are regionalised differently, we make separate comparisons for Antarctica
(left) and the Rest of the World (right).
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4 eventually the region becomes so large that adding extra grid-boxes has little
effect on the loss of information from an average grid-box within the region.

Therefore we plot logarithmic best-fit lines in Figures 6.6 and 6.7 and compare
them (bottom right).

A visual inspection of Figures 6.6 and 6.7 suggests that the logarithmic best-fit
lines capture the general relationship between region size and the loss of
information reasonably well, despite the spread of values between similarly-sized
regions within a single region set. It is difficult to distinguish the best-fit lines for
the group of climate-related sets (brown) from particular members of that group
(red, green, bottom right). This is not surprising; since the Climatic and
Topographic sets each contribute nearly half the grid points to the climate-related
group, the differences among the sets in the climate-related group would have to
be substantial to generate different best-fit lines.

6.4c Influence of climatic information

If the zonation employs climate-related information so as – in some way – to
identify relatively homogenous regions, we might expect the loss of information in
regionalising to be less than for a region of equivalent size that was zoned without
using any climatic information. Such a contrast should be identifiable from a
visual inspection of the non-climatic (blue) and climate-related (brown) best-fit
lines (Figures 6.6 and 6.7). However, although there are differences between these
lines it is uncertain whether they are due to sampling or to differences in zoning.

We might also expect to identify a contrast between non-climatic and climate-
related sets from their global-means (Figure 6.8). However, in the Antarctic (left)
the Climatic and Topographic sets certainly do not improve on the Geometric sets.
In the Rest of the World there is no clear improvement for temperature (top
right),243 although there is possibly a slight improvement for precipitation (bottom
right).244

Therefore we examine the scatter plots more closely (Figures 6.6 and 6.7, top), still
searching for a contrast between the climate-related and non-climatic sets. We find

                                                            
243 The Topographic and Giorgi sets offer slight improvements on the Small and Large Geometric
sets respectively, but there is no clear improvement for the Climatic set, which we might expect a
priori  to offer the greatest improvement.
244 Each of the climate-related sets (Topographic, Climatic, Giorgi) improves on the non-climatic
sets, but not by large amounts.
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that in the lowest part of the range of region sizes differences do appear.245 It is
possible that the differences are due to sampling, since relatively few regions are
involved, but this seems unlikely because similar differences are present for both
temperature and precipitation.

6.4d Quantifying the influence of climatic information

To quantify our comparison we employed permutation testing.246 To carry out the
test we constructed two random samples from the Climatic and Countries sets.
Seven regions containing between 8 and 13 grid-boxes (the ‘Climatic sub-set’)
were available from the Climatic set. We selected two equivalent sets of seven
from the Countries set (the ‘Countries sub-sets’):
4 the size of each selected region corresponded to the size of a member of the

Climatic sub-set;
4 where there was a choice of regions for selection, the selection was made

randomly.

For both temperature and precipitation, the loss of information in the Climatic
sub-set was half that in the Countries sub-sets.247 We conducted a permutation test
to establish the statistical significance of these differences.248 The probability that
the loss of information at this spatial scale (8-13 grid-boxes) in the Climatic set was
less than that lost in the Countries set was very high: 0.984 for temperature, and
0.992 for precipitation.

We repeated this procedure for regions with 20-22 grid-boxes, using a sub-set
from the Climatic set and two equivalent sub-sets from the Small Geometric set.
However, for this spatial scale the contrast in lost information between the

                                                            
245 Compare the scatters close to the spatial scale of 10 boxes in the blue and brown plots.
246 See section 3.5 for our discussion of permutation testing.
247 The mean temperature RMSE (°C) in the Climatic sub-set was 0.38, and in the two Countries

sub-sets it was 0.58 and 0.71. The mean precipitation coefficient of variation in the Climatic sub-set
was 0.58, and in the two Countries sub-sets it was 1.02 and 1.28.
248 We tested the null hypothesis that equal information is lost in the Climatic and Countries sets at
the spatial scale of 8-13 grid-boxes. Two random samples were available from the Climatic (n=7)
and Countries (n=14) sets. We carried out a pooled permutation test on sums to establish the
likelihood of the Climatic sample being a random permutation from the pooled sample. We
calculated 100,000 permutations to establish the reference distribution.



180

Climatic and Small Geometric sub-sets was not nearly so great.249 The probabilities
that less information was lost in the Climatic set were only 0.422 for temperature
and 0.067 for precipitation.

6.4e Implications of the quantified comparison

It appears that there is a contrast between spatial scales of approximately 10 and
approximately 20 (or greater) grid-boxes. At the smallest scales represented here
(8-13 grid-boxes) the climate-related group loses less information than the non-
climatic group, but at larger spatial scales there is no identifiable difference
between the groups. This contrast explains why the climate-related best-fit lines
(brown, red, green) have steeper gradients than the non-climatic best-fit lines
(blue).

It is conceivable that the differences between the non-climatic and climate-related
groups at the smaller scale might be explained by the Climatic regions concerned
all belonging to a particular part of the world, but in fact this is not the case.250 It
appears that the contrast between the smaller and larger scales is genuine, and
that the reduced loss of information (relative to the non-climatic group) at the
smaller scale is due to the principles of zonation employed. We conclude that:
4 Climatic information only ‘improves’ the zonation of regions when the spatial

scale is small.
4 Contiguous areas in HadCM2 with homogenous natural variability are on a

relatively small spatial scale of less than 15 grid-boxes.

6.5 Signal-to-noise ratios
In section 6.4 we examined the loss of information arising from the aggregation of
grid-boxes, regardless of any climate change. However, since our investigation is
partly motivated by the possibility of aggregating grid-boxes for pattern scaling
purposes, it is appropriate to employ a measure related to climate change to
compare the relative worth of different methods of region selection.
                                                            
249 The mean temperature RMSE (°C) in the Climatic sub-set was 0.57, and in the two Small

Geometric sub-sets it was 0.41 and 0.67. The mean precipitation coefficient of variation in the
Climatic sub-set was 0.86, and in the two Small Geometric sub-sets it was 0.45 and 0.67.
250 The seven-member Climatic sample is made up of regions representing: Japan, the Cherskiy
Range, and Rub al Khali (all in Asia); the Namib Desert (Africa), the Mexican Plateau (North
America), Patagonia (South America), and Northern Queen Maud (Antarctica). Not only do these
regions represent a wide range of continents; they also represent a wide range of latitudes and
topographic features.
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6.5a Globally-averaged ratios

The measure we choose is the signal-to-noise ratio described in the latter part of
section 4.4 (Equations 4.3), which we re-express in Equations 6.2.251 We calculate
our signal-to-noise ratios for the 2080s in JJA from the HadCM2 Ga ensemble
mean and 1400-year control. We calculate for both temperature and precipitation,
and we calculate for each of the regions in each of the region sets. We plot the
signal-to-noise results by calculating the mean ratio (weighted by size) and mean
region size for each region set (Figure 6.9).

There is not the simple logarithmic relationship between signal-to-noise ratio and
region size (Figure 6.9)252 that there is between lost information and region size
(Figure 6.8). The relationship between signal-to-noise ratio appears to be
approximately linear, and the zonation appears to be as important to the signal-to-
noise ratio as the spatial scale. For example, in two of the four plots in Figure 6.9
(top right, bottom left) the Small Geometric set gives signal-to-noise ratios that are
at least the equal of the Large Geometric set.

6.5b Influence of climatic information

We compare the signal-to-noise ratios in the region sets zoned with and without
climate-related information (Figure 6.9). There is no difference between the
temperature signal-to-noise ratios in the Antarctic (top left), and in the Rest of the
World the climate-related sets have smaller ratios than those zoned without
climatic information (top right). For precipitation it is possible that the climate-
related information does improve the signal-to-noise ratios: in the Antarctic the
Topographic set gives better signal-to-noise ratios than the Geometric sets (bottom
left), and in the Rest of the World this is the case for both the Topographic and
Giorgi sets.

However, there is another plausible explanation for the different precipitation
signal-to-noise ratios. Although particular sets have equal mean region sizes, these
sets may have different distributions of region sizes, which may affect the mean

                                                            
251 It is worth noting that the signal-to-noise ratio is different from the measure of information loss
described in the previous section. The ‘information’ referred to there concerned the distinctiveness
of the spatial pattern. Here the ‘signal’ is the response to increased radiative forcing. In the former
case the ‘information’ became less as the spatial scale increased; in the latter case the signal-to-noise
ratio may increase as the spatial scale increases.
252 Except, perhaps, for Antarctic temperatures (Figure 6.9, top left).
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signal-to-noise ratio. Upon investigation we found that the distribution of region
sizes in the Giorgi set had a much larger variance than the Large Geometric set,253

and that the signal-to-noise ratios of the five largest regions in the Giorgi set254

contributed 52.8% of the weighted mean of the set, despite only contributing
44.8% of the grid boxes. On the basis of this evidence it seems plausible that the
larger mean signal-to-noise ratio in the Giorgi set is due to the different region
sizes in the Giorgi set, rather than to the use of climate-related information.

The obstacle to using a permutation test255 in these circumstances is posed by the
very different region sizes within the Giorgi and Large Geometric sets, which
makes it very difficult to draw appropriate equivalent samples from those sets. We
attempted to overcome this obstacle through removing the influence of size (x) on
a region’s signal-to-noise ratio (y), by calculating a best-fit line (y=ax+b) for the
pooled sets. We removed this best-fit line from the regional signal-to-noise ratios,
randomly subdivided the two sets into two halves, and conducted a permutation
test on each half.256 We found no evidence that the Giorgi set has larger signal-to-
noise ratios than the Large Geometric set, once the influence of varying region
sizes had been removed.

When we compare the distributions of region sizes in the Topographic and Small
Geometric sets we find that although they have the same mean, the Topographic
set has a much higher variance, and is positively skewed. However, there is a
considerable correspondence in region sizes between these two sets. So we
randomly selected samples of regions with equivalent sizes in the 20-22 box and
23-26 box ranges from the Topographic and Small Geometric sets. The
permutation tests suggested that in the 20-22 box range the Topographic set

                                                            
253 Although the Large Geometric and Giorgi sets have identical mean region sizes, their standard
deviations of region size are 11.7 boxes and 54.1 boxes respectively.
254 An example of the contrast in variances is that the Large Geometric and Giorgi sets have one
(121 boxes) and five (93, 95, 114, 154, 275 boxes) regions larger than 90 boxes respectively.
255 A permutation test could be used to determine whether one sample (the Giorgi set) might have
been a random selection from the pooled sample (the Giorgi and Large Geometric sets).
256 We tested the null hypothesis that the Giorgi and Large Geometric sets have equivalent signal-
to-noise ratios, once the influence of region size had been removed by detrending the ratios with
respect to region size. There was sufficient data for us to divide the samples (n=21) into two and
conduct two tests (n=10, n=11). We carried out two pooled permutation tests on sums to establish
the likelihood of the Giorgi sample being a random permutation from the pooled sample. We
calculated 100,000 permutations to establish the reference distribution. The p-values in the two
tests were 0.5683 and 0.5501.
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definitely gives larger signal-to-noise ratios than the Small Geometric set, but that
in the 23-26 box range the difference is insignificant.257 The inconclusive results
prompt us to repeat the detrending of the signal-to-noise ratios with respect to size
for the Topographic and Small Geometric sets. Having conducted six permutation
tests,258 we concluded that there was no evidence that the Topographic set has
larger signal-to-noise ratios than the Small Geometric set, once the influence of
varying region sizes had been removed.

6.6 Pattern scaling
Thus far we have examined the loss of information and changes in signal-to-noise
ratio that follow from regionalising. We have found that although the choice of
spatial scale is very influential, zonation does not appear to be influential.

In this section we examine the accuracy of pattern scaling for different spatial
scales and zonations. We apply the pattern scaling technique evaluated in chapter
4 to some of the region sets described earlier in this chapter. Since we have found
the spatial scale to be particularly important, we select the Land Boxes, Small
Geometric, and Large Geometric sets. In order to compare zoning methods we
also include the Climatic and Topographic sets for temperature and precipitation
respectively. The standard for comparison is the estimate made for each region set
of the mean JJA temperature and precipitation anomalies in the 2080s under the
Gd scenario. A worked example is given for Small Geometric temperatures in
Figure 6.10.

                                                            
257 We tested the null hypothesis that the Topographic and Small Geometric sets have equivalent
signal-to-noise ratios. We carried out tests for region sizes of 20-22 boxes (n=9), and 23-26 boxes
(n=11). We carried out two pooled permutation tests on sums to establish the likelihood of the
Topographic sample being a random permutation from the pooled sample. We calculated 100,000
permutations to establish the reference distribution. The p-values in the two tests were 0.9899 and
0.6745 respectively.
258 We tested the null hypothesis that the Topographic and Small Geometric sets have equivalent
signal-to-noise ratios, once the influence of region size had been removed by detrending the ratios
with respect to region size. There were sufficient data to sub-divide the samples and conduct six
tests (n=10 for each). We carried out six pooled permutation tests on sums to establish the
likelihood of the Topographic sample being a random permutation from the pooled sample. We
calculated 100,000 permutations to establish the reference distribution. The p-values in the six tests
were 0.2472, 0.4365, 0.4516, 0.6994, 0.7977, 0.8352.
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We obtain a response pattern from the Ga ensemble for each region set by
calculating the mean response for each region from its constituent grid-boxes.259

We estimate the mean JJA temperature and precipitation anomalies in the 2080s
under the Gd scenario for each region set by multiplying the response pattern by
the scaler in the 2080s under the Gd scenario (e.g. Figure 6.10, top right). We
express the error in the estimate (bottom left) relative to the modelled values (top
left), and calculate its significance (bottom right).260

We use the error significance to compare the accuracy of the estimates. We plot
this statistic for the four selected region sets for temperature (Figure 6.11)261 and
precipitation (Figure 6.12). These temperature and precipitation plots are
summarised in Figures 6.13 and 6.14 respectively, where each land grid-box
(excluding Antarctica)262 is classed by the magnitude of its error significance.

