Abstract

General circulation models (GCMs) are considered to provide the greatest potential for scenario construction for enhanced greenhouse effect impact studies, but the current generation typically have a spatial resolution of about 300 kilometres. Thus there is a need to downscale from this relatively coarse scale to the finer scale required for impact assessments. In this thesis, the potential of the circulation-based approach to downscaling (one of the most promising empirical approaches) is explored in depth.

This approach is developed and tested in a highly seasonal Mediterranean regime. Three study areas, providing a transect across the Mediterranean Basin, are used: the Guadalentin in southeast Spain, the Agri in central Italy and the Greek island of Lesvos.

An automated method based on Lamb Weather Types is used to classify the circulation on a daily basis using gridded sea level pressure data from the observations and from two versions of the UK Hadley Centre GCM (UKTR and HadCM2SUL). It is shown that the circulation-typing scheme is discriminating in terms of the rainfall characteristics underlying each type. This, together with the finding that each type has a characteristic underlying synoptic pattern, indicates that the scheme provides a suitable basis for downscaling. A stochastic weather generator in which rainfall is dependent on the circulation type of each day and on the wet/dry status of the previous day is developed and used to construct daily rainfall scenarios for 1970-1979, 2030-2039 and 2090-2099.

The final rainfall scenarios are considered more plausible than the raw GCM changes. The method is, however, affected by a number of problems which are common to all empirical, and many numerical model-based, downscaling approaches (i.e. stationarity, overdispersion, data availability and the reliability of GCMs). A number of ways in which the method could be further refined and developed to reduce these problems are proposed.

Acknowledgements

First of all, I would like to thank Jean Palutikof, who has been both an excellent supervisor throughout the period of my PhD study and a much appreciated role model during the many years I have spent working in the Climatic Research Unit. Thanks also to Mick Kelly and Trevor Davies for their help in shaping the direction of the thesis work.

The thesis was carried out an a part-time basis. However, much of the analytical work was performed as part of contractual work undertaken on the MEDALUS II (EV5V-CT92-0164), MEDALUS III (ENV4-CT95-0121) and ACCORD (ENV4-CT97-0530) projects funded by the European Commission.

The daily rainfall data for Spanish and Italian stations were provided to the Climatic Research Unit as part of the MEDALUS II and III projects. The UKTR and HadCM2SUL model data were supplied by the Climate Impacts LINK project (funded by the UK Department of Transport, Environment and the Regions) on behalf of the Hadley Centre and UK Meteorological Office. The gridded sea level pressure data were extracted from the National Meteorological Center CD-ROM data set. Mick Kelly provided a Fortran program for the construction of pressure composites which I modified for the purposes of the thesis. The composites were plotted using the Doodler software package written by Mick Kelly. Tom Holt and Jean Palutikof wrote the Fortran program used to estimate return period events in Chapter 6.

I would also like to thank the many colleagues and friends in the Climatic Research Unit who have supported me over the years. Finally, special thanks to my family and to all my friends in Norwich and elsewhere who have been a constant source of support and encouragement.