In all cases the proportion of grid-boxes where the error represents at least two
standard deviations is relatively small, approximately 10-20%. These grid-boxes
are found in similar areas in different region sets.263 An important measure is the
proportion of grid-boxes where there is no evidence that the error is significant,
which we define as the class where the magnitude of the error is less than one
standard deviation. The spatial scale clearly influences this measure. For both
temperature and precipitation an increase in spatial scale from Land Boxes to
Small Geometric to Large Geometric decreases the proportion of grid-boxes where
the error magnitude is less than a standard deviation: for temperature the decrease
from Land Boxes to Large Geometric is approximately 10%, for precipitation it is
25%. At first glance this might be thought a little surprising, because the error
might be expected to decrease as the spatial scale increases. In fact, the error does
indeed decrease as the spatial scale increases, but the internal variability decreases
even further.264

                                                            
259 The response for each grid-box under the Ga scenario was calculated in section 4.5 and plotted
in Figure 4.10. It is expressed in °C or mm/day per °C of change in the scaler.
260 The calculation of the significance follows Equations 4.5; we estimated sM from the control.
261 In Figure 6.11, the top right plot is a repeat of Figure 6.10 (bottom right).
262 Antarctica is excluded to ease the comparison between the Small Geometric and climatically-
zoned (Climatic, Topographic) sets.
263 For example, most of the grid-boxes where the error in the temperature estimate represents at
least two standard deviations are in West Africa, the Middle East, India, eastern Russia, and
western Canada (Figure 6.11).
264 The mean error among the 2271 land grid-boxes is 0.0047 °C for Land Boxes, and 0.0043 °C for

Large Geometric. The standard deviation by which the error is divided to obtain the significance of
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When we consider the influence of zonation in a similar way to the influence of
spatial scale, we find no evidence of any improvement in the accuracy of the
pattern scaling. The proportion of grid-boxes in the climatically-zoned sets where
the error magnitude is less than a standard deviation is no greater than in the
Small Geometric set: for precipitation the Topographic set has a similar proportion
(Figure 6.14), and for temperature the Climatic set actually has a smaller
proportion (Figure 6.13).

6.7 Conclusions
In this chapter we have addressed the possibility of aggregating grid-boxes into
regions for the purposes of pattern scaling. In particular, we have examined the
influence of the choices we make of spatial scale and zonation. We constructed
seven region sets on the HadCM2 grid using different spatial scales and methods
of zonation (section 6.2). In reviewing the sets in section 6.3 we identified a
group265 in which only the  spatial scale varies, and two groups266 in which the
spatial scale is similar but the zoning varies.

When we compared the loss of information267 in different region sets (section 6.4)
we found a logarithmic relationship between the loss of information and the
spatial scale. The method of zonation had a comparatively minor influence,
although there is evidence that zoning climatically gives a small reduction in the
loss of information at smaller spatial scales of less than 15 grid-boxes. In section
6.5 we found an approximately linear relationship between the spatial scale and
the signal-to-noise ratio that represents the response to increased radiative forcing.
In this case the variations in signal-to-noise ratios between sets with equivalent
spatial scales suggest that the signal-to-noise ratio is nearly as dependent on the
zonation as on the spatial scale. However, there is little or no evidence that using
specifically climatic information in the zonation leads to an increase in the signal-
to-noise ratio.

                                                                                                                                                                                        
the error (see Equations 4.5) is 0.1644 °C for Land Boxes, and 0.1046 °C for Large Geometric.

Therefore although the error decreases with increasing spatial scale, it increases relative to internal
variability.
265 The group is formed by the Land Boxes, Countries, Small and Large Geometric sets.
266 One group is formed by the Small Geometric, Topographic, and Climatic sets; the other group is
formed by the Large Geometric and Giorgi sets.
267 i.e. the loss of the spatial pattern
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Against this background we carried out pattern scaling for some of the region sets
(section 6.6). We found that although the estimation errors decreased as the spatial
scale increased, the background of internal variability decreased even further.
Therefore the proportion of grid-boxes with significant errors increased slightly
with increasing spatial scale. We did not find any evidence that the method of
zonation improves the accuracy.

The first major conclusion is that there is little evidence that we can improve
climate scenarios by defining regions using climatically-relevant information. The
region set employed by the IPCC is made up of rectangles that loosely represent a
range of different climates. However, our conclusion suggests that the use of
climatic information does not improve the results; similar results would be
obtained if similarly-sized regions were zoned using geometric principles. If our
conclusion is correct then the only conceivable way by which climatically-
informed zoning might increase signal-to-noise ratios and the accuracy of pattern
scaling is to construct the regions on the basis of the response pattern itself. There
is, of course, a strong element of circularity in using the HadCM2 response pattern
to define regions, employing them in pattern scaling, and then pronouncing them
better at approximating the response to forcing than any other region set!

The second major conclusion is that there is no optimal spatial scale for pattern
scaling, in the sense that any change in spatial scale involves a trade-off.
Increasing the spatial scale decreases the information available from the spatial
pattern, but also increases the signal-to-noise ratio that represents the response to
increased radiative forcing. Increasing the spatial scale decreases the magnitudes
of the errors introduced by pattern scaling, but the errors become more
statistically significant. However, this conclusion ought to be qualified by the
greater agreement between models and with observations that we might expect to
find at larger spatial scales.

The answer to the question that we posed as the title to this chapter (‘May we
regionalise?’) is ‘yes’. Aggregating grid-boxes into regions improves the signal-to-
noise ratio and decreases the errors introduced by pattern scaling. However, the
individual grid-box remains a suitable subject for pattern scaling from one forcing
scenario to another; naturally the signal-to-noise ratios are smaller and the errors
from pattern scaling are larger, but a large amount of useful information is still
retained. Whether pattern scaling for the individual grid-box is a worthwhile
activity ultimately depends on the view one takes of the intrinsic value of model
information at the grid-box level. From the limited perspective of the pattern
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scaling technique the grid-box and region may both be legitimately used in climate
scenarios.
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Equations 6.1
1. The information lost (expressed as a RMSE in °C) by a region (r, with ng grid-

boxes) through regionalising the grid-box temperatures (°C, tg) into a regional
mean (tr).

2. The information lost (expressed as the coefficient of variation) by a region (r,
with ng grid-boxes) through regionalising the grid-box precipitation (mm/day,
pg) into a regional mean (pr).
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Equations 6.2
1. The signal (sr) in °C in a region (r, with ng grid-boxes) for the Ga ensemble

mean in a 30-year period (j). It was constructed by anomalising the mean grid-
box temperature in that period (°C, tg) against the mean from the first 240 years
of the control (°C, tb). An equivalent precipitation signal is constructed
similarly.

2. The noise (sr) in °C in the same region, using a set of periods268 (c=1…nc) in the
1400-year control. The period-mean for the region (tr) is the mean of the
region’s constituent grid-boxes, and the anomalies are calculated with
reference to the first 240 years of the control (b). The noise is the estimate of the
population standard deviation from the sample of tr (size nc):

3. The signal-to-noise ratio for a region (r). The multiplication by two is to allow
for the signal being constructed from a four-member ensemble.

                                                            
268 We detrend the 1400-year control by calculating the best-fit line (y=ax+b) through least squares
regression, and removing b. We use the mean from the first 240 years of the control as the reference
(b) against which to anomalise. The remaining 1160 years of the control are divided into 40-year
sequential segments, and the periods (c=1…nc) are the first 30 years of each segment.
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Table 6.1
Criteria upon which regions were selected for the seven region sets.

The zoning constraints employed when constructing the various region sets were
as follows. The columns refer to constraints derived from published criteria (left),
model characteristics, geometric criteria, and contiguity of shape (right). A blank
entry in a column indicates that in that respect no constraint was set.

zoning published model geometric contiguity
constraints Globe Globe Globe Globe

Land Boxes
Countries yes yes
Giorgi yes yes yes
Large Geometric yes yes
Small Geometric yes yes
Topographic elevations yes
Climatic climate

The spatial scale constraints were as follows, given separately for Antarctica (Ant)
and the Rest of the World (RoW). In the right-hand column we state whether
equality between region sizes in Antarctica and the Rest of the World was
achieved in terms of the number of boxes in a region, or in the spatial area it
represents. In the other three columns we note the constraints that we followed
concerning the total number of regions in the set, the average number of boxes in a
region, and the minimum and maximum number of boxes permitted in a region.
A blank entry in a column indicates that in that respect no constraint was set.

size total regions mean boxes min/max box RoW-Ant eq
constraints RoW Ant RoW Ant RoW Ant boxes area

Land Boxes 1631 640 1 1 yes
Countries 1 640
Giorgi 1 640 yes
Large Geometric 21 78 yes
Small Geometric 66 25 25 26 20,30 20,30 yes
Topographic 66 25 15,35 yes
Climatic
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Table 6.2
Summary characteristics for the seven region sets.

The full set of land grid-boxes (Global Land) is subdivided between Antarctica
and the Rest of the World. ‘Area’ (in millions of km2) refers to model surface area.

Summary boxes boxes area area
total % m km2 %

Global Land 2271 100.00 147.69 100.00
Antarctica 640 28.18 13.20 8.94
Rest of World 1631 71.82 134.49 91.06

Global Land regions mean min. max. mean min. max.
boxes boxes boxes m km2 m km2 m km2

Land Boxes 2271 1 1 1 0.07 0.01 0.12
Countries 130 17 1 640 1.14 0.06 16.66
Giorgi 22 103 24 640 6.71 2.58 14.65
Large Geometric 25 91 62 177 5.91 2.77 9.43
Small Geometric 91 25 20 30 1.62 0.15 3.29
Topographic 72 32 15 156 2.05 0.76 4.04
Climatic 63 36 8 184 2.34 0.40 6.05

Antarctica regions mean min. max. mean min. max.
boxes boxes boxes m km2 m km2 m km2

Land Boxes 640 1 1 1 0.02 0.01 0.03
Countries 1 640 640 640 13.20 13.20 13.20
Giorgi 1 640 640 640 13.20 13.20 13.20
Large Geometric 4 160 124 177 3.30 2.77 3.96
Small Geometric 25 26 20 30 0.53 0.15 1.05
Topographic 6 107 35 156 2.20 1.23 3.10
Climatic 9 71 11 184 1.47 0.40 3.36

Rest of World regions mean min. max. mean min. max.
boxes boxes boxes m km2 m km2 m km2

Land Boxes 1631 1 1 1 0.08 0.03 0.12
Countries 129 13 1 305 1.04 0.06 16.66
Giorgi 21 78 24 275 6.40 2.58 14.65
Large Geometric 21 78 62 121 6.40 3.63 9.43
Small Geometric 66 25 20 30 2.04 0.64 3.29
Topographic 66 25 15 72 2.04 0.76 4.04
Climatic 54 30 8 63 2.49 0.71 6.05
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Figure 6.1
The selection of regions for the Topographic set for South America.

model topography

regions selected

rivers

model grid: HadCM2
region set: Topographic
topography: metres above sea level for each HadCM2 grid-box (top left)
rivers: major rivers (top right)
regions: regions selected (bottom left)
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Figure 6.2
The selection of regions for the Climatic set for South America.

principal component 2

principal component 4

principal component 3

regions selected

model grid: HadCM2
region set: Climatic
data: annual mean temperatures (°C) from 1400y control
processing: smoothed with 30y Gaussian filter , and detrended
PC analysis: PC analysis for the rectangle of grid-boxes displayed
projections: of the first 4 PCs, we plot numbers 2-4 (top, bottom left)

(PC 1 is a land-sea contrast and played no role in selection)
var. expl.: percentages of the variance explained:

PC 1: 48.7%, PC 2: 9.9%, PC 3: 7.7%, PC 4: 5.7%
regions: regions selected (bottom right)
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Figure 6.3
The regions selected for the Land Boxes, Countries, and Giorgi sets.

Land Boxes

Giorgi

Countries

model grid: HadCM2
region sets: Land Boxes (top left), Countries (top right), Giorgi (bottom left)
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Figure 6.4
The regions selected for the Geometric, Topographic, and Climatic sets.

Large Geometric

Topographic

Small Geometric

Climatic

model grid: HadCM2
region sets: Large Geometric (top left), Small Geometric (top right) Topographic

(bottom left), and Climatic (bottom right)
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Figure 6.5
The regions selected for the Countries, Giorgi, and Geometric sets.

Countries

Small Geometric

Giorgi

Large Geometric

model grid: HadCM2
region sets: Countries (top left), Giorgi (top right),
  Small Geometric (bottom left), Large Geometric (bottom right)
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Figure 6.6
The temperature information lost through regionalising.

Non-climatic sets

 ‘Climatic’ set

Climate-related sets

Best-fit lines

model grid: HadCM2
region sets: Countries, Small Geometric, Large Geometric (top left)

    (restricted to regions with at least 8 grid-boxes)
Giorgi, Climatic, Topographic (top right)

  Climatic (bottom left)
variable: Ga ensemble JJA temperature (°C) mean for 2070-2099
y-axis: RMSE for set of grid-boxes in a region (Equation 6.1.1)

‘error’ is regional value minus grid-box value
x-axis: number of grid-boxes in the region
best-fit: logarithmic best-fit lines overplotted for each diagram

      and compared (bottom right)
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Figure 6.7
The precipitation information lost through regionalising.

Non-climatic sets

  ‘Topographic’ set

Climate-related sets

Best-fit lines

model grid: HadCM2
region sets: Countries, Small Geometric, Large Geometric (top left)

    (restricted to regions with at least 8 grid-boxes)
Giorgi, Climatic, Topographic (top right)

  Topographic (bottom left)
variable: Ga ensemble JJA precipitation (mm/day) mean for 2070-2099
y-axis: coefficient of variation for set of grid-boxes in a region
x-axis: number of grid-boxes in the region (Equation 6.1.2)
best-fit: logarithmic best-fit lines overplotted for each diagram

      and compared (bottom right)
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Figure 6.8
The temperature and precipitation information lost through regionalising.

Antarctic temp.

  Antarctic prec.

Rest-of-World temp.

Rest-of-World prec.

model grid: HadCM2
region sets: Countries, Small Geometric, Large Geometric, Giorgi, Climatic,

Topographic, Land Boxes
divided into Antarctica (left) and Rest of World (right)

variables: JJA regional temp. information lost (°C, as Figure 6.6) (top)
JJA regional prec. information lost (as Figure 6.7) (bottom)

y-axis: weighted mean for each set of information lost
                 (weighted by the number of grid-boxes in each region)
x-axis: average number of grid-boxes per region in each set
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Figure 6.9
Temperature and precipitation signal-to-noise ratios.

Antarctic temp.

 Antarctic prec.

Rest-of-World temp.

Rest-of-World prec.

model grid: HadCM2
region sets: Countries, Small Geometric, Large Geometric, Giorgi, Climatic,

Topographic, Land Boxes
divided into Antarctica (left) and Rest of World (right)

variables: JJA temperature (top) and precip (bottom) signal-to-noise ratios
signal: Ga ensemble mean anomaly (v control 1-240) in 2080s (2070-99)
noise: population standard deviation of 30 periods (10y gaps) in  detrended

1400y control anomaly means (v control 1-240)
ratio: absolute value of signal, multiplied by two (due to ensemble), and

divided by noise
y-axis: weighted mean for each set of signal-to-noise ratios
                 (weighted by the number of grid-boxes in each region)
x-axis: average number of grid-boxes per region in each set
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Figure 6.10
The estimate of Gd temperatures in the 2080s for the Small Geometric set.

modelled in Gd

 error

estimated with Ga pattern

significance

model grid: HadCM2
region sets: Small Geometric
modelled: Gd 2080s JJA temperature anomalies (°C, top left)
Ga pattern: for each region, the mean of the temperature responses under Ga

from its constituent grid-boxes (section 4.5, Figure 4.10)
estimate: Ga pattern * scaler in Gd 2080s (°C, top right)
error: estimate – modelled (°C, bottom left)
error sig: error / pop. standard deviation (s, Equations 4.5)
classed sig: error sig. classed with bounds: -2, -1, 1, 2 (s, bottom right)
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Figure 6.11
Accuracy of temperature estimates made using pattern scaling.

Land Boxes

 Large Geometric

Small Geometric

Climatic

model grid: HadCM2
region sets: Land Boxes, Small Geometric, Large Geometric, Climatic
modelled: Gd 2080s JJA temperature anomalies (°C)
Ga pattern: for each region, the mean of the temperature responses under Ga

from its constituent grid-boxes (section 4.5, Figure 4.10)
estimate: Ga pattern * scaler in Gd 2080s (°C)
error: estimate – modelled (°C)
error sig: error / pop. standard deviation (s, Equations 4.5)
classed sig: error sig. classed with bounds: -2, -1, 1, 2 (s, plotted)
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Figure 6.12
Accuracy of precipitation estimates made using pattern scaling.

Land Boxes

 Large Geometric

Small Geometric

Topographic

model grid: HadCM2
modelled: Gd 2080s JJA precipitation anomalies (mm/day)
Ga pattern: for each region, the mean of the temperature responses under Ga

from its constituent grid-boxes (section 4.5, Figure 4.10)
estimate: Ga pattern * scaler in Gd 2080s (mm/day)
error: estimate – modelled (mm/day)
error sig: error / pop. standard deviation (s, Equations 4.5)
classed sig: error sig. classed with bounds: -2, -1, 1, 2 (s, plotted)



204

Figure 6.13
Accuracy of temperature estimates made using pattern scaling.

model grid: HadCM2
region sets: Land Boxes, Small Geometric, Large Geometric, Climatic
modelled: Gd 2080s JJA temperature anomalies (°C)
Ga pattern: for each region, the mean of the temperature responses under Ga

from its constituent grid-boxes (section 4.5, Figure 4.10)
estimate: Ga pattern * scaler in Gd 2080s (°C)
error: estimate – modelled (°C)
error sig: error / pop. standard deviation (s, Equations 4.5)
classed sig: magnitudes of error sig. classed with bounds: 1, 2 (s)
percentages: non-Antarctic grid-boxes in each class (%, plotted)
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Figure 6.14
Accuracy of precipitation estimates made using pattern scaling.

model grid: HadCM2
region sets: Land Boxes, Small Geometric, Large Geometric, Topographic
modelled: Gd 2080s JJA precipitation anomalies (mm/day)
Ga pattern: for each region, the mean of the temperature responses under Ga

from its constituent grid-boxes (section 4.5, Figure 4.10)
estimate: Ga pattern * scaler in Gd 2080s (mm/day)
error: estimate – modelled (mm/day)
error sig: error / pop. standard deviation (s, Equations 4.5)
classed sig: magnitudes of error significance grouped with bounds: 1, 2 (s)
percentages: non-Antarctic grid-boxes in each class (%, plotted)
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7. May we scale different models?

7.1 Introduction
Thus far we have examined pattern scaling using a single model – HadCM2.
However, if we are to conclude that the technique is generally applicable, we must
demonstrate that it is applicable to a wider range of GCMs. Moreover, a full
assessment of future climate change requires the use of multiple GCMs.269 In this
chapter we apply the pattern scaling technique developed in chapter 4 to five
more models, and consider results not just for individual grid-boxes, but also for
two of the region sets developed in chapter 6.

We begin by carefully selecting the data we will use for our inter-model
comparison, so as to make the comparison as fair as possible (section 7.2). We
establish in section 7.3 that the differences between the data used here and the
data used in previous chapters do not invalidate any comparison with previous
chapters. In section 7.4 we construct response patterns both for a sample of GCMs,
and for an ensemble of simulations from HadCM2. This combination allows us to
evaluate any inter-model differences in the light of the internal variability of one
of the models. We also calculate response patterns particularly for the ‘Giorgi’
region set from chapter 6, so as to enable a comparison to be made with the
regional assessments of the IPCC (section 7.5). In section 7.6 we examine the
accuracy with which the response patterns are able to represent climate anomalies
in the 2080s in the simulations from which they were drawn. Again, the
availability of the HadCM2 ensemble enables us to place the errors from pattern
scaling into a context of internal variability. Once again we apply these methods
particularly to the ‘Giorgi’ region set (section 7.7). Finally we draw our
conclusions (section 7.8).

7.2 Making a fair comparison
The IPCC established the Data Distribution Centre (DDC) to facilitate the use of
GCM output in climate impact analyses. Thus recent results from a number of
coupled GCMs have become available for comparison. If we are to carry out a fair
comparison of the spatial patterns of climate change exhibited by the models, we

                                                            
269 We discussed the need for multiple GCMs in section 2.11.
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need the model data on a common grid.270 The necessary work to achieve this has
already been carried out by the DDC, which has transformed much of the model
output from its native grid to a common grid by a Gaussian interpolation: the grid
measures 2.5° latitude by 3.75° longitude. Therefore we use this regridded model
output, together with the HadCM2 and HadCM3 model output already on that
grid, as the raw material that we analyse in this chapter. In this section we further
narrow down the raw material that will enable us to make a fair comparison of the
models.

7.2a Nine models

To make a fair comparison of the models, we must employ simulations with a
common magnitude and pattern of radiative forcing. We rule out the use of
simulations forced with a mixture of greenhouse gases and sulphates because of
the variety of sulphate forcings employed by the different modelling centres. At
present there are no regridded control simulations available to us, so the use of
control simulations is also ruled out. However, there are nine models for which
there are simulations on the common grid forced solely with greenhouse gases
under the ‘GG’ scenario (Figure 7.1).271

Under the GG scenario the radiative forcing in the model is that observed until
(about) 1990, and thereafter the concentration of greenhouse gases is increased at
the rate of about 1% per annum. The radiative forcing in this set of simulations is
not only reasonably homogenous, it is also reasonably strong, and thus provides a
good opportunity to identify any divergence of behaviour between different
models. Therefore we use the GG simulations for our model inter-comparison.

Inter-model differences in architecture may be assessed not just in terms of the
model structure, but also by measures of the model climate. In Figure 7.2 we
include both kinds of measure for the nine models with GG simulations on the
common grid: we plot the horizontal resolution of the model atmosphere on the
axes, and we plot the model’s equilibrium climate sensitivity as the circle

                                                            
270 It is common practice to regrid model data to facilitate inter-comparison (e.g. Lambert and Boer,
2000). It is particularly important here because of our aggregation of grid-boxes into region sets.
271 We recognise that this greenhouse-gas-only scenario neglects some of the radiative forcings that
have contributed to changes in the 20th century. However, our purpose here is merely to consider
the applicability of pattern scaling to more than one model, rather than to develop definitive
climate scenarios for the 21st century. Moreover, in the latest emissions scenarios (IPCC, 2000) the
greenhouse gases dominate all other radiative forcings in the 21st century.
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diameter. Although it may not be necessary to compare all nine models, the
models we select should span the range displayed here.

Our pattern scaling method employs anomalies. In previous chapters we have
anomalised relative to the first 240 years of the long HadCM2 control simulation,
but our choices here are restricted by the limited data available for the different
models. If we anomalised relative to a control simulation, we would be restricted
to two models. If we anomalised relative to a 30-year period from a 19th century
‘pre-industrial’ climate we would be restricted to four of the nine models (Figure
7.1). Therefore we anomalise relative to a recent 30-year period (1960-1989) that is
included in all nine models (Figure 7.1).272

7.2b Six models

Our pattern scaling method employs a response pattern calculated from a time
series of overlapping 30-year means. In order to provide a sufficiently strong
signal for the response pattern this time series must be reasonably lengthy, and
span a reasonably wide range of values of the scaler (global annual temperature).
In our judgement, the 110-year period from 1990-2099 satisfies these requirements;
extending the period further back into the 20th century will not greatly extend the
range of scaler values, and shortening it will make the response pattern more
dependent upon inter-decadal variability.

In three of the nine models the GG simulation does not extend as far as 2099
(Figure 7.1), so the time series requirements must be balanced against the need to
span the range displayed in Figure 7.2. However, if we do insist on the time series
extending from 1990 to 2099, the three models ‘lost’ (ECHam3, GFDL-R15, and
NCAR-DOE) do not prevent us from almost spanning the ranges of horizontal
resolution and climate sensitivity.273 Therefore we restrict our inter-model
comparison to the six models (CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3,
and HadCM2) where the GG simulation extends to 2099. There is a single GG
simulation available for each of the first five models, but for HadCM2 there is an

                                                            
272 We examine the effects on the response patterns of using this recent base period from which to
calculate anomalies in section 7.3.
273 The range of climate sensitivities for all nine models is 2.5-4.6 °C, and the number of grid-boxes
at the surface ranges from 1920 to 8192. Without the three models ‘lost’ the sensitivity range is 2.5-
4.3 °C, and the grid-box range is 2048-8192.
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ensemble of four simulations.274 Therefore we will be able to compare both inter-
and intra-model variations.

It is beyond the scope of this thesis to enter into a detailed examination of the six
models.275 Here we merely summarise their features in Tables 7.1 (spatial
specification) and 7.2 (dynamical specification). Table 7.2 also gives references for
the models and their GG simulations. This summary is sufficient to indicate the
variety of implementations among the six selected models.

7.3 Periods for pattern construction
We have already identified the data that we will use to construct response
patterns, namely the 110-year period 1990-2099, anomalised against the period
1960-1989. This (‘chapter 7’) data is different to previous chapters (particularly
chapter 4), where we have used the 240-year period 1860-2099, anomalised against
the first 240 years of the control simulation. Therefore, if the results from this
chapter are to be directly comparable with the preceding chapters, we must
establish what effect the different data have upon the response patterns.

We begin by replotting the ‘chapter 4’ response patterns (from section 4.5) for the
HadCM2 Ga ensemble: the temperature and precipitation patterns from Figure
4.10 are replotted in the top left of Figures 7.3 and 7.4 respectively. We then
recalculate the response patterns using the ‘chapter 7’ data:276 the temperature and
precipitation patterns are in the top right of Figures 7.3 and 7.4 respectively. The
differences between the ‘chapter 7’ and ‘chapter 4’ patterns are plotted in the
bottom left. To provide an indication of the practical importance of these
differences we replot from Figure 4.11 the difference between the temperature
response patterns for the 2020s and 2080s (Figure 7.3, bottom right), and add its
precipitation equivalent (Figure 7.4, bottom right).

                                                            
274 In previous chapters this ensemble has been referred to as Ga 1,2,3,4.
275 Detailed comparisons of coupled models are the subject of the Coupled Model  Inter-
Comparison Project (CMIP). This project is described briefly by Meehl et al. (1997) and key tables
are provided by Phillips (1998). Lambert and Boer (2000) have published a report.
276 We calculate grid-box JJA anomalies for the period 1990-2099 against the base period mean
(1960-1989), and average them into 30-year period means. Then we calculate the best-fit line for
each grid-box (y=ax) between the regional anomaly (y) and global annual temperature (x) by least
squares regression.
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The differences between the ‘chapter 7’ and ‘chapter 4’ patterns are small, and
difficult to identify from a visual inspection of the patterns (Figures 7.3 and 7.4,
top), although they are apparent when plotted (bottom left). These differences are
actually smaller than the differences between instantaneous patterns from the
2020s and 2080s (bottom right).277 This indicates that any differences in the
anomalies estimated using the ‘chapter 7’ pattern rather than the ‘chapter 4’
pattern are  likely to be smaller than those arising from the slight non-linearities of
the response to increased radiative forcing in the 21st century. Therefore we are
justified in using the ‘chapter 7’ data, and in drawing comparisons with previous
chapters.