Contents

1.1 THE NEED FOR DOWNSCALING 2 1.2 APPROACHES TO DOWNSCALING 3 1.2.1 Available methods 3 1.2.2 The circulation-based approach to downscaling 6 1.2.3 Previous applications of the circulation-based approach to downscaling 6 1.3 THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING 9 1.4 THE THESIS STRUCTURE 19 2.1 DESCRIPTION OF THE UNDERLYING DATA SETS 20 2.1.1 Observed pressure data 20 2.1.2 UKTR GCM pressure data 21 2.2 THE TYPING-SCHEME METHODOLOGY 22 2.2.1 Introduction 22 2.2.2 Calculation of the flow and vorticity parameters 22 2.2.3 The fourteen basic circulation types 25 2.2.4 The eight circulation-type groups 25 2.3.1 Construction of SLP composites 26 2.3.1 Construction of SLP composites 26 2.4.1 Simulated relationships between the circulation types and synoptic features 30 2.3.2 Interpretation of the SLP composites
1.2 APPROACHES TO DOWNSCALING 3 1.2.1 Available methods 3 1.2.2 The circulation-based approach to downscaling 6 1.3.3 Previous applications of the circulation-based approach to downscaling 6 1.3 THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING 9 1.4 THE THESIS STRUCTURE 11 2. THE AUTOMATED CIRCULATION-TYPING SCHEME 19 2.1 DESCRIPTION OF THE UNDERLYING DATA SETS 20 2.1.1 Observed pressure data 20 2.1.2 UKTR GCM pressure data 21 2.2 THE TYPING-SCHEME METHODOLOGY 22 2.2.1 Introduction 22 2.2.2 Calculation of the flow and vorticity parameters 22 2.3 The ourteen basic circulation types 25 2.2.4 The eight circulation-type groups 25 2.3.5 Frequencies of the observed circulation types 26 2.3.1 Construction of SLP composites from the observations 26 2.3.2 Interpretation of the SLP composites 26 2.4.1 Sea-level pressure patterns
1.2.1Available methods31.2.2The circulation-based approach to downscaling61.2.3Previous applications of the circulation-based approach to downscaling61.3THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING91.4THE THESIS STRUCTURE112.THE AUTOMATED CIRCULATION-TYPING SCHEME192.1DESCRIPTION OF THE UNDERLYING DATA SETS202.1.1Observed pressure data202.1.2UKTR GCM pressure data212.2THE TYPING-SCHEME METHODOLOGY222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types252.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types262.3Interpretation of SLP composites from the observations262.3.2Simulated relationships between the circulation types and synoptic features302.4.3Simulated relationships between the circulation types and synoptic features302.5Secsional changes in circulation-type frequency322.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.5.3Stalladed relationships between the circulation types and synoptic features302.5Secsion322.5.2Seasonal changes in circulation-type frequency322.5.3Mean sea level pressure changes312.5.
1.2.2 The circulation-based approach to downscaling 6 1.2.3 Previous applications of the circulation-based approach to downscaling 6 1.3 THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING 9 1.4 THE THESIS STRUCTURE 11 2. THE AUTOMATED CIRCULATION-TYPING SCHEME 19 2.1 DESCRIPTION OF THE UNDERLYING DATA SETS 20 2.1.1 Observed pressure data 20 2.1.2 UKTR GCM pressure data 21 2.2 THE TYPING-SCHEME METHODOLOGY 22 2.2.1 Introduction 22 2.2.2 Calculation of the flow and vorticity parameters 22 2.2.3 The fourteen basic circulation types 24 2.4.4 The eight circulation-type groups 25 2.3.5 Frequencies of the observed circulation types 26 2.3.1 Construction of SLP composites from the observations 26 2.3.2 Interpretation of the SLP composites 26 2.4.3 Simulated circulation-type frequencies 29 2.4.3 Simulated recolation-type frequencies 29 2.4.4
1.2.3Previous applications of the circulation-based approach to downscaling61.3THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING91.4THE THESIS STRUCTURE112.THE AUTOMATED CIRCULATION-TYPING SCHEME192.1DESCRIPTION OF THE UNDERLYING DATA SETS202.1.1Observed pressure data202.1.2UKTR GCM pressure data212.2The TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types252.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types262.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.4Simulated circulation-type frequencies292.4.1Sea-level pressure patterns282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION323.7SUMMARY OF CONCLUSIONS333.8IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL
1.3 THE DEVELOPMENT OF THE CIRCULATION-TYPE APPROACH TO DOWNSCALING 9 1.4 THE THESIS STRUCTURE 11 2. THE AUTOMATED CIRCULATION-TYPING SCHEME 19 2.1 DESCRIPTION OF THE UNDERLYING DATA SETS 20 2.1.1 Observed pressure data 20 2.1.2 UKTR GCM pressure data 21 2.2 THE TYPING-SCHEME METHODOLOGY 22 2.2.1 Introduction 22 2.2.2 Calculation of the flow and vorticity parameters 22 2.2.3 The fourteen basic circulation types 24 2.2.4 The eight circulation-type groups 25 2.2.5 Frequencies of the observed circulation types 25 2.3 VALIDATION OF THE TYPING COMEME FOR SOUTHEAST SPAIN 26 2.3.1 Construction of SLP composites from the observations 26 2.4 VALIDATION OF UKTR GCM CIRCULATION TYPES 28 2.4.1 Sea-level pressure patterns 28 2.4.2 Simulated circulation-type frequencies 29 2.5.1 Mean sea level pressure changes 31 2.5.2 Seasonal changes in circulation-type frequency 32 2.5.1 Mean sea level pressure changes 31 2.5.2 Seasonal changes in circulation-type frequency 32 2.5.1 Mean sea level p
1.4THE THESIS STRUCTURE112.THE AUTOMATED CIRCULATION-TYPING SCHEME192.1DESCRIPTION OF THE UNDERLYING DATA SETS202.1.1Observed pressure data202.1.2UKTR GCM pressure data212.2THE TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.3.3Interpretation of the SLP composites282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE /FaINFALL RELATIONSHIPS3.1.1The Guadalentin Basin60
2. THE AUTOMATED CIRCULATION-TYPING SCHEME192.1DESCRIPTION OF THE UNDERLYING DATA SETS202.1.1Observed pressure data212.2UKTR GCM pressure data212.2THE TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4.1Sea-level pressure patterns282.4.1Sea-level pressure patterns282.4.2Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1THE GUADALENTIN RAINFALL REGIME603.1.1The Guadalentin Basin60
2.1DESCRIPTION OF THE UNDERLYING DATA SETS202.1.1Observed pressure data202.1.2UKTR GCM pressure data212.2The TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.4.4The eight circulation-type groups252.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4.3Simulated circulation-type frequencies292.4.3Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE /593.1.1The Guadalentin Basin60
2.1.1Observed pressure data202.1.2UKTR GCM pressure data212.2THE TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.4.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4.1Sea-level pressure patterns282.4.2Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE /593.1.1The Guadalentin Basin60
2.1.2UKTR GCM pressure data212.2THE TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.5Frequencies of the observed circulation types252.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.3.3Interpretation of the SLP composites282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE /RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME603.1.1The Guadalentin Basin60
2.2THE TYPING-SCHEME METHODOLOGY222.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.5Frequencies of the observed circulation types252.3V ALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION323.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE /F9RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME603.1.1The Guadalentin Basin60
2.2.1Introduction222.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.1IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.2.2Calculation of the flow and vorticity parameters222.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.2.3The fourteen basic circulation types242.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.2.4The eight circulation-type groups252.2.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.2.5Frequencies of the observed circulation types252.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.3VALIDATION OF THE TYPING SCHEME FOR SOUTHEAST SPAIN262.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.3.1Construction of SLP composites from the observations262.3.2Interpretation of the SLP composites262.4.2VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.3.2Interpretation of the SLP composites262.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.160
2.4VALIDATION OF UKTR GCM CIRCULATION TYPES282.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.1603.1.1The Guadalentin Basin60
2.4.1Sea-level pressure patterns282.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.1603.1.1The Guadalentin Basin60
2.4.2Simulated circulation-type frequencies292.4.3Simulated relationships between the circulation types and synoptic features302.5FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY312.5.1Mean sea level pressure changes312.5.2Seasonal changes in circulation-type frequency322.6DISCUSSION322.7SUMMARY OF CONCLUSIONS333.IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS593.1THE GUADALENTIN RAINFALL REGIME 3.1.1603.1.1The Guadalentin Basin60
2.4.5 Simulated relationships between the circulation types and synophic features 50 2.5 FUTURE CHANGES IN CIRCULATION-TYPE FREQUENCY 31 2.5.1 Mean sea level pressure changes 31 2.5.2 Seasonal changes in circulation-type frequency 32 2.6 DISCUSSION 32 2.7 SUMMARY OF CONCLUSIONS 33 3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
2.5 FUTURE CHANGES IN CIRCULATION-TYPE FREquency 31 2.5.1 Mean sea level pressure changes 31 2.5.2 Seasonal changes in circulation-type frequency 32 2.6 DISCUSSION 32 2.7 SUMMARY OF CONCLUSIONS 33 3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
2.3.1 Integen sed level pressure changes 31 2.5.2 Seasonal changes in circulation-type frequency 32 2.6 DISCUSSION 32 2.7 SUMMARY OF CONCLUSIONS 33 3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / 7 RAINFALL RELATIONSHIPS 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
2.3.2 Seasonal changes in circulation-type frequency 32 2.6 DISCUSSION 32 2.7 SUMMARY OF CONCLUSIONS 33 3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / 33 RAINFALL RELATIONSHIPS 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
2.0 DISCOSSION 32 2.7 SUMMARY OF CONCLUSIONS 33 3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / 7 RAINFALL RELATIONSHIPS 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
3. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS 59 3.1 THE GUADALENTIN RAINFALL REGIME 3.1.1 The Guadalentin Basin
S. IDENTIFICATION AND APPLICATION OF CIRCULATION-TYPE / RAINFALL RELATIONSHIPS 59 3.1 THE GUADALENTIN RAINFALL REGIME 60 3.1.1 The Guadalentin Basin 60
3.1THE GUADALENTIN RAINFALL REGIME603.1.1The Guadalentin Basin60
3.1THE GUADALENTIN RAINFALL REGIME603.1.1The Guadalentin Basin60
<i>3.1.1 The Guadalentin Basin</i> 60
3.1.2 Annual and seasonal rainfall 60
3.1.3 Standardised anomaly indices 61
3.2 RELATIONSHIPS BETWEEN THE CIRCULATION TYPES AND DAILY RAINFALL 63
$3.2.1 Introduction \qquad \qquad$
3.2.2 Rainfall contributions 04
2.2.5 <i>Kuinjaii probabililes/intensities</i> 03
3.5 EVALUATION OF CIRCULATION TYPE/RAINFALL RELATIONSHIPS 00 3.4 DEVELOPMENT OF A CONDITIONAL WEATHED CENEDATOD 60
3.4. Development of A conditional weather denerator 093.4.1 Introduction 60
3.4.2 The conditional weather generator 70
3.5 SIMULATIONS PERFORMED WITH THE CONDITIONAL WEATHER GENERATOR 71
3.5.1 Description of the three simulation sets 71
3.5.2 Evaluation of the Gen simulations 73
3.5.3 Evaluation of the Cont. simulations 74
3.5.4 The climate-change scenarios 75
3.6 SUMMARY OF CONCLUSIONS 76

4.	EVALUATION OF THE TYPING SCHEME AND THE WEATHER	
	GENERATOR	93
4.1	INTRODUCTION	94
4.2	UNDERLYING PHYSICAL PROCESSES	94
4.3	GCM PERFORMANCE	97
4.4	WEATHER GENERATOR PERFORMANCE	98
4.5	PLAUSIBILITY OF THE SCENARIOS	100
4.6	THE ASSUMPTION OF STATIONARITY	103
4.7	Conclusions	104
5.	DEVELOPMENT OF A NEW TYPING SCHEME	109
5.1	THE HADCM2 INTEGRATIONS	110
5.2	THE THREE STUDY REGIONS	111
	5.2.1 A Mediterranean transect	111
	5.2.2 The rainfall regime of the Agri basin and comparison with the Guadalentin	112
	5.2.3 The effects of shifting the pressure grid	114
5.3	DEVELOPMENT OF A NEW CLASSIFICATION SCHEME BASED ON HADCM2SUL	
	VALIDATION STUDIES	118
	5.3.1 Sea level pressure	118
	5.3.2 Strength of flow and vorticity	119
	5.3.3 Identification of new threshold values	121
	5.3.4 The new classification scheme	122
5.4	EVALUATION OF THE NEW CLASSIFICATION SCHEME	126
	5.4.1 The Guadalentin	126
	5.4.2 The Agri	130
	5.4.3 Discussion	134
5.5	CIRCULATION/RAINFALL RELATIONSHIPS IN THE GUADALENTIN AND AGRI	135
	5.5.1 The Guadalentin	135
	5.5.2 The Agri	141
5 (5.5.3 Discussion	150
5.0	VALIDATION OF THE HADCM2SUL CIRCULATION TYPES	151
5.7	FUTURE CHANGES IN HADCMI2SUL CIRCULATION	157
	5.7.1 Changes in sea level pressure	15/
58	S.7.2 Changes in circulation type frequency SUMMARY OF CONCLUSIONS	158
5.0		
6.	DEVELOPMENT OF A NEW CONDITIONAL WEATHER GENERATOR	273
6.1	INTRODUCTION	274
	6.1.1 Characteristics of the new conditional weather generator	274
\sim	6.1.2 The new conditional weather generator simulations and terminology	2/3
6.2	PARAMETER ESTIMATION	211
	0.2.1 Introduction	277
	6.2.2 Rainfall occurrence parameters	277
62	0.2.5 Kainfall amount parameters	2/9
0.5	CROSS-VALIDATION RUNS	203
	6.2.2 The CVUAD and CVUAD aimulation sets	204
	$0.3.2 \text{Ine } \cup \forall \Pi A D_{Alc} \text{ unu } \cup \forall \Pi A D_{Mis} \text{ simulation sets}$	292
	weather generators	207
	634 Variability of the parameters in the cross-validation simulation sets	291 208
64	S.S.T Variability of the parameters in the cross-valiaation simulation sets	290
0.4	6.4.1 The ORS1970 and HAD1970 simulation sets	300
	6.4.2 The HAD1970 HAD2030 and HAD2090 simulation sets	301
		201