7.4 Patterns for different models

7.4a Two samples

To make a formal comparison of model response patterns we construct two
samples of response patterns. For each individual in a sample we calculate
response patterns for temperature and precipitation using the method of section
7.3.  The ‘HadCM2 sample’ is drawn from the individual members of the HadCM2
Ga ensemble, which gives us four possible climatic outcomes from a single
representation of the climate system (i.e. the HadCM2 model).278 The ‘DDC
sample’ is drawn from the GG simulations from five models and the Ga 1 pattern
from HadCM2, which gives us six different representations of the climate
system.279 The DDC sample gives equal weight to each model, which would not be
the case if we included within it all four HadCM2 members. We include the first
member of the HadCM2 ensemble rather than the ensemble mean because using
the ensemble mean would confuse the contrast between the HadCM2 and DDC
samples.

                                                            
277 The average magnitude among the 6816 grid-boxes in the difference plots in Figure 7.3 is 0.059
°C (bottom left) and 0.100 °C (bottom right). In Figure 7.4 the average magnitude is 0.040 mm/day

(bottom left) and 0.067 mm/day (bottom right).
278 In this discussion we could have referred to the ‘HadCM2 sample’ as the ‘HadCM2 ensemble’.
We chose the former term in order to be consistent with the ‘DDC sample’ with which we compare
the ‘HadCM2 sample’, and in order to avoid ambiguity, since the preceding chapters have
considered two ensembles from HadCM2.
279 See Tables 7.1 and 7.2 and Figure 7.2 for examples of differences between models in their
representations of the climate system.
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In the analysis below we summarise the properties of the HadCM2 and DDC
samples using different statistics, because of the different natures of the two
samples. We assume that the HadCM2 sample of patterns forms a random sample
from the population of all possible response patterns from this model, and that the
population has a Gaussian distribution. Therefore we may estimate the population
parameters of the distribution from the HadCM2 sample. However, we cannot
assume that the DDC sample is a random sample from the population of all
plausible models,280 nor that the population of all plausible models forms a
Gaussian distribution. Therefore we treat the DDC sample differently from the
HadCM2 sample. We neither draw inferences about the population of all plausible
models, nor calculate the sample’s mean and standard deviation. The sample
median and range are more appropriate measures of the central tendency and
spread.

We present the temperature patterns (odd-numbered figures) and precipitation
patterns (even-numbered figures) based on individual grid-boxes281 from the
single simulations available for CCSR-NIES, CGCM1, CSIRO2, ECHam4  (Figures
7.5 and 7.6), and HadCM3 (Figures 7.7 and 7.8, bottom right). These five patterns,
together with the HadCM2 Ga 1 pattern,282 make up the DDC sample. We present
the HadCM2 sample in Figures 7.7 and 7.8. Rather than plotting the individual
patterns from the HadCM2 sample (which are barely distinguishable from each
other), we plot our estimate of the population mean (bottom left), together with
the lower (top left) and upper (top right) bounds of the 95% confidence interval for
our estimate of the population mean.

We present summary statistics for the patterns from the DDC sample in Figures
7.9 – 7.10 (for individual grid-boxes) and 7.11 – 7.12 (for the Countries set). We
plot the sample median (top left) and range (bottom left). We also plot the
difference between the limits of the HadCM2 95% confidence interval (bottom
right) described above and plotted in Figures 7.7 and 7.8. Finally we compare the
DDC range and the HadCM2 95% confidence interval (top right).

7.4b Comparison of models

                                                            
280 We discussed the reasons for regarding the DDC sample as a non-random sample in section
2.11.
281 We calculated similar patterns and sample statistics for the Countries set (not shown).
282 The HadCM2 Ga 1 pattern is not shown, but the HadCM2 Ga ensemble mean pattern (which is
similar) is shown in Figures 7.7 and 7.8 (bottom left).
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The models agree on the large-scale features of the response to radiative forcing.
In their inter-model comparison, Kattenberg et al. (1996) considered a sample of
sixteen models (their Table 6.3) including three of the DDC sample.283 Their
conclusions regarding temperature (section 6.2.2.2) are similar to those that may
be identified from a visual inspection of the DDC sample (Figures 7.5, 7.7): 284

4 “a greater warming over land than over the sea” (p301);
4 “a minimum warming or even regions of cooling in the high latitude southern

ocean” (p302);

4 “a region of minimum warming in the northern North Atlantic” (p304).

The conclusions of Kattenberg et al. (1996) regarding precipitation (6.2.2.3) may
also be identified from the DDC sample (Figures 7.6, 7.8):
4 “an increase in global-mean precipitation” (p307);285

4 “increases in high latitudes in winter” (p307);286

4 “more rainfall over India and/or south-east Asia” (p309);287

4 “changes in the dry subtropics are small” (p309).

When the same authors turned to regional scales they concluded from the inter-
model range of responses and the size of the model biases (with respect to
observations) that “confidence in the regional scenarios simulated by AOGCMs
remains low” (p339). A visual inspection of the patterns from the DDC sample
(Figures 7.5-7.8) seems to confirm that the inter-model range of responses at
regional scales remains large.

7.4c Contribution of internal variability

Differences between the models have been established by Kattenberg et al. (1996)
and demonstrated in our DDC sample. However, we cannot infer merely from
differences between models that the models disagree, because internal variability
has not been taken into account. Our HadCM2 sample enables us to place the
inter-model differences in the context of the differences that might be expected
                                                            
283 The three models are CGCM1, CSIRO2, and HadCM2.
284 Although the conclusions of Kattenberg et al. (1996) are drawn with respect to annual means,
they also apply to the JJA patterns presented for the DDC sample.
285 The JJA global-mean precipitation changes (mm/day) per degree of annual global warming are
as follows: 0.01 (CCSR-NIES), 0.03 (CGCM1), 0.06 (CCSR-NIES), 0.02 (ECHam4), 0.03 (HadCM3),
0.04 (HadCM2 Ga 1). These numbers are the global-means of Figures 7.6 and 7.8.
286 Since our plots are for JJA this only applies to the high latitudes of the southern hemisphere.
287 This conclusion particularly concerns the monsoon in  JJA (e.g. their Figure 6.11).
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merely from internal variability. A visual inspection of Figures 7.7 and 7.8 (top)
provides an indication at the level of the individual grid-box of the range of
responses arising from internal variability.288

We quantify the comparison between inter-model differences and internal
variability by plotting the ratio between the DDC range and the HadCM2 95%
confidence interval. In some grid-boxes (12.5%) the DDC range of temperature
responses is actually smaller than the HadCM2 confidence interval (Figure 7.9, top
right), but in most (54.4%) the DDC range is at least twice the HadCM2 interval.
However, this result adds an important caveat to the conclusions drawn by
Kattenberg et al. (1996). It suggests that for as much as half the globe, the inter-
model differences might be at least halved if internal variability were considered.
The result for precipitation (Figure 7.10, top right) is even more striking. The DDC
range of precipitation responses is smaller than the HadCM2 confidence interval
for almost half the grid-boxes (46.4%), and in three-quarters (77.2%) the DDC
range is less than twice the HadCM2 interval.

We cannot prove from these results that the inter-model differences may be
explained by internal variability, even for the proportion of the grid-boxes where
the DDC range is less than the HadCM2 confidence interval, because we only have
a measure of internal variability from a single model – HadCM2. To give such a
proof we would need a measure of internal variability from each of the models.
However, the comparison of the internal variability of HadCM2 with the inter-
model differences does indicate that a large proportion of the ‘disagreements’
between models on regional scales may not, in fact, be ‘disagreements’ at all.289

7.4d Dependence on spatial scale

                                                            
288 It should be noted that Figures 7.7 and 7.8 (top) are not response patterns as such, because taken
as a whole they are not plausible representations of HadCM2’s response to forcing. They are
representations of the 95% confidence interval for individual grid-boxes, independently of any other
grid-boxes, and should only be considered at regional scales.
289 This conclusion differs, at least in emphasis, from that of Giorgi and Francisco (2000): “the
uncertainty in internal model variability for temperature is much lower than the uncertainty in
inter-model variability” (p179). Their results, partly drawn from Kittel et al. (1998), arise from a
method that differs from our own in two key respects. Firstly, they used a larger spatial scale than
ourselves (cf. the next section). Secondly, their comparison was based on the regional climate
sensitivity, whereas we used a ‘purer’ measure of the spatial pattern by calculating the regional
climate response accompanying each °C change in the scaler.
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There is considerable interest in repeating this analysis for the Countries set, not
merely to express the relationship between inter-model differences and internal
variability for political entities, but also because of the increase in spatial scale. If
we increase the spatial scale we may expect both the DDC range and the HadCM2
95% confidence interval to decrease, but not necessarily by equal amounts.

Since the Countries set only includes land areas, we first repeat the previous
analysis for land grid-boxes only.290 Under this restriction the ratio of DDC range
to HadCM2 interval decreases for temperature and increases for precipitation.291

We repeat the entire sequence of operations for the Countries set, from
anomalising, through pattern construction, to ratio calculation, and plot the results
in Figures 7.11 and 7.12. The result is an increase (relative to the land grid-boxes)
in the ratio between DDC range and HadCM2 interval for both temperature and
precipitation.292 In other words, any decrease in the DDC range brought about by
the increased spatial scale is more than matched by a corresponding decrease in
the HadCM2 interval. This result presents the possibility that inter-model
agreement may not always be greater as the spatial scale increases, provided one
expresses inter-model agreement in terms of the internal variability of the models.

7.4e Inferential statistics

Although we are restricted in the inferential statistics we may calculate by the
non-random nature of the DDC sample, we can draw inferences in relation to the
HadCM2 sample. We have already defined the 95% confidence interval for the
HadCM2 population mean. By comparing the individuals within the DDC sample
with the HadCM2 confidence interval we may determine whether the grid-box
response from another model may plausibly be drawn from the HadCM2
population. We present the results in Figures 7.13 and 7.14 for four models. A
                                                            
290 That is, the land boxes on the common grid. The contributory boxes from an individual model
grid to a particular ‘land’ box on the common grid may not be (entirely) land boxes.
291 When we consider only land grid-boxes rather than all grid-boxes, the proportion of
temperature (precipitation) grid-boxes where the DDC range is less than the HadCM2 95%
confidence interval increases from 12.5% to 21.7% (decreases from 46.4% to 34.4%). The proportion
where the DDC range is more than twice the HadCM2 95% confidence interval decreases from
54.4% to 37.4% (increases from 22.8% to 38.3%).
292 When we consider the Countries set rather than land grid-boxes, the proportion of temperature
(precipitation) grid-boxes where the DDC range is less than the HadCM2 95% confidence interval
decreases from 21.7% to 2.2% (decreases from 34.4% to 10.3%). The proportion where the DDC
range is more than twice the HadCM2 95% confidence interval increases from 37.4% to 49.2%
(increases from 38.3% to 46.7%).
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visual inspection shows that in each case the pattern from the DDC model lies
outside the 95% confidence interval from HadCM2. This is true for temperature
(Figure 7.13) for the vast majority of grid-boxes, less overwhelmingly so for
precipitation (Figure 7.14).

7.5 IPCC regional responses
The model inter-comparisons in the literature on regional climate change mostly
use the IPCC region set,293 and it is mostly on the basis of these inter-comparisons
that models are generally believed to disagree on regional scales. We have already
developed a region set (the ‘Giorgi’ set) similar to the IPCC set in section 6.2. By
calculating our normalised response patterns for the Giorgi set, and by comparing
the differences between the models with the differences arising from internal
variability, we have an opportunity to extend the literature on model inter-
comparisons. Thus we build upon the comparison of single simulations from nine
models (Kittel et al., 1998) and the comparison of ensembles from a single model
(Giorgi and Francisco, 2000).

We calculate response patterns for the mean changes in JJA temperature and
precipitation in the 2080s for each member of the DDC and HadCM2 samples,
using the Giorgi region set. We plot the normalised temperature (Figure 7.15) and
precipitation (Figure 7.16) responses for each region (Table 7.3) in a manner that
mimics the presentations of Kittel et al. (1998) and Giorgi and Francisco (2000). The
scatter of circles represents the responses among the members of the DDC sample;
the filled circle and bar represent our estimate of the HadCM2 population mean
and the 95% confidence interval for our estimate.

The Second Assessment Report (SAR) of the IPCC emphasised the differences
between the models:

“Scenarios produced by these transient experiments varied widely among
models and from region to region, both for temperature and precipitation …
For most regions, the inter-model range of simulated temperature increase was
rather pronounced, about 3–5°C” (Kattenberg et al., 1996, p337)

Further details were given in Kittel et al. (1998), who were more explicit about
inter-model differences in precipitation. They added that in most regions “there
was little agreement among models in response sign or magnitude” (p10).

Our results appear to be somewhat different:
                                                            
293 We introduced the IPCC region set in section 2.10.
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4 The typical inter-model range in regional temperature anomalies for a
doubling of CO2 is 3-5°C. The mean inter-model range of normalised responses
from our DDC sample is merely 0.57°C.

4 The typical inter-model range in regional precipitation anomalies for a
doubling of CO2 is 30%. The mean inter-model range of normalised responses
from our DDC sample is merely 10.2%.

The results appear to be different because of the differences in method:

4 The SAR employed nine models, rather than six, which would make the SAR
ranges slightly larger than ours.

4 The SAR considered seven regions, rather than twenty-two, which would
make the SAR ranges slightly smaller than ours.

4 The SAR calculated anomalies at CO2 doubling, whereas we calculated
anomalies per degree of global warming, which eliminates most of the inter-
model differences arising from different model sensitivities. This would tend to
make our ranges smaller than the SAR ranges.

4 The SAR calculated anomalies at the time of CO2 doubling, when the global-
mean temperature change averaged 2.1°C among the nine transient
experiments. Our anomalies are expressed per °C of global-mean warming.

The SAR did not explicitly consider the contribution of internal variability to the
inter-model ranges, although Kittel et al. (1998) super-imposed an observed
measure of decadal variability. For some regions internal variability might be
sufficient to explain the inter-model differences. A notable example is Australian
precipitation, for which the 95% confidence interval for the HadCM2 mean
straddles all six model values. The average HadCM2 interval among the 22
regions amounts to 0.26°C and 6.4%, approximately half the inter-model ranges
given above.