6.5	Evalu	JATION OF THE SCENARIOS	306
	6.5.1	Graphical presentation of the scenarios	306
	6.5.2	Representation of uncertainty	306
	6.5.3	Scenario selection	307
	6.5.4	Changes in persistence and extreme events	308
	6.5.5	Links between changes in rainfall and circulation-type frequency	310
	6.5.6	Comparison of the UKTR and HadCM2SUL rain day scenarios	312
	6.5.7	Comparison of the downscaled scenarios and raw model changes	314
6.6	SUMM	ARY OF CONCLUSIONS	315
7.	CONO	CLUSIONS AND FURTHER DEVELOPMENT OF THE	
	METE	IODOLOGY	389
7.1	INTRO	DUCTION	390
7.2	GEOGI	RAPHICAL CONSIDERATIONS: COMPARISON OF THE GUADALENTIN AND	
	AGRI S	TUDY AREAS	390
7.3	METH	DOOLOGICAL CONSIDERATIONS: PROBLEMS AND POTENTIAL SOLUTIONS	395
	7.3.1	Introduction	395
	7.3.2	The problem of sample size and data availability	396
	7.3.3	The stationarity problem	400
	7.3.4	The convective/large-scale rainfall problem	403
	7.3.5	The overdispersion problem	405
	7.3.6	The problem of GCM reliability	407
	7.3.7	The plausibility of the scenarios	408
7.4	FURTH	ER APPLICATIONS OF THE METHODOLOGY: THE CONSTRUCTION OF	
	MULTIS	SITE/MULTIVARIATE SCENARIOS	411
	7.4.1	Introduction	411
	7.4.2	Methods for multisite scenario construction	411
	/.4.3	Sampling from observed data	412
	/.4.4	Spatially-correlated random numbers	414
	1.4.5 7.4.6	Methoas for multivariate scenario construction	410
75	/.4.0	Assessment of the suitability of the baseline stations	41/
1.5	CONCI	LUDING KEMAKKS	418

REFERENCES

457

List of Equations

Equation 2.1:	Equation for the calculation of westerly flow (<i>w</i>)	23
Equation 2.2:	Equation for the calculation of southerly flow (<i>s</i>)	23
Equation 2.3:	Equation for the calculation of resultant flow (F)	23
Equation 2.4:	Equation for the calculation of the direction of flow (<i>dir</i>)	23
Equation 2.5:	Equation for the calculation of westerly shear vorticity (<i>zw</i>)	23
Equation 2.6:	Equation for the calculation of southerly shear vorticity (zs)	23
Equation 2.7:	Equation for the calculation of total shear vorticity (Z)	23
Equation 3.1:	Formula for the calculation of standardised anomaly indices (SAIs)	61
Equation 6.1:	The PDF ($f(x)$) of the gamma distribution	280
Equation 6.2:	The values of the standard mathematical gamma function ($\Gamma(\alpha)$)	280
Equation 6.3:	Moments estimator for the shape parameter (α) of the gamma distribution	280
Equation 6.4:	Moments estimator for the scale parameter (β) of the gamma distribution	280
Equation 6.5:	Cumulative distribution function $(F(x))$ of the GEV distribution	291
-		

List of Tables

Table 1.1: Studies in which circulation/surface climate relationships are modelled as a precursor to downscaling GCM output. Table 2.2: Studies in which circulation for the studies of the studies	14
downscale GCM output.	16
Table 2.1: The fourteen basic circulation types.	34
Table 2.2: Mean annual (calendar year) and seasonal frequencies (days) of the fourteen basic circulation types calculated from the observed data, 1956-1989.Table 2.3: The eight circulation-type groups.	34 34
Table 2.4: Mean annual (calendar year) and seasonal frequencies (days) of the eight circulation-type groups calculated from the observed data, 1956-1989.Table 2.5: Actual differences (simulated minus observed (days)) and standardized	35
differences (difference / observed standard deviation (σ units)) between observed and simulated circulation-type frequencies.	35
(number of days) of the eight circulation-type groups.	35
Table 3.1: Details of the six Guadalentin stations.	77
 Table 3.2: Significant correlations (at the 5% level) identified between rainfall amount (prec.) and number of rain days (NRD), and circulation-type frequency time series. Table 3.3: High-rainfall circulation types with a higher than average proportion of wet days at every station (+) and a higher than average amount of rain per rain day at every station (*). 	77
Low-rainfall circulation types with a lower than average proportion of wet days at every station (-) and a lower than average amount of rain per rain day at every station (x).Table 3.4: The circulation-type transition matrix (<i>PROBct</i>₁₋₈) for Alcantarilla and the	78
probability of rainfall (<i>PROBPRECct</i>) calculated from the observations for each season.	79
Table 3.5: Summary of CWG circulation-type results for Alcantarilla for each season. Table 3.6: Summary of CWG rain-day results for Alcantarilla. Table 3.7: Mean change (<i>Pert.</i> minus <i>Cont.</i>) from the 100 simulations, of the mean (mean of $M_{p(NRD)}$ minus mean of $M_{c(NRD)}$) and standard deviation (mean of $\sigma_{p(NRD)}$) minus mean of $\sigma_{c(NRD)}$) of the number of rain days simulated by the <i>CWG</i> for six	80 81
stations in the Guadalentin Basin.	81
Table 5.1: Details of the eleven Agri stations. Table 5.2: Mean shoered values of F and Z (shoelets values) and remembers of days or	163
which F/Z thresholds of <4 and <6 are exceeded, calculated for four grids using observed data for 1956-1989.	163
Table 5.3: Comparison of observed (_{obs}) and HadCM2SUL simulated (_{sim}) SLP means and standard deviations (σ) calculated over 32 grid points for the three study regions for 1956-1989.	164
Table 5.4: Comparison of observed ($_{obs}$) and HadCM2SUL simulated ($_{sim}$) resultant flow (<i>F</i>) and total shear vorticity (<i>Z</i>) means and standard deviations (σ) for the three	10.
study regions for the period 1956-1989. Table 5.5: Mean values of F and Z (absolute values) and percentage of days on which F/Z thresholds of <4 and <6 are exceeded, calculated for three grids using	165
HadCM2SUL output for 1956-1989. Table 5.6: Mean values of observed and simulated resultant flow (F) and total shear vorticity (T mean of checkute values) for the period 1056 1050 word as	166
thresholds in the new circulation classification scheme.	166

Table 5.7: Percentage of days classified as UC or UA using F/Z threshold values of	
6.0, 4.0 and observed/simulated mean values (see Table 5.6) for the three study	167
Table 5.8: Mean annual and seasonal frequencies (days) of the 14 circulation types for	107
the three study regions calculated from the observed data 1956-1989	168
Table 5.9: High-rainfall circulation types with a higher than average proportion of wet	100
days at every station (+) and a higher than average amount of rain per rain day at	
every station (*) or at five stations (x) in the Guadalentin.	
Low-rainfall circulation types with a lower than average proportion of wet days at	
every station (-) and a lower than average amount of rain per rain day at every	
station (*) or at five stations (x) in the Guadalentin.	169
Table 5.10: High-rainfall circulation types with a higher than average proportion of	
at Missanello (*)	
Low-rainfall circulation types with a lower than average proportion of wet days	
at Missanello (-) and a lower than average amount of rain per rain day at	
Missanello (*).	169
Table 5.11: Differences (simulated minus observed days) between observed and	
HadCM2SUL mean circulation-type frequencies for the Guadalentin over the	
period 1956-1989.	170
Table 5.12: Differences (simulated minus observed days) between observed and	
HadCM2SUL mean circulation-type frequencies for the Agri over the period	170
1950-1989. Table 5.12: Differences (cimulated minus observed days) between observed and	170
HadCM2SUI mean circulation-type frequencies for Lessos over the	
neriod 1956-1989.	171
Table 5.14: Mean annual and seasonal frequencies (%) of the 14 circulation types for	
the Guadalentin study region calculated from the observations (maximum and	
minimum decadal values, mean for 1970-1979) and HadCM2SUL output (mean	
for 1970-1979).	172
Table 5.15: Mean annual and seasonal frequencies (%) of the 14 circulation types for	
the Agri study region calculated from the observations (maximum and minimum	
decadal values, mean for 1970-1979) and HadCM2SUL output (mean for	173
Table 5.16: Mean annual and seasonal frequencies (%) of the 14 circulation types for	175
the Lesvos study region calculated from the observations (maximum and	
minimum decadal values, mean for 1970-1979) and HadCM2SUL output (mean	
for 1970-1979).	174
Table 5.17: Differences (simulated minus observed (days)) between observed	
(1956-1989) and UKTR (Years 66 to 75) and HadCM2SUL (1956-1989)	
simulated circulation-type frequencies.	175
Table 5.18: Observed (<i>obs</i>) and simulated (<i>sim</i>) (HadCM2SUL) standard deviations of	
Guadalantin	175
Table 5 19: Observed (<i>obs</i>) and simulated (<i>sim</i>) (HadCM2SUI) standard deviations of	175
mean seasonal circulation-type frequency over the period 1956-1989 for the Agri	176
Table 5.20: Observed (<i>obs</i>) and simulated (<i>sim</i>) (HadCM2SUL) standard deviations	110
of mean seasonal circulation-type frequency over the period 1956-1989 for Lesvos.	177
Table 5.21: Observed (obs) and simulated (sim) (HadCM2SUL) coefficients of variation,	
and simulated minus observed difference, of mean seasonal circulation-type	
frequency over the period 1956-1989 for the Guadalentin.	177
Table 5.22: Observed (<i>obs</i>) and simulated (<i>sim</i>) (HadCM2SUL) coefficients of variation,	
and simulated minus observed difference, of mean seasonal circulation-type frequency over the period 1056 1080 for the Agri	170
Table 5.23: Observed (<i>obs</i>) and simulated (<i>sim</i>) (HadCM2SUI) coefficients of variation	1/0
and simulated minus observed difference. of mean seasonal circulation-type	
frequency over the period 1956-1989 for Lesvos.	178

Table 5.24: Mean seasonal changes in the frequency (number of days) of the 14 circulation types simulated by HadCM2SUL for the Guadalentin.	179
Table 5.25: Mean seasonal changes in the frequency (number of days) of the 14 circulation types simulated by HadCM2SUL for the Agri.	180
Table 5.26: Mean seasonal changes in the frequency (number of days) of the 14	
circulation types simulated by HadCM2SUL for Lesvos.	181
Table 6.1a: Summary of the new conditional weather generator simulation runs.Table 6.1b: Summary of the diagnostic statistics used to summarise output from the	317
new conditional weather generator.	318
Table 6.2: Total number of circulation-type days (No. CTs.) and rainfall occurrence	
parameters ($P_{\text{max}}, P_{\text{max}}, P_{\text{day}}$ and P_{day}) for the new conditional weather generator	
calculated for Alcantarilla 1958-1987	319
Table 6.3: The total number of circulation-type days (No. CTs.) and rainfall occurrence	
parameters (P_{uus}, P_{uud}, P_{du} and P_{dd}) for the new conditional weather generator	
calculated for Missanello 1956-1988	320
Table 6.4: The three rainfall amount categories identified for Alcantarilla	321
Table 6.5: The three rainfall amount categories identified for Missanello	321
Table 6.5. The three raman amount categories identified for Wissaneno. Table 6.6: Shape (α) and scale (β) personators for the same distribution calculated	521
for the three reinfall amount estagories at Alcentarille	277
Tolla (7). Share (a) and coole (8) personators for the common distribution coloulated	322
Table 6.7. Shape (α) and scale (p) parameters for the gamma distribution calculated	222
Tor the three rainfall amount categories at Missanello.	323
Table 0.8: Summary of results for the CVOBS _{Alc} (Alcantarilia) simulation set. Table 6.9: Summary of results for the CVOPS (Missinglet) simulation set.	324
Table 0.9: Summary of results for the $C \vee OBS_{Mis}$ (Missanello) simulation set.	320
Table 0.10: Summary of standard deviation (SD) results for the $CVOBS_{Alc}$	220
(Alcantarilia) simulation set.	328
Table 6.11: Summary of standard deviation (SD) results for the CVOBS _{Mis}	220
(Missaneiro) simulation set.	330
Table 6.12: Summary of LW (longest wet day spell) and LD (longest dry day spell)	222
results for the CVOBS _{Alc} (Alcantarilla) simulation set.	332
Table 6.13: Summary of LW (longest wet day spell) and LD (longest dry day spell)	224
results for the CVOBS _{Mis} (Missanello) simulation set.	334
Table 6.14: Summary of the extreme value analysis of annual maximum daily rainfall	220
(mm) for the CVOBS _{Alc} (Alcantarilla) simulation set.	336
Table 6.15: Summary of the extreme value analysis of annual maximum daily rainfail	226
(mm) for the CVOBS _{Mis} (Missanello) simulation set.	336
Table 6.16: Summary of results for the $CVHAD_{Alc}$ (Alcantarilla) simulation set.	337
Table 6.1/: Summary of results for the CVHAD _{Mis} (Missanello) simulation set.	339
Table 6.18: Summary of standard deviation (SD) results for the $CVHAD_{Alc}$	0.41
(Alcantarilla) simulation set.	341
Table 6.19: Summary of standard deviation (SD) results for the $CVHAD_{Mis}$	242
(Missanello) simulation set.	343
Table 6.20: Summary of LW (longest wet day spell) and LD (longest dry day spell)	245
results for the $CVHAD_{Alc}$ (Alcantarilla) simulation set.	345
Table 6.21: Summary of LW (longest wet day spell) and LD (longest dry day spell)	2.47
results for the $CVHAD_{Mis}$ (MIssanello) simulation set.	347
Table 6.22: Summary of the extreme value analysis of annual maximum daily rainfall $(1 - 1)$	240
(mm) for the CVHAD _{Alc} (Alcantarilla) simulation set.	349
Table 6.23: Summary of the extreme value analysis of annual maximum daily rainfall	240
(mm) for the CVHAD _{Mis} (Missanello) simulation set.	349
Table 6.24: Values of the NCWG parameters in the cross-validation runs for Alcantarilia.	350
Table 6.25: Values of the NCWG parameters in the cross-validation runs for Missanello.	352
1 able 6.20: Summary of results for the Alcantarilla scenario runs: number of rain days	254
(NKD_m) and total rainfall (AMI _m , mm).	354
Table 0.27. Summary of results for the Missanello scenario runs: number of rain days (NDD) and total rainfall (AMT) runs)	255
$(\mathbf{N}\mathbf{K}\mathbf{D}_m)$ and total rannall $(\mathbf{A}\mathbf{N}\mathbf{I}_m, \mathbf{I}\mathbf{n}\mathbf{m})$.	222