We draw two conclusions from these comparisons.
 i. A substantial proportion of the differences between single simulations from

different models appears to arise from internal variability.
 ii. If we treat regional manifestations of climate change separately from the

global-mean response to climate change, then the differences between models
are greatly reduced. This is of considerable importance in the context of
pattern scaling, where we assume that we may treat regional manifestations of
climate change separately from the global-mean response to climate change.
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It appears that the inter-model ranges that are often quoted in support of the
argument that models remain in disagreement on regional scales, are in fact much
smaller than is often thought. A large proportion of the ‘disagreements’ may be
attributed to different climate sensitivities within the models, or simply to internal
variability.

7.6 Estimation by scaling patterns
The objective of this chapter is to establish whether or not it is reasonable to apply
pattern scaling to a wider range of GCMs than merely HadCM2. In this section we
attempt to reproduce the climate anomalies for the late 21st century simulated by
each model. We estimate by scaling each pattern by the scaler from the same
model. We estimate for temperature (odd-numbered figures) and precipitation
(even-numbered figures).

7.6a Estimating for ECHam4

We illustrate our method in Figures 7.17 and 7.18 using one of the members of the
DDC sample: ECHam4. We scale the ECHam4 temperature and precipitation
response patterns calculated in section 7.3 (and plotted in Figures 7.5 and 7.6) and
by the global-mean temperature in the ECHam4 GG simulation in the 2080s. We
plot the product (top right), together with the modelled value (top left) and the
estimation error (bottom left). We cannot calculate the statistical significance of the
error as we did in chapter 4 because we only have  a single simulation for each
model. However, we can consider the practical significance of the errors. As we
noted in chapter 4, practical significance is heavily dependent on the context, but
the proportion of the modelled value made up by the error does provide one
indication of the practical significance of the error. Therefore we also plot the
fraction of the modelled anomaly that the error represents (bottom right).

A visual inspection of Figures 7.17 and 7.18 (top) shows a strong degree of
correspondence between the modelled and estimated anomalies. However, errors
can be identified (bottom left), notably in temperatures over the Southern Ocean
and in tropical precipitation. As a fraction of the anomalies being estimated
(bottom right), the precipitation errors are larger than the temperature errors.
However, outside the Southern Ocean the temperature errors do not exceed a fifth
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of the value being estimated, and many of the largest errors in estimating
precipitation are small in relation to the anomaly being estimated.294

We repeat these analyses for the Countries set, rather than individual grid-boxes,
and we plot the results in Figures 7.19 and 7.20. The increase in spatial scale may
be expected to reduce levels of internal variability, and thus to reduce any
contribution from internal variability towards the error obtained from pattern
scaling. This does appear to have occurred, particularly for precipitation,295 but it
is difficult to identify differences from visual inspection. Later we give a more
quantitative evaluation of the influence of internal variability on the error
obtained from pattern scaling, but first we broaden the scope to the rest of the
DDC sample.

7.6b Estimating for the DDC sample

We repeat the estimation method applied above to ECHam4 to four other models
from the DDC sample: CCSR-NIES, CGCM1, CSIRO2, and HadCM3. We do not
plot the fractional errors because they are very similar to those obtained for
ECHam4, indicating that the practical significance of the errors – particularly for
temperature – is quite small. Instead we examine the possibility that the models
may exhibit a common non-linearity in their responses to forcing, which – if it
occurs – would limit the application of pattern scaling. We plot the estimation
errors for the four models in Figures 7.21 and 7.22.296

By visually inspecting Figures 7.21 and 7.22 we may identify any regions where
the errors in the various models have the same sign. In fact there are not many
regions where this is the case: the most obvious examples are the temperature
estimates being too cool in Australia and around Lake Chad, and the precipitation
estimates being too moist in West Africa. The fact that in these regions the errors
from pattern scaling all have the same sign suggests that the errors may not arise
merely from internal variability, but from a non-linearity in the response to forcing
in those regions. The fact that the West African estimates are both too cool and too

                                                            
294 In Figure 7.18, among the 194 grid-boxes (2.8% of the total) with the largest errors (defined as
those with a magnitude greater than 0.4 mm/day), in 115 of the grid-boxes (59.3%) this error
represents less than two-fifths of the value being estimated.
295 Compare Figures 7.18 and 7.20, particularly South America and Australia.
296 Note the different scale to the plots of the ECHam4 errors in Figures 7.17 – 7.20, where the scale
was chosen to optimise the comparison with the modelled and estimated values. Here the scale
was chosen to optimise the comparison between model errors.
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moist is particularly suggestive. However, a non-linear response to forcing in one
model may not be present in another, so the fact that there are errors of both signs
in most regions implies neither that the response is linear, nor that the errors may
be completely explained by internal variability.

7.6c Incorporating internal variability

In order to directly address the contribution of internal variability to the errors we
turn to the HadCM2 sample. By repeating the estimation procedure for each of the
four individuals we obtain a sample of four errors (for each grid-box) that differ
from each other solely through internal variability.

From the sample of four errors we calculate the 95% confidence interval into
which we expect the HadCM2 mean error to fall. We plot the limits of the 95%
interval in Figures 7.23 and 7.24 (bottom). It is worth noting that this interval fails
to span zero in only a few regions (notably West Africa again, and Central
America), indicating that in most regions the HadCM2 pattern scaling error is not
statistically significant. For comparison we plot the minimum and maximum
errors found at each grid-box among the six individuals in the DDC sample
(Figures 7.23 and 7.24, top). A visual inspection shows that the DDC and HadCM2
samples have similar ranges of error both over the globe as a whole, and in terms
of the spatial distribution of error. In both samples the temperature errors are
greatest over land, and the precipitation errors are greatest in the tropics.

We make a quantitative comparison in Figures 7.25 and 7.26, where we express the
DDC range (top left) and the HadCM2 95% confidence interval (top right) as a
ratio (bottom left). For temperature errors, the DDC range is less than the
HadCM2 interval in half the grid-boxes (51.0%), and for precipitation the
proportion is two-thirds (67.3%). We emphasise again that this does not prove that
the errors from applying pattern scaling to DDC models in those grid-boxes can be
explained by internal variability, because the measure of internal variability is
only taken from a single model. However, it does suggest that many of the errors
may be explained by internal variability, and that even where the DDC range
exceeds the HadCM2 interval, a proportion of the errors may be due to internal
variability.
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Finally we compare our estimate of statistical significance with our estimate of
practical significance.297 Our measure of statistical significance is the ratio of DDC
range to HadCM2 interval (Figures 7.25 and 7.26, bottom left), and we make the
threshold for significance a ratio of 1.0. Our measure of practical significance is the
median fractional error among the DDC sample, and the threshold for significance
is 20% of the modelled value. The proportion of grid-boxes where the error is both
statistically and practically significant under these definitions is 2.8%
(temperature) or 23.7% (precipitation). If we raise the threshold for practical
significance to 40%, the proportions drop to 0.0% (temperature) or 8.8%
(precipitation). Therefore we suggest that for most grid-boxes, the errors
introduced by applying pattern scaling to a GCM are not simultaneously
statistically and practically significant.

7.7 IPCC estimation by scaling patterns
We extend our analysis by applying pattern scaling to each region in the ‘Giorgi’
set. The response patterns are those described in section 7.5 and displayed in
Figures 7.15 and 7.16. We scale these patterns by the global annual temperature in
the 2080s from the same simulations, and thus obtain estimates of temperature
(Figure 7.27) and precipitation (Figure 7.28) in the 2080s, which we plot as plus
signs. The anomalies simulated by the models are plotted as squares. As in Figures
7.15 and 7.16, we do not plot the HadCM2 sample members individually; instead
we plot the sample mean and the 95% confidence interval (as a bar) for the
population mean.

Our purpose in presenting Figures 7.27 and 7.28 is not to emphasise the range of
modelled values among the DDC sample,298 but to point out the close
correspondence between the modelled and estimated values. In almost all cases
the error is less than 0.5°C or 0.5 mm/day. We identify the errors more clearly in
the accompanying Figures 7.29 and 7.30. In almost all regions there are both
positive and negative errors among the DDC models, and in almost all cases the
HadCM2 95% confidence interval straddles zero. Where the HadCM2 interval

                                                            
297 As above, we emphasise that practical significance is context-dependent, and the measure that
we present here is but one possible measure of practical significance.
298 It should be noted that the range of modelled values in each region is not merely due to the
combination of internal variability and genuine model disagreements (as in Figures 7.15 and 7.16).
Here the climate sensitivity is also a contributory factor, as may be seen from the scaler by which
the patterns are multiplied to obtain estimates. For CGCM1 the scaler is 5.6°C, whereas for
ECHam4 it is 3.4°C.
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straddles zero the errors introduced by applying pattern scaling to HadCM2 are
not statistically significantly. Once again, this measure of internal variability only
directly applies to HadCM2, but it does provide an indication of the levels of
internal variability that may be present among the DDC members. If other models
have the same level of internal variability as HadCM2, then almost all the errors
may be explained by internal variability.

One of the principal exceptions to these results is Central America (CAM). The
range of errors from applying pattern scaling to the DDC sample in Central
America is much greater than the 95% confidence interval from HadCM2 (Figures
7.29 and 7.30). These errors may prove to be statistically significant, but the
relatively narrow range of modelled temperatures (Figure 7.27) suggests that the
temperature errors may not be practically significant. On the other hand, the
precipitation errors add 50% to the range of modelled values. West Africa presents
us with a different example. Here the primary problem is – as noted in section 7.6
– the consistently cold (Figure 7.29) and moist (Figure 7.30) errors among the
models, suggesting a consistently non-linear response among the models.

7.8 Conclusions
In this chapter we have examined the technique of pattern scaling for a sample of
six models, and using a sample of four simulations for one of those models. The
detailed choices were intended to provide us with a fair comparison of the models
(section 7.2). We established that the differences between the patterns constructed
here and those constructed in previous chapters would not divorce this chapter
from the rest of the thesis (section 7.3).

We extracted JJA temperature and precipitation response patterns from each of the
models and examined them (section 7.4). The response patterns were in broad
agreement with IPCC assessments of model responses to radiative forcing, but the
additional information about internal variability suggested that a large proportion
of the inter-model differences might be attributable to internal variability, and
might not be ‘disagreements’ at all. Another interesting result was found when the
spatial scale was increased: any decrease in the inter-model differences was more
than matched by corresponding decreases in the internal variability of HadCM2.
This suggests that although the inter-model differences may become smaller as the
spatial scale increases, they may also become more statistically significant.
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We also constructed response patterns for regions approximating to the IPCC set
(section 7.5). We presented results in a similar format to that employed in the
IPCC assessments. By calculating normalised patterns we removed the
contribution to inter-model differences from their different climate sensitivities.
By including a HadCM2 ensemble we also took into account the contribution to
inter-model differences from internal variability. As a result, the inter-model
‘disagreements’ appear to be much smaller than those discussed in the IPCC
Second Assessment Report.

In section 7.6 we applied the response patterns to the task of estimating the
modelled climate anomalies in the 2080s. We found that the errors from pattern
scaling were generally much smaller than the anomalies being estimated.
Although practical significance is heavily dependent on the context, we
considered one measure of practical significance which indicated that the practical
significance of the errors introduced by scaling may be fairly low. We also found
that there were few regions where the errors from pattern scaling were all of the
same sign, suggesting that it is unlikely that the models exhibit non-linearities in
the same ways. We evaluated the contribution of internal variability to the errors,
and found that in many regions the range of errors from internal variability is
comparable to the inter-model range. We concluded that the errors are likely to be
both statistically and practically significant in only a small proportion of the grid-
boxes. Finally (section 7.7) we repeated the estimation procedure for the IPCC
region set, and demonstrated the validity of the points made above for these
particular regions.

The general conclusion we might draw from these analyses is that scaling appears
to ‘work’ for a variety of models, not just HadCM2. It ought to be noted that we
have only considered two variables and a single season. Given the different
behaviour displayed by temperature and precipitation, the technique ought only
to be applied to other variables with considerable caution. However, Mitchell et al.
(1999) obtained accurate annual estimates by pattern scaling, so we would not
expect very different results for seasons other than JJA.

It should also be noted that we have only scaled a pattern from a simulation to
estimate for a period at the end of the same simulation. It is very likely that if the
same patterns were used to estimate anomalies under a weaker forcing scenario,
larger errors would result. We cannot evaluate this for the various models because
of the lack of suitable simulations. However, when we examined this question for
HadCM2 (in chapter 4), we found that the errors so introduced did not increase so
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much that the technique became invalid. The broadly linear responses to forcing
evident from the small size of the errors from estimating for GG, and the similarity
between the errors found for HadCM2 and the other models, both suggest that the
conclusions drawn in chapter 4 with respect to HadCM2 may apply to the other
models also.

The answer to the question that we posed in the title of this chapter, namely ‘May
we scale other models (than HadCM2])?’, is ‘yes’. Within the limits of the material
we have examined in this chapter, there is no evidence that the development and
application of response patterns for various DDC models introduces any more
errors than are introduced when using HadCM2. The practical importance of this
conclusion may be noted in the context of the considerable uncertainties in
regional climate assessments that stem from differences between models. Our
analysis suggests that we may apply pattern scaling to a variety of models and
obtain estimates of change from each model. It is a reasonable to suggest that we
might treat such estimates as equally plausible, and present all of the results in an
attempt to represent the uncertainty arising from differences between models.