Table 6.28: Summary of significance testing for number of rain days (NRD _m) and	
total rainfall (AMT _m) at Alcantarilla.	356
Table 6.29: Summary of significance testing for number of rain days (NRD _m) and	
total rainfall (AMT _m) at Missanello.	357
Table 6.30: Quantile changes in rain days (NRD _m) and rainfall amount (AMT _m , mm)	
for Alcantarilla.	358
Table 6.31: Quantile changes in rain days (NRD _m) and rainfall amount (AMT _m , mm)	
for Missanello.	359
Table 6.32: Summary of LW (longest wet day spell) and LD (longest dry day spell)	
results for the Alcantarilla scenario runs.	360
Table 6.33: Summary of LW (longest wet day spell) and LD (longest dry day spell)	
results for the Missanello scenario runs.	361
Table 6.34: Summary of the extreme value analysis of annual maximum daily rainfall	
(mm) for the HAD1970 _{Alc} , HAD2030 _{Alc} and HAD2090 _{Alc} simulation sets.	362
Table 6.35: Summary of the extreme value analysis of annual maximum daily rainfall	
(mm) for the HAD1970 _{Mis} , HAD2030 _{Mis} and HAD2090 _{Mis} simulation sets.	362
Table 6.36: The percentage of annual maximum rainfall events which occur in each	
season at Alcantarilla.	363
Table 6.37: The percentage of annual maximum rainfall events which occur in each	
season at Missanello.	363
Table 6.38: Summary of HadCM2SUL changes in mean seasonal rainfall for the	
land and sea grid boxes closest to the Guadalentin.	364
Table 6.39: Summary of HadCM2SUL changes in mean seasonal rainfall for the	
land and sea grid boxes closest to the Agri.	364
Table 7.1: Summary of results for the Guadalentin and Agri study areas	421
Table 7.2: Mean values of the strength of flow (F) and total shear vorticity (Z)	121
parameters for the Guadalentin autumn composites for the E and SE-types shown	
in Figures 7.1 and 7.2	423
Table 7.3: Observed daily rainfall (mm) at 22 Guadalentin stations for the extreme	120
autumn events shown in Figures 7.4 and 7.5.	424
Table 7.4: Observed daily rainfall (mm) at 11 Agri stations for the extreme winter	
events shown in Figures 7.7 and 7.8	425
Table 7.5: Observed daily rainfall (mm) at 22 Guadalentin stations for the extreme	
summer events shown in Figures 7.11 and 7.12.	426
Table 7.6: Inter-station correlations for rainfall amount for six stations in the	
Guadalentin calculated using each station as a baseline in turn.	427
Table 7.7: Inter-station correlations for rainfall amount for eleven stations in the	/
Agri calculated using each station as a baseline in turn.	427
Table 7.8: Advantages and disadvantages of the circulation-type approach to	,
downscaling developed in Chapters 5 and 6	428
	0