Another possibility that we do not explore is to scale a response pattern from one
model in an attempt to estimate changes in another model. This latter approach
could only conceivably be useful if we were attempting to estimate changes that
would be simulated by a model with defined parameters that had never been
constructed. The reason for attempting such a thing would stem from the
recognition that there is an infinite variety of possible models that would provide
plausible interpretations of the climate system; we might attempt to represent the
uncertainty arising from the infinite variety of plausible models by estimating the
changes simulated by those plausible models.
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Table 7.1
Spatial specifications of six models with GG scenarios extending to 2099.

atmosphere
model res X-long Y-lat Z-vert total
CCSR-NIES T21 64 32 20 40,960
CGCM1 T32 96 48 10 46,080
CSIRO2 R21 64 56 9 32,256
ECHam4 T42 128 64 19 155,648
HadCM2 T42 96 73 19 133,152
HadCM3 T42 96 73 19 133,152

ocean
model res X-long Y-lat Z-vert total
CCSR-NIES 2.8 128 64 17 64,100
CGCM1 1.8 192 96 29 256,600
CSIRO2 5.6*3.3 64 56 21 39,400
ECHam4 2.8 128 64 11 43,300
HadCM2 2.5*3.8 96 73 20 73,200
HadCM3 1.3 288 145 20 439,200

coupled
model total ratio sensitivity
CCSR-NIES 105060 0.64 3.5
CGCM1 302680 0.18 3.5
CSIRO2 71656 0.82 4.3
ECHam4 198948 3.59 2.6
HadCM2 206352 1.82 2.5
HadCM3 572352 0.30 3.3

After Lambert and Boer (2000) Table 1.
Some entries have been modified, HadCM3 has been added to the models, and
equilibrium climate sensitivity has been added to the variables.
Ocean resolution given in degrees between grid points.
Coupled ratio represents atmospheric points / oceanic points.
Climate sensitivity (°C) added from Kattenberg et al. (1996) Table 6.3.
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Table 7.2
Dynamical specifications of six models with GG scenarios extending to 2099.
model model reference GG reference
CCSR-NIES Emori et al. (1999) Emori et al. (1999)
CGCM1 Flato et al. (2000) Boer et al. (2000)
CSIRO2 Gordon and O’Farrell (1997) Gordon and O’Farrell (1997)
ECHam4 Roeckner et al. (1996) Roeckner et al. (1999)
HadCM2 Johns et al. (1997) Mitchell et al. (1999)
HadCM3 Gordon et al. (2000) Mitchell et al. (1998)

model ocean ocean ocean ice
dynamics boundary vertical

CCSR-NIES primitive rigid lid height basic
CGCM1 primitive rigid lid height basic
CSIRO2 primitive rigid lid height rheology
ECHam4 primitive free surface density rheology
HadCM2 primitive rigid lid height drift
HadCM3 primitive rigid lid height drift

model fluxes land land land initial
adjustments surface stomata routing

CCSR-NIES heat, water bucket ocean equilib
CGCM1 heat, water bucket+ without ocean equilib
CSIRO2 heat, water, mom canopy included ocean equilib
ECHam4 heat, water canopy without ocean equilib
HadCM2 heat, water canopy included ocean partial
HadCM3 none canopy included ocean obs

The lower two tables were constructed following Kattenberg et al. (1996) Table 5.1,
and Lambert and Boer (2000) Table 2.
ocean dynamics: primitive or quasi-geostrophic equations
ocean boundary: a rigid lid or a free surface
ocean vertical co-ordinate: height or density/isopycnal
ice: thermodynamic (basic), with dynamic rheology or ocean-forced-drift
flux adjustments: heat, water, and momentum
land surface: simple bucket, modified bucket (+), or canopy model
land stomata: stomatal resistance included or not included
land routing: run-off routed to ocean or not routed
initialisation: equilibrated ocean and atmosphere, partially equilibrated based on

the upper ocean, or observations
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Table 7.3
The regions in the Giorgi set.

As constructed in section 6.2 (3) and displayed in Figure 6.3 (bottom left).
The labelling is similar to Giorgi and Francisco (2000, see their Table 2), but the
regions vary slightly from those they defined (see section 6.2 (3) for details). We
also include the number of grid-boxes and the approximate surface area of the
grid boxes (km2).

label region boxes area
ALA Alaska 77 3,782,000
AMZ Amazon Basin 114 13,020,000
ANT Antarctica 640 13,195,000
AUS Australia 75 7,761,000
CAM Central America 24 2,594,000
CAS Central Asia 76 6,604,000
CNA Central North America 43 3,819,000
EAF Eastern Africa 78 8,928,000
EAS East Asia 93 8,323,000
ENA Eastern North America 31 2,580,000
GRL Greenland 154 6,177,000
NAS North Asia 275 14,647,000
NEU Northern Europe 67 4,072,000
SAF Southern Africa 55 5,940,000
SAH Sahara 95 9,986,000
SAS South Asia 48 5,081,000
SEA South East Asia 35 4,004,000
SEU Southern Europe 51 4,455,000
SSA Southern South America 52 5,010,000
TIB Tibet 48 4,172,000
WAF Western Africa 69 7,863,000
WNA Western North America 71 5,680,000
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Figure 7.1
The greenhouse-gas-only simulations from the regridded DDC models.

model grids: CCSR-NIES, CGCM1, CSIRO2, ECHam3, ECHam4, GFDL-R15,
HadCM2, HadCM3, NCAR-DOE

simulations: ‘GG’ simulations:
‡1990: with observed radiative forcing
1990‡: increasing radiative forcing of approx. 1%/annum
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Figure 7.2
The horizontal resolution of the atmosphere in the regridded DDC models.

model grids: CCSR-NIES, CGCM1, CSIRO2, ECHam3, ECHam4, GFDL-R15,
HadCM2, HadCM3, NCAR-DOE

sensitivity: equilibrium climate sensitivity (diameter, °C), sourced from:
Kattenberg et al. (1996) Table 6.3 (pp 298-299)
DDC website: http://ipcc-ddc.cru.uea.ac.uk

dimensions: number of longitude (x-axis) and latitude (y-axis) grid-boxes
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Figure 7.3
Temperature response patterns using sub-sets of the Ga ensemble.

‘chapter 4’ pattern

‘chapter 7’ – ‘chapter 4’

‘chapter 7’ pattern

‘2080s’ – ‘2020s’

model: HadCM2
simulations: Ga 1,2,3,4
temporal: JJA, 30-year means
patterns: a from least-squares regression (y=ax) of grid-box temperature

(°C) and the scaler (global annual temperature, °C) for:
1860-2099, anomalised against 240y control (top left)
1990-2099, anomalised against 1960-1989 (top right)

grid-box temperature (°C) divided by the scaler (°C) for:
2010-2039 (‘2020s’), and 2070-2099 (‘2080s’)

differences: top right – top left (bottom left)
2080s – 2020s (bottom right)
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Figure 7.4
Precipitation response patterns using sub-sets of the Ga ensemble.

‘chapter 4’ pattern

‘chapter 7’ – ‘chapter 4’

‘chapter 7’ pattern

‘2080s’ – ‘2020s’

model: HadCM2
simulations: Ga 1,2,3,4
temporal: JJA, 30-year means
patterns: a from least-squares regression (y=ax) of grid-box precipitation

(mm/day) and the scaler (global annual temperature, °C) for:
1860-2099, anomalised against 240y control (top left)
1990-2099, anomalised against 1960-1989 (top right)

grid-box precipitation (mm/day) divided by the scaler (°C) for:
2010-2039 (‘2020s’), and 2070-2099 (‘2080s’)

differences: top right – top left (bottom left)
2080s – 2020s (bottom right)
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Figure 7.5
Temperature response patterns from four DDC models.

CCSR-NIES

CSIRO2

CGCM1

ECHam4

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4
simulations: GG on a common grid
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
patterns: a from least-squares regression (y=ax) of grid-box temperature (y)

and the scaler (global annual temperature, x)
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Figure 7.6
Precipitation response patterns from four DDC models.

CCSR-NIES

CSIRO2

CGCM1

ECHam4

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4
simulations: GG on a common grid
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
patterns: a from least-squares regression (y=ax) of grid-box precipitation (y)

and the scaler (global annual temperature, x)
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Figure 7.7
Temperature response patterns from two Hadley Centre models.

HadCM2 8–2s

HadCM2 8

HadCM2 8+2s

HadCM3
models: HadCM2, HadCM3
simulations: GG (HadCM3), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
patterns: a from least-squares regression (y=ax) of grid-box temperature (y)

and the scaler (global annual temperature, x)
means: GG (bottom right), Ga 1,2,3,4 patterns (8, bottom left)

sd: estimate of pop. standard deviation from Ga 1,2,3,4 patterns (s)
95% limits: 8 – 2s (top left), 8 + 2s (top right),
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Figure 7.8
Precipitation response patterns from two Hadley Centre models.

HadCM2 8–2s

HadCM2 8

HadCM2 8+2s

HadCM3
models: HadCM2, HadCM3
simulations: GG (HadCM3), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
patterns: a from least-squares regression (y=ax) of grid-box precipitation (y)

and the scaler (global annual temperature, x)
means: GG (bottom right), Ga 1,2,3,4 patterns (8, bottom left)

sd: estimate of pop. standard deviation from Ga 1,2,3,4 patterns (s)
95% limits: 8 – 2s (top left), 8 + 2s (top right),
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Figure 7.9
Inter- and intra-model variations in temperature response patterns.

DDC median

DDC range

bottom left / bottom right

HadCM2 95% interval

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
patterns: as calculated in Figures 7.5 and 7.7
DDC: from the five GG patterns and HadCM2 Ga 1 pattern:

median (top left), and range (bottom left)
95% interval: from HadCM2 Ga 1,2,3,4 (bottom right, derived from Figure 7.7)
inter:intra ratio: DDC range / HadCM2 95% interval (top right)
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Figure 7.10
Inter- and intra-model variations in precipitation response patterns.

DDC median

DDC range

bottom left / bottom right

HadCM2 95% interval

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
patterns: as calculated in Figures 7.6 and 7.8
DDC: from the five GG patterns and HadCM2 Ga 1 pattern:

median (top left), and range (bottom left)
95% interval: from HadCM2 Ga 1,2,3,4 (bottom right, derived from Figure 7.8)
inter:intra ratio: DDC range / HadCM2 95% interval (top right)
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Figure 7.11
Inter- and intra-model variations in temperature response patterns.

DDC median

DDC range

bottom left / bottom right

HadCM2 95% interval

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: Countries set regional means
patterns: as calculated in Figures 7.5 and 7.7, but for the Countries set
DDC: from the five GG patterns and HadCM2 Ga 1 pattern:

median (top left), and range (bottom left)
95% interval: from HadCM2 Ga 1,2,3,4 (bottom right, derived from Figure 7.7)
inter:intra ratio: DDC range / HadCM2 95% interval (top right)
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Figure 7.12
Inter- and intra-model variations in precipitation response patterns.

DDC median

DDC range

bottom left / bottom right

HadCM2 95% interval

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: Countries set regional means
patterns: as calculated in Figures 7.6 and 7.8, but for the Countries set
DDC: from the five GG patterns and HadCM2 Ga 1 pattern:

median (top left), and range (bottom left)
95% interval: from HadCM2 Ga 1,2,3,4 (bottom right, derived from Figure 7.8)
inter:intra ratio: DDC range / HadCM2 95% interval (top right)
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Figure 7.13
Significance of the differences between DDC patterns and the HadCM2 mean.

CCSR-NIES

CSIRO2

CGCM1

ECHam4

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM2
simulations: GG (first four models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
patterns: as calculated in Figures 7.5 and 7.7
8, s: pop. mean, sd from HadCM2 Ga 1,2,3,4 patterns (Figure 7.7)
difference: DDC model pattern - 8
significance: difference / s
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Figure 7.14
Significance of the differences between DDC patterns and the HadCM2 mean.

CCSR-NIES

CSIRO2

CGCM1

ECHam4

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM2
simulations: GG (first four models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
patterns: as calculated in Figures 7.6 and 7.8
8, s: pop. mean, sd from HadCM2 Ga 1,2,3,4 patterns (Figure 7.8)
difference: DDC model pattern - 8
significance: difference / s
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Figure 7.15

Normalised temperature responses for individual regions in the Giorgi set.

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: regional means from the Giorgi set (see Table 7.3 for labels)
patterns: calculated similarly to Figures 7.5 and 7.7, for CCSR-NIES (O),

CGCM1 (O), CSIRO2 (O), ECHam4 (O), HadCM3 (O)
8, s: pop. mean (l), sd of HadCM2 Ga 1,2,3,4 patterns (Figure 7.7)
95% interval: limits from 8 – 2s to 8 + 2s
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Figure 7.16

Normalised % precipitation responses for individual regions in the Giorgi set.

models: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models), Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (%), base 1960-1989
spatial: regional means from the Giorgi set (see Table 7.3 for labels)
patterns: calculated similarly to Figures 7.6 and 7.8, for CCSR-NIES (O),

CGCM1 (O), CSIRO2 (O), ECHam4 (O), HadCM3 (O)
8, s: pop. mean (l), sd of HadCM2 Ga 1,2,3,4 patterns (as Figure 7.8)
95% interval: limits from 8 – 2s to 8 + 2s
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Figure 7.17
Estimate of ECHam4 2080s temperatures by scaling ECHam4 pattern.

modelled

error

estimated

fractional error

model: ECHam4
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
modelled: mean anomaly for the 2080s (2070-2099, top left)
pattern: as calculated in Figure 7.5
estimated: pattern * scaler in 2080s in ECHam4 GG (top right)
error: estimated – modelled (bottom left)
fract. error: absolute value of: error / modelled (bottom right)
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Figure 7.18
Estimate of ECHam4 2080s precipitation by scaling ECHam4 pattern.

modelled

error

estimated

fractional error

model: ECHam4
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
modelled: mean anomaly for the 2080s (2070-2099, top left)
pattern: as calculated in Figure 7.5
estimated: pattern * scaler in 2080s in ECHam4 GG (top right)
error: estimated – modelled (bottom left)
fract. error: absolute value of: error / modelled (bottom right)
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Figure 7.19
Estimate of ECHam4 2080s temperatures by scaling ECHam4 pattern.

modelled

error

estimated

fractional error

model: ECHam4
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: regional means from the Countries set
modelled: mean anomaly for the 2080s (2070-2099, top left)
pattern: similar to that calculated in Figure 7.5
estimated: pattern * scaler in 2080s in ECHam4 GG (top right)
error: estimated – modelled (bottom left)
fract. error: absolute value of: error / modelled (bottom right)
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Figure 7.20
Estimate of ECHam4 2080s precipitation by scaling ECHam4 pattern.

modelled

error

estimated

fractional error

model: ECHam4
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: regional means from the Countries set
modelled: mean anomaly for the 2080s (2070-2099, top left)
pattern: similar to that calculated in Figure 7.6
estimated: pattern * scaler in 2080s in ECHam4 GG (top right)
error: estimated – modelled (bottom left)
fract. error: absolute value of: error / modelled (bottom right)
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Figure 7.21
Errors in estimating 2080s temperatures by scaling model patterns.

CCSR-NIES

CSIRO2

CGCM1

HadCM3

model: CCSR-NIES, CGCM1, CSIRO2, HadCM3
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
modelled: mean anomaly for the 2080s (2070-2099)
patterns: for each model, as calculated in Figures 7.5 and 7.7
estimated: for each model, pattern * scaler in 2080s
error: estimated – modelled (plotted)
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Figure 7.22
Errors in estimating 2080s precipitation by scaling model patterns.

CCSR-NIES

CSIRO2

CGCM1

HadCM3

model: CCSR-NIES, CGCM1, CSIRO2, HadCM3
simulations: GG
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
modelled: mean anomaly for the 2080s (2070-2099)
patterns: for each model, as calculated in Figures 7.6 and 7.8
estimated: for each model, pattern * scaler in 2080s
error: estimated – modelled (plotted)
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Figure 7.23
Errors in estimating 2080s temperatures by scaling model patterns.

DDC minimum error

HadCM2 error: 8–2s
DDC maximum error

HadCM2 error: 8+2s

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
modelled: for each simulation, mean anomaly for the 2080s (2070-2099)
patterns: for each simulation, as calculated in Figures 7.5 and 7.7
estimated: for each simulation, pattern * scaler in 2080s
error: for each simulation, estimated – modelled
DDC range: min (top left) & max (top right) of errors from the DDC sample
Had2 error: mean (8) and sd (s) of errors from the HadCM2 sample
Had2 95%: min (bottom left) & max (bottom right) of 95% confid. interval
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Figure 7.24
Errors in estimating 2080s precipitation by scaling model patterns.

DDC minimum error

HadCM2 error: 8–2s
DDC maximum error

HadCM2 error: 8+2s

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
modelled: for each simulation, mean anomaly for the 2080s (2070-2099)
patterns: for each simulation, as calculated in Figures 7.6 and 7.8
estimated: for each simulation, pattern * scaler in 2080s
error: for each simulation, estimated – modelled
DDC range: min (top left) & max (top right) of errors from the DDC sample
Had2 error: mean (8) and sd (s) of errors from the HadCM2 sample
Had2 95%: min (bottom left) & max (bottom right) of 95% confid. interval
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Figure 7.25
Errors in estimating 2080s temperature by scaling model patterns.

DDC error range

top left / top right

Had2 error 95% interval

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: grid-box values
modelled: for each simulation, mean anomaly for the 2080s (2070-2099)
patterns: for each simulation, as calculated in Figures 7.5 and 7.7
estimated: for each simulation, pattern * scaler in 2080s
error: for each simulation, estimated – modelled
DDC range: max – min of errors from the DDC sample (top left)
Had2 error: mean (8) and sd (s) of errors from the HadCM2 sample
Had2 95%: range of 95% confid. interval for mean error (top right)
ratio: DDC range / Had2 95% (bottom left)
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Figure 7.26
Errors in estimating 2080s precipitation by scaling model patterns.

DDC error range

top left / top right

Had2 error 95% interval

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: grid-box values
modelled: for each simulation, mean anomaly for the 2080s (2070-2099)
patterns: for each simulation, as calculated in Figures 7.6 and 7.8
estimated: for each simulation, pattern * scaler in 2080s
error: for each simulation, estimated – modelled
DDC range: max – min of errors from the DDC sample (top left)
Had2 error: mean (8) and sd (s) of errors from the HadCM2 sample
Had2 95%: range of 95% confid. interval for mean error (top right)
ratio: DDC range / Had2 95% (bottom left)
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Figure 7.27

Estimating 2080s temperature by scaling model patterns.

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: regional means from Giorgi set
modelled: mean anomaly for the 2080s: CCSR-NIES (o), CGCM1 (o), CSIRO2

(o), ECHam4 (o), HadCM3 (o), HadCM2 mean (o)
Had2 95%: range of 95% confidence interval for mean anomaly (thick bar)
patterns: for each simulation, similar to those in Figures 7.5 and 7.7
estimated: pattern * scaler in 2080s: CCSR-NIES (:), CGCM1 (:), CSIRO2 (:),

ECHam4 (:), HadCM3 (:), HadCM2 mean (:)
Had2 95%: range of 95% confidence interval for mean estimate (thin line)
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Figure 7.28

Estimating 2080s precipitation by scaling model patterns.

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: regional means from Giorgi set
modelled: mean anomaly for the 2080s: CCSR-NIES (o), CGCM1 (o), CSIRO2

(o), ECHam4 (o), HadCM3 (o), HadCM2 mean (o)
Had2 95%: range of 95% confidence interval for mean anomaly (thick bar)
patterns: for each simulation, similar to those in Figures 7.6 and 7.8
estimated: pattern * scaler in 2080s: CCSR-NIES (:), CGCM1 (:), CSIRO2 (:),

ECHam4 (:), HadCM3 (:), HadCM2 mean (:)
Had2 95%: range of 95% confidence interval for mean estimate (thin line)
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Figure 7.29

Errors in estimating 2080s temperature by scaling model patterns.

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (°C), base 1960-1989
spatial: regional means from Giorgi set
modelled: for each simulation: mean anomaly for the 2080s
patterns: for each simulation, similar to those in Figures 7.5 and 7.7
estimated: for each simulation, pattern * scaler in 2080s:
error: estimated – modelled: CCSR-NIES (r), CGCM1 (r), CSIRO2 (r),

ECHam4 (r), HadCM3 (r), HadCM2 mean (r)
Had2 95%: range of 95% confidence interval for mean error (thick bar)
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Figure 7.30

Errors in estimating 2080s precipitation by scaling model patterns.

model: CCSR-NIES, CGCM1, CSIRO2, ECHam4, HadCM3, HadCM2
simulations: GG (first five models); Ga 1,2,3,4 (HadCM2)
temporal: JJA, 30y means 1990-2099, anomalised (mm/d), base 1960-1989
spatial: regional means from Giorgi set
modelled: for each simulation: mean anomaly for the 2080s
patterns: for each simulation, similar to those in Figures 7.6 and 7.8
estimated: for each simulation, pattern * scaler in 2080s:
error: estimated – modelled: CCSR-NIES (r), CGCM1 (r), CSIRO2 (r),

ECHam4 (r), HadCM3 (r), HadCM2 mean (r)
Had2 95%: range of 95% confidence interval for mean error (thick bar)
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8. Conclusions

8.1 Introduction
In this final chapter we draw together our conclusions. Our analyses have centred
on the technique of pattern scaling. In chapter 2 we reviewed the historical
development of climate assessments and discussed how pattern scaling has
become popular in that context. In chapter 3 we gave a more detailed description
of pattern scaling and we explained the reasons for our particular choices of data
for evaluating the technique. Using these data we investigated four important
questions concerning the use of pattern scaling that have not been dealt with fully
– or at all – in the literature. We asked whether we might apply pattern scaling to:
4 the multi-decadal mean? (chapter 4)

4 the inter-annual probability distribution? (chapter 5)

4 regions? (chapter 6)
4 a variety of models? (chapter 7)

We draw together our answers to these questions in sections 8.2-8.5. We discuss
some of the limitations to our study in section 8.6. In section 8.7 we present some
ways in which our work might be extended. We also recognise the importance of
pattern scaling to any probabilistic assessment of regional climate changes, so we
pose some of the questions that any implementation of the probabilistic approach
must address. We summarise our conclusions and the thesis in section 8.8.

8.2 May we use pattern scaling?
In chapter 4 we examined whether it is possible to scale a response pattern by
annual global-mean temperature to estimate changes in multi-decadal means on
regional scales for forcing scenarios unsimulated by a GCM. This question has
been addressed before, most notably by Mitchell et al. (1999), but in a number of
respects we have broken new ground. In answer to the question posed in the title
of this section, we extend the affirmative response of Mitchell et al. (1999):

4 from temperature to precipitation;
4 from annual means to seasonal (JJA) means;

4 from large-scale patterns to individual grid-boxes and regions.
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We have also been innovative in assessing the errors that are introduced through
pattern scaling. We outlined four potential sources of errors:
(a) internal variability;
(b) the non-applicability of the spatial response under greenhouse warming to the

pre-industrial world;
(c) non-linear global-mean responses to radiative forcing;
(d) non-linear grid-box responses to radiative forcing.

We found that internal variability - (a) in the list above - made a comparatively
small contribution to the errors introduced by pattern scaling; when combined,
sources (a) and (b) introduced errors to the grid-box estimates with an average
magnitude of 0.1°C or 0.06 mm/day. However, the global-mean responses are not
entirely linear – source (c) – so the average error reverses polarity over the course
of the 21st century. There are also non-linearities in individual grid-boxes – source
(d) – so there are changes in the rate of response in over a third of grid-boxes
during the 21st century; the changes in the spatial pattern of response represented
by these non-linearities may double the magnitude of the errors introduced by
pattern scaling, depending on the forcing scenario and the period. It is important
to note that the errors are minimised when we interpolate between forcing
scenarios, rather than extrapolate. When we estimate the changes in temperature
and precipitation at the end of the 21st century under the Gd scenario by scaling
the Ga pattern, the statistically significant errors are limited to a tenth of the grid-
boxes.

It is also worth noting that not all statistically significant errors may be practically
significant. Since practical significance is context-dependent we cannot make a
universal assessment of it. However, we arbitrarily defined an error that exceeds a
fifth of the estimated value as practically significant, and identified the
proportions of grid-boxes that were simultaneously statistically and practically
significant. In practice this means that we may treat the estimated changes for all
other grid-boxes as accurate to within ±20%. When we scaled a Ga response
pattern to estimate changes in Gd at the end of the 21st century, the errors are both
statistically and practically significant in only 1.8% (temperature) or 8.9%
(precipitation) of grid-boxes.

Again, the worth of pattern scaling is context-dependent. However, one measure of
worth may be obtained by comparing the errors from pattern scaling with the
errors that would be obtained were we to assume that the global-mean change
occurred at every grid-box. We found that the errors from pattern scaling were far
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smaller than under that assumption. On this basis we argue that even where
significant errors arise from pattern scaling, for some applications it may be better
to make the estimate using pattern scaling than not to estimate at all. As has been
pointed out with regard to climate change in general (e.g. Fowler and Hennessy,
1995), unless specific guidance is given, the norm of assuming a stationary climate
may prevail. In this case, the norm may prevail of assuming that the regional
change will be similar to the global-mean change.

We were hampered in our assessment of the stabilisation scenarios by the lack of
any ensembles for them. We did ascertain that the global-mean errors introduced
by pattern scaling are larger for stabilisation scenarios than under steadily
increasing concentrations. However, it is possible that there are not substantially
more grid-boxes with statistically significant errors.

8.3 May we scale the distribution?
The value of pattern scaling would be considerably enhanced if it were possible to
adapt the technique to estimate changes in distributional parameters other than
the mean. It might even prove possible thus to estimate changes in entire
probability distributions. To our knowledge pattern scaling has not been applied
in this way before. We considered inter-annual probability distributions of
seasonal temperature and precipitation in the perturbed ensembles.

We found that it is practical to scale a response pattern of inter-annual variance
from one forcing scenario to estimate changes under another scenario. Although
the errors are much larger (in proportion to the modelled value) than was the case
when estimating means, they are never significant in more than a fifth of the grid-
boxes for either temperature or precipitation. The response patterns for the
skewness and kurtosis parameters explained so small a proportion of the
variability that we did not attempt to scale them.

For temperature the skewness and kurtosis parameters were consistent with a
normal distribution, and it is reasonable to assume that the distribution of inter-
annual temperature is normal. Therefore if we may accurately estimate both the
mean and the inter-annual variance by pattern scaling, we may accurately identify
changes in the entire probability distribution. By identifying the grid-boxes where
pattern scaling error introduces errors for either the mean or the variance, we were
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able to state that errors – significant in both statistical and practical senses299 – are
present in no more than a fifth of the grid-boxes.

We cannot reason so effectively for precipitation because the distribution of inter-
annual precipitation appears – from the skewness and kurtosis parameters – not to
be normal. Therefore further consideration must be given to the distributional
form most appropriate to inter-annual precipitation if we are to apply pattern
scaling to the entire distribution for precipitation. However, the accuracy of
estimating changes in the variance from pattern scaling – whereas there are errors
for the temperature mean or variance in a fifth of the grid-boxes, the proportion
for precipitation is a third – suggests that other distributional parameters might
also be accurately estimated.

Since it seems possible to estimate changes in a probability distribution using
pattern scaling:
(c) We may present estimated changes in probability distributions for forcing

scenarios not simulated by GCMs.
(d) We may apply Monte Carlo techniques to the generation of climate

‘projections’ at regional scales. We may combine probabilities from different
sources of uncertainty using Bayesian statistics and exploit the highly complex
integrals by random sampling. Through pattern scaling we may extend the
sources of uncertainty included to regional climate changes.

8.4 May we regionalise?
In chapter 6 we examined the effects on our estimates of climate change made by
our choices of region. A very wide range of choices of scale and zone have been
made in climate assessments in the past, yet very little assessment has been made
of the effects of these choices. We broke the problem down into two components:
the scale effect and the zoning effect. We constructed a number of region sets on
the HadCM2 grid that differed from each other either in spatial scale, or else in the
principles by which they were zoned. We compared the region sets in terms of:
4 the loss of information from regionalising;

4 the signal-to-noise ratio under increased radiative forcing;

4 the errors in estimates made using pattern scaling.