List of Figures

Figure 1.1: Location of the Guadalentin (G), Agri (A) and Lesvos (L) study regions.	18
Figure 2.1: Mean seasonal SLP calculated from NMC CD-ROM data for the period 1956-1989	36
Figure 2.2: Grid used in the automated circulation-typing scheme	37
Figure 2.2. One used in the automated enculation-typing scheme.	30
Figure 2.4. Observed and simulated monthly frequencies of the sight simulation type	50
Figure 2.4. Observed and simulated montility frequencies of the eight circulation-type	20
groups.	39
Figure 2.5: Seasonal mean SLP (hPa) for the eight circulation-type groups calculated	
from observed data, 1956-1989.	40
Figure 2.6: Seasonal SLP anomalies (hPa) for the eight circulation-type groups	
calculated from observed data, 1956-1989.	44
Figure 2.7: (a) Seasonal mean SLP (hPa) calculated from UKTR control-run model output;	
(b) UKTR control-run minus observed differences in seasonal mean SLP (hPa).	48
Figure 2.8: Seasonal SLP anomalies (hPa) for the eight circulation-type groups calculated	
from UKTR control-run model output.	49
Figure 2.9: UKTR perturbed-run minus control-run differences in seasonal mean	
SLP (hPa)	53
Figure 2.10: Seasonal SLP anomalies (hPa) for the eight circulation-type groups	00
calculated from LIKTR nerturbed-run model output	54
calculated from OKTK perturbed-full model output.	54
Figure 2.1: Moon annual rainfall (mm) for 22 stations in the Guadalantin Basin	
1059 1097 and the location of the sin stations used in this shorter.	01
1958-1987 and the location of the six stations used in this chapter.	82
Figure 3.2: Map of the Guadalentin Basin region.	83
Figure 3.3: Seasonal cycle of mean monthly rainfall (mm) for the wettest	
(solid line, Alhama de Murcia) and driest (dashed line, Aguilas) of the six	
Guadalentin Basin stations.	84
Figure 3.4: Annual and seasonal standardised anomaly indices of rainfall for the	
Guadalentin Basin (based on six stations).	85
Figure 3.5: Annual and seasonal standardised anomaly indices of rainfall amount	
for the Iberian Peninsula (based on 36 stations).	87
Figure 3.6: The mean annual frequency (shown as the percentage of all days) of the	
eight circulation-type groups (solid bars): and their contribution to annual rainfall	
(shown as the percentage of total annual rainfall) for six stations in the Guadalentin	
Basin (open bars)	88
Figure 3.7: The mean seasonal frequency (shown as the percentage of all days) of the	00
sight airculation turns groups (solid hers); and their contribution to sees and rainfall	
eight circulation-type groups (solid bars); and their contribution to seasonal rainfail	
(snown as the percentage of total seasonal rainfall) for six stations in the Guadalentin	00
Basin (open bars).	89
Figure 3.8: Standardised ratios $PROP_{ct}/PROP_{tot}$ for each season for six stations in the	
Guadalentin Basin.	90
Figure 3.9: Standardised ratios $PREC_{ct}/PREC_{tot}$ for each season for six stations in the	
Guadalentin Basin.	91
Figure 3.10: Proportion of wet days at Alcantarilla for each circulation type and each	
season calculated for overlapping decades from the observations.	92
Figure 4.1: Grid-point rain-day data from UKTR for the land square nearest	
to the Guadalentin Basin.	106
Figure 4.2: Standardized ratios. (a) <i>PROP</i> / <i>PROP</i> and (b) <i>PREC</i> / <i>PREC</i> calculated	
from UKTR control run (solid squares) and perturbed run (open squares) output.	107

Figure 5.1: Global mean temperature time series (°C) for HadCM2CON, HadCM2GHG	100
and HadCM2SUL.	182
Figure 5.2: Grids used for the three study regions in the new typing scheme.	183
Figure 5.3: Mean annual rainfall (mm) and the location of the 11 Agri stations. $\vec{E} = 5.4$ M $\vec{E} = 5.4$ M	184
Figure 5.4: Map of the Agri Basin.	185
A sei Desir	100
Agri Basin.	180
(h) altitude (m) for 11 stations in the A ari Desin	107
(b) annual (iii) for 11 stations in the Agri Basin. Figure 5.7: Scatter plot of mean number of rain days versus (a) longitude (°E) and	10/
(b) altitude (m) for 11 stations in the Agri Basin	199
(b) difficute (iii) for 11 stations in the Agri Dashi. Figure 5.8: Scatter plot of altitude (m) vorsus longitude ($^{\circ}W$) for six stations in the	100
Guadalentin Basin	180
Figure 5.9: Scatter plot of mean annual rainfall (mm) versus (a) longitude (°W) and	107
(b) altitude (m) for six stations in the Guadalentin Basin	190
Figure 5 10: Scatter plot of mean number of rain days versus (a) longitude (°W) and	170
(b) altitude (m) for six stations in the Guadalentin Basin	191
Figure 5 11: Scatter plot of mean annual rainfall (mm) versus (a) longitude (°W) and	171
(b) latitude (°N) for 22 stations in the Guadalentin Basin	192
Figure 5.12: Seasonal cycle of mean monthly rainfall (mm) for 11 stations in the	1/2
Agri Basin.	193
Figure 5.13: Annual and seasonal standardised anomaly indices of rainfall amount for	
11 stations in the Agri Basin.	194
Figure 5.14: Mean seasonal rainfall totals (mm) for 1951-1960 (open bars) and 1981-1990	
for Pisticci (hatched bars) in the Agri Basin.	195
Figure 5.15: Observed monthly frequencies of the 14 circulation types calculated for	
the HadCM2-GRID _{1 88w} -6 (solid line), HadCM2-GRID _{1 88w} -4 (dot-dash line),	
HadCM2-GRID _{5.63w} -4 (dashed line) and UKTR-GRID _{3.75w} -6 (dotted line) grids.	196
Figure 5.16: (a) Seasonal mean SLP (hPa) calculated from HadCM2SUL output for	
1956-1989. (b) Seasonal mean SLP (hPa) calculated from the observed data for	
1956-1989.	197
Figure 5.17: HadCM2SUL minus observed differences in seasonal mean SLP (hPa) for	
1956-1989.	199
Figure 5.18: Frequency histograms of seasonal observed and HadCM2SUL-simulated	
F values for the Agri, 1956-1989.	200
Figure 5.19: Frequency histograms of seasonal observed and HadCM2SUL-simulated	
Z values for the Agri, 1956-1989.	201
Figure 5.20: Scatter plots of seasonal observed and HadCM2SUL-simulated F and Z	
values for the Agri, 1956-1989.	202
Figure 5.21: Observed (solid line) and HadCM2SUL-simulated (dashed line) monthly	
frequencies of (a) the six non-directional circulation types and (b) the eight	
directional circulation types for the Guadalentin, Agri and Lesvos, 1956-1989.	203
Figure 5.22: Winter SLP (hPa) anomalies for (a) the six non-directional circulation	
types and (b) the eight directional circulation types for the Guadalentin, calculated	.
from observed data, 1956-1989.	205
Figure 5.23: Spring SLP (hPa) anomalies for (a) the six non-directional circulation	
types and (b) the eight directional circulation types for the Guadalentin,	207
Calculated from observed data, 1950-1989.	207
Figure 5.24: Summer SLP (nPa) anomalies for (a) the six non-directional circulation	
types and (b) the eight directional circulation types for the Guadalentin, calculated	200
HOIH ODSELVEU UALA, 1930-1989. Figure 5 25: Autumn SI D (hDa) anomalica for (a) the six non directional size vehicle.	209
rigure 3.23. Autumn SLF (nr a) anomalies for (a) the Six non-diffectional circulation types and (b) the eight directional circulation types for the Cycololantin colorited	
types and (b) me eight unectional circulation types for the Guadalentin, calculated	211
110111 005c1 vcu uala, 1930-1989.	411