                                                            
299 We arbitrarily define a practically significant error as occurring where the error exceeds a fifth of
the simulated value.
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In answer to the question posed in the section title, we may apply pattern scaling
to regions – not just individual grid-boxes – with considerable accuracy. However,
there are two further major conclusions:
(a) There is little evidence that we can improve climate scenarios by defining

regions using climatically-relevant information.
(b) There is no optimal spatial scale for pattern scaling, in the sense that any

change in spatial scale involves a trade-off.

The region set employed by the IPCC is made up of rectangles that loosely
represent a range of different climates. However, our first conclusion suggests that
the use of climatic information does not improve the results; similar results would
be obtained if similarly-sized regions were zoned using geometric principles.
Therefore we conclude that the only conceivable way by which climatically-
informed zoning might increase signal-to-noise ratios – and the accuracy of
pattern scaling – is to construct the regions on the basis of the response pattern
itself. However, there would be a strong element of circularity in using the
HadCM2 response pattern to define a region set, examining the performance of
pattern scaling for that region set and pronouncing it better at approximating the
response to forcing than any other region set!

We found that while we may improve the signal-to-noise ratio (representing the
response to increased radiative forcing) by increasing the spatial scale, the same
increase also diminishes the information available from the spatial pattern.
Similarly, we may diminish the magnitudes of the errors introduced through
pattern scaling by increasing the spatial scale, but the same increase also renders
those errors more statistically significant. It is in this sense that we conclude that
there is no optimal spatial scale for pattern scaling. However, this conclusion
ought to be qualified by the greater agreement between models and with
observations that we might expect to find at larger spatial scales.

8.5 May we scale different models?
In chapter 7 we addressed a third problem in assessing regional climate change.
We concluded in chapter 4 that pattern scaling may be applied to HadCM2.
However, since it is not sufficient to rely on a single model in estimating future
climate change, we extended our examination of pattern scaling to a sample of six
fully-coupled GCMs from the DDC. This sample covered a fairly wide range of
representations of the climate system. Since each model only contributed a single
simulation, we also provided an accompanying sample from HadCM2, which
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enabled us to estimate the influence of internal variability on the differences
between the DDC models.

The continental-scale features of the various model response patterns matched the
features identified in IPCC reports (Mitchell et al., 1990; Kattenberg et al., 1996), in
which inter-model differences are highlighted. However, the additional
information about internal variability in our results suggests that a large
proportion of the inter-model differences may be attributable to internal
variability, and might not be ‘disagreements’ at all.

We also presented the responses in the regions employed by the IPCC. Since our
patterns were normalised, the contribution to inter-model differences from their
different climate sensitivities had been removed. Moreover, by including a
HadCM2 ensemble we were able to estimate the contribution to inter-model
differences from internal variability. As a result, the inter-model ‘disagreements’
appear to be much smaller than those discussed in the IPCC Second Assessment
Report. We conclude that a large proportion of the inter-model differences in
estimated regional climate change for a doubling of CO2 (e.g. Mitchell et al., 1990;
Kattenberg et al., 1996) may be attributable either to differing climate sensitivities
or else to internal variability.

This conclusion is supported by Räisänen’s (2001) exploration of the contribution
of internal variability to the different regional anomalies in simulations from 15
CMIP models in which concentrations of CO2 were doubled. He only isolated
internal variability, not climate sensitivity, and he did not have access to long
controls or ensembles, but nonetheless he found that of the inter-model differences
in JJA, 20% of the temperature and 42% of the precipitation (percentage) anomalies
might be explained by internal variability. Since Räisänen (2001) obtained similar
proportions for other seasons, it seems likely that our conclusion may also apply
to seasons other than JJA.

Another interesting result was obtained when we increased the spatial scale at
which the response patterns were constructed. We found that any decreases in the
inter-model differences were more than matched by corresponding decreases in
the internal variability of HadCM2. This suggests that if we express inter-model
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agreement in terms of internal variability, the inter-model differences are less
dependent upon spatial scale than is commonly thought.300

Since only a single simulation was available from each of the DDC models, we
were unable to examine the accuracy of pattern scaling as fully as for HadCM2.
However, we did consider the accuracy of estimating the climate anomalies at the
end of the 21st century by scaling the response pattern from the entire 21st century
in the same simulation. We found that the errors were generally much smaller
than the anomalies being estimated. In many regions the range of errors in the
HadCM2 sample was comparable to the range in the DDC sample, suggesting that
a large proportion of the errors for the various models may not be statistically
significant.

In answer to the question posed in the title to this section, we conclude that we
may apply pattern scaling to GCMs other than HadCM2, since within the limits of
our analysis there is no evidence that applying pattern scaling to the DDC models
gives less accurate estimates than applying it to HadCM2. We recognise that we
have not been able to evaluate the accuracy of estimating for a forcing scenario
other than that from which the pattern was extracted. We also recognise that if this
were possible, the errors from pattern scaling would almost certainly increase.
However, when we considered this issue for HadCM2 (in chapter 4), we did not
find that the errors were so much larger that the technique became invalid.
Moreover, two other factors both suggest that the conclusions drawn in chapter 4
with respect to HadCM2 may apply to the other models also:
4 the broadly linear responses to forcing evident from the small size of the errors

from estimating for GG,
4 the similarity between the errors found for HadCM2 and the other models.

The practical importance of our conclusion may be noted in the context of the
considerable uncertainties in regional climate assessments that stem from
differences between models. Our analysis suggests that we may apply pattern
scaling to a variety of models and obtain estimates of change from each model. It
is reasonable to suggest that we might treat such estimates as equally plausible,
and present all of them in an attempt to represent the uncertainty arising from
differences between models.

                                                            
300 Note that our results only extend to the smaller spatial scales, never including hemispheric or
global scales. It may still be the case that inter-model differences are smaller at global and
hemispheric scales, even when we take internal variability into account.
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8.6 Limitations
We recognise that there are limitations to the analysis that we have conducted and
the conclusions that we have drawn. Since many of these limitations are common
to more than one chapter, we present them together. Among the more important
omissions in our analyses are the following:
(a) no seasons other than JJA;
(b) no variables other than precipitation and temperature;
(c) no sulphate aerosols in the forcing scenarios.

However, we do not believe that these limitations seriously compromise the
conclusions we have drawn. Although we have only considered a single season,
other examinations of pattern scaling have found considerable accuracy on both
annual (Mitchell et al., 1999) and monthly (Huntingford and Cox, 2000) time scales.
Therefore we would expect to obtain similar results for seasons other than JJA.

It is a considerable advance on Mitchell et al. (1999) to have confirmed the
accuracy of pattern scaling for precipitation, since it is a much ‘harder’ problem to
represent the precipitation pattern than the temperature pattern. If pattern scaling
may be applied to precipitation, we might expect pattern scaling to be applicable
to many similarly ‘difficult’ variables. Indeed, Huntingford and Cox (2000) had
some success with a wide range of land surface-related variables.

The lack of any sulphate aerosols in our forcing scenarios does not compromise
them as much as might at first be thought.
4 During the 1990s the estimates of sulphur emissions for the 21st century were

greatly diminished, so that recent scenarios (IPCC, 2000) contain much lower
emissions of sulphur than the IS92 scenarios (Alcamo et al., 1995).

4 Moreover, an important issue concerns the reference period for climate
scenarios: if – as may well be true for Europe – the level of sulphate emissions
has already peaked, any sulphate response pattern for the 21st century will
have very little magnitude relative to present day levels.

If sulphate emissions are relatively small for much of the world, we might argue
that the sulphate contribution to changes in radiative forcing is so small relative to
the contribution from greenhouse gases that the large-scale effects of sulphate
aerosols may be ignored. This is the argument presented by Mitchell et al. (1999)
following their evaluation of two ensembles with differing levels of sulphate
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emissions. If this argument cannot be sustained for certain parts of the world, it
may be possible to:

 i. break the response pattern down into greenhouse and sulphate elements
(Ramaswamy and Chen, 1997),

 ii. construct (perhaps region-specific) sulphate response patterns,
 iii. scale both greenhouse and sulphate patterns individually, and
 iv. combine them into a single climate scenario (Schlesinger et al., 1997).

8.7 Ways forward
Although the limitations that we have described above do not seriously
compromise our conclusions, they do offer ways in which we might further
develop pattern scaling. Here we present a number of other ways forward.

1. We found in chapter 4 that many regions exhibited non-linear responses to
increased radiative forcing over the course of the 21st century. Many of the
errors introduced by pattern scaling stem from the assumption that the
regional responses are linear. Therefore we suggest that it might be possible
to modify the technique by assuming instead a quadratic response, which
would enable us to incorporate many of the non-linear changes. The critical
factor in the accuracy of this method might be the extra amount of
information (i.e. ensemble members) required to construct stable estimates of
the constants in the quadratic equations.

2. We also found in chapter 4 that stabilisation introduced additional
differences between the response patterns obtained from different forcing
scenarios. Stabilisation tended to smooth out the regional contrasts in the Ga
response pattern, as recognised by Stouffer et al. (1989) and specifically for
HadCM2 (Mitchell et al., 2000; Senior and Mitchell, 2000). This effect
appeared to be consistent between the stabilisation forcing scenarios and the
scenarios with steadily increasing radiative forcing. Therefore we suggest
that a modified form of pattern scaling might employ two parameters: we
might use one parameter to estimate the unstabilised response as a function
of the scaler (as we have done here), and an additional parameter to estimate
the stabilising component of the response, perhaps as a function of the
gradient of the scaler.

3. We examined distributional parameters for the inter-annual probability
distribution of seasonal means in chapter 5. However, changes in variability
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on time scales of weeks, days, and even hours may have greater impacts than
changes on the seasonal time scales we have considered. The models have
been evaluated far more for seasons than on shorter time scales, but a
comparison of mid-latitude variability in HadCM2 with observations has
shown promising results for a daily time scale (Osborn et al., 1999b), and
responses to increased radiative forcing have been found (Carnell and
Senior, 1998). We suggest that the usefulness of pattern scaling would be
enhanced if it were possible to accurately estimate probability distributions
for much shorter time scales.

4. We briefly considered skewness and kurtosis parameters in chapter 5, but we
concentrated on the variance. However, changes in extremes are very
important, and Gaussian forms may be insufficient to describe the
distribution tails of climate variables (e.g. Palutikof et al., 1999; Brabson and
Palutikof, 2000). Again, the usefulness of pattern scaling would be enhanced
if it were possible to accurately estimate changes in the distribution tails.

5. In chapter 6 we considered the possibility of applying pattern scaling to
regions made up of a number of grid-boxes aggregated together. However,
climate change assessments often make use of statistical downscaling or
regional climate models (RCMs) to represent climate change at smaller scales
than the GCM grid-box (Kattenberg et al., 1996; Wilby and Wigley, 1997). It is
conceivable that statistical downscaling might be conducted on scaled
patterns from GCMs in order to represent local changes under forcing
scenarios for which no GCM simulations are available. An alternative
approach might be to extract patterns from RCMs and scale them.

6. In chapter 7 we concluded that pattern scaling may be applied to models
other than HadCM2. We suggested that we might represent a number of
GCMs as equally plausible representations of the climate system, and apply
pattern scaling to each of them in a comprehensive assessment of future
climate change. However, in chapter 2 we pointed out that a sample of
models from different modelling centres is not a random sample from the
population of plausible models that could be constructed. There are plans for
experiments in which parameters are varied to create a large number of
models (Allen, 1999; UKMO/DETR, 2000), but these models are likely to bear
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a strong resemblance to each other,301 and may well be more similar to each
other than they are to nature (Palmer, 2000). In this context we may imagine
an experiment in which we would like to represent the changes that would
be simulated by a model – with defined parameters – that had never been
constructed. A novel use for pattern scaling might be to scale a response
pattern from one model in an attempt to estimate changes in another model.

We were concerned at the start of this thesis to place it within the context of the
need for a probabilistic approach to the assessment of future climate change.
Pattern scaling belongs within that wider context, and there is considerable scope
for further investigation of a number of issues that must be addressed if pattern
scaling is to be successfully employed within the probabilistic framework.
(a) If the SRES scenarios (IPCC, 2000) are adopted as the anthropogenic emissions

scenarios, how should they be treated? Should each of the 40 scenarios be
treated as equi-probable? Should scenarios be included that represent
‘surprises’ or mitigation?

(b) How should the emissions scenarios be combined with possible future changes
in solar irradiance and volcanic aerosols, which also affect the climate system
(e.g. Stott et al., 2000)?

(c) Further uncertainty is introduced when we estimate future changes in
radiative forcing or in the climate sensitivity. How should we cope with that
uncertainty? Should we use a single SCM to represent all changes in
atmospheric chemistry, radiative forcing, and global-mean climate change? Or
should we use a number of task-specific SCMs?

(d) How should we represent uncertainty over the consequent regional climate
changes (assuming that pattern scaling is accurate)? Should we use a single
GCM, a multi-model mean, or treat all available GCMs as equi-probable?
Should we incorporate ‘conceivable GCMs’ (i.e. possible representations of the
climate system) that have not been modelled?

(e) If more localised climate changes must be assessed, how should we represent
uncertainty over downscaling techniques (e.g. Murphy, 1999)? Should we use
particular statistical or dynamical downscaling techniques, a selection, or all
available techniques?

8.8 Summary
                                                            
301 “Even when models have been developed to their final form at different institutions, they often
have a family relationship in the form of some similar if not identical components” (Räisänen,
2001).
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In this thesis we have assessed the accuracy of pattern scaling within the context of
a probabilistic approach to the evaluation of future climate change. We have
assessed the accuracy with which we may reconstruct the pattern of change that
would be simulated by a given GCM, not the accuracy of the GCM itself. We
conclude that pattern scaling does enable us to accurately estimate the regional
changes in seasonal temperature and precipitation that would be simulated by a
given GCM under different radiative forcing. The changes to which we refer may
be either a multi-decadal mean or the inter-annual variance. The spatial domain
may be either a grid-box or a regional mean. Therefore we conclude that pattern
scaling facilitates a probabilistic approach to the assessment of future regional
climate changes, and the confirmation of the accuracy of pattern scaling opens the
way for this approach to be fully implemented.
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