Figure 5.26: Winter mean SLP (hPa) for (a) the six non-directional circulation types and (b) the eight directional circulation types for the Guadalentin, calculated from observed data, 1956-1989.	213
Figure 5.27: Spring mean SLP (hPa) for (a) the six non-directional circulation types and (b) the eight directional circulation types for the Guadalentin, calculated from observed data 1956-1989	215
Figure 5.28: Summer mean SLP (hPa) for (a) the six non-directional circulation types and (b) the eight directional circulation types for the Guadalentin, calculated from	213
observed data, 1956-1989. Figure 5.29: Autumn mean SLP (hPa) for (a) the six non-directional circulation types and (b) the eight directional circulation types for the Guadalentin, calculated from	217
observed data, 1956-1989. Figure 5 20: Seasonal SLP (hPa) anomalies for the four combined circulation type groups	219
for the Guadalentin, calculated from observed data, 1956-1989. Figure 5.31: Seasonal mean SLP (hPa) for the four combined circulation-type groups	221
for the Guadalentin, calculated from observed data, 1956-1989. Figure 5.32: Seasonal SLP (hPa) anomalies for the six non-directional circulation types	223
for the Agri, calculated from observed data, 1956-1989. Figure 5.33: Seasonal mean SLP (hPa) for the six non-directional circulation types for	225
the Agri, calculated from observed data, 1956-1989.	229
Figure 5.34: Seasonal SLP (hPa) anomalies for the eight directional circulation types for the Agri, calculated from observed data, 1956-1989.	233
the Agri, calculated from observed data, 1956-1989.	237
14 circulation types (solid bars); and their contribution to annual rainfall (shown	241
Figure 5.37: The mean seasonal frequency (shown as the percentage of all days) of the 14 circulation types (solid bars); and their contribution to seasonal rainfall (shown	241
as the percentage of total seasonal rainfall) for six stations in the Guadalentin Basin. Figure 5.38: Annual standardised ratios $PROP_{ct}/PROP_{tot}$ for six stations in the	242
Guadalentin Basin. Figure 5 39: Seasonal standardised ratios <i>PROP</i> / <i>PROP</i> , for six stations in the	244
Guadalentin Basin.	245
Figure 5.40: Annual standardised ratios $PREC_{ct}/PREC_{tot}$ for six stations in the Guadalentin Basin.	247
Figure 5.41: Seasonal standardised ratios $PREC_{ct}/PREC_{tot}$ for six stations in the Guadalentin Basin	248
Figure 5.42: The mean annual frequency (shown as the percentage of all days) of the	210
as the percentage of total annual rainfall) for 11 stations in the Agri Basin. Figure 5.43: The mean seasonal frequency (shown as the percentage of all days) of the	250
14 circulation types (solid bars); and their contribution to seasonal rainfall (shown as the percentage of total seasonal rainfall) for 11 stations in the Agri Basin. Figure 5.44: Appual standardised ratios <i>PROP</i> / <i>PROP</i> for 11 stations in the Agri Basin	251
Figure 5.45: Annual standardised ratios $PREC_{tr}/PREC_{tot}$ for 11 stations in the Agri Basin. Figure 5.46: Annual standardised ratios $PREC_{tr}/PREC_{tot}$ for the SE (triangles) and W	255 255
(squares) circulation types for 11 stations in the Agri Basin plotted against longitude (°E).	257
Figure 5.47: Annual standardised ratios $PREC_{ct}/PREC_{tot}$ for the SE (triangles) and W (squares) circulation types for six stations in the Guadalentin Basin plotted against longitude (°W)	257
Figure 5.48: Annual standardised ratios <i>PROP_{ct}/PROP_{tot}</i> for Missanello for 1956-1988, 1956-1968, 1969-1978 and 1979-1988.	257
Figure 5.49: Annual standardised ratios <i>PREC_{ct}/PREC_{tot}</i> for Missanello for 1956-1988, 1956-1968, 1969-1978 and 1979-1988.	258

Figure 5.50: Seasonal standardised ratios <i>PROP_{ct}/PROP_{tot}</i> for Missanello for 1956-1988, 1956-1968, 1969-1978 and 1979-1988	259
Figure 5.51: Seasonal standardised ratios $PREC_{ct}/PREC_{tot}$ for Missanello for 1956-1988,	200
1950-1908, 1909-1978 and 1979-1988. Figure 5.52: Appual standardised ratios PROP /PROP for Moliterno Missanallo and	201
Nova Siri Scalo	263
Figure 5.53: Annual standardised ratios <i>PREC_{ct}/PREC_{tat}</i> for Moliterno, Missanello and	203
Nova Siri Scalo.	263
Figure 5.54: Seasonal mean SLP (hPa) calculated from HadCM2SUL output, 1970-1979.	264
Figure 5.55: Seasonal mean SLP (hPa) calculated from HadCM2SUL output, 2030-2039.	265
Figure 5.56: Seasonal mean SLP (hPa) calculated from HadCM2SUL output, 2090-2099.	266
Figure 5.57: HadCM2SUL differences in seasonal mean SLP (hPa), 2030-2039 minus	
1970-1979.	267
Figure 5.58: HadCM2SUL differences in seasonal mean SLP (hPa), 2090-2099 minus 1970-1979.	268
Figure 5.59: Mean monthly frequencies of the 14 circulation types in the Guadalentin	
Basin calculated from HadCM2SUL output for 1970-1979 (solid line), 2030-2039	
(dashed line) and 2090-2099 (dotted line).	269
Figure 5.60: Mean monthly frequencies of the 14 circulation types in the Agri Basin	
calculated from HadCM2SUL output for 1970-1979 (solid line), 2030-2039	
(dashed line) and 2090-2099 (dotted line).	270
Figure 5.61: Mean monthly frequencies of the 14 circulation types for Lesvos calculated	
from HadCM2SUL output for 1970-1979 (solid line), 2030-2039 (dashed line) and	
2090-2099 (dotted line).	271
Figure 6.1: Observed and theoretical daily rainfall distribution functions for	265
Alcantarilla in winter.	305
Alcontarillo in spring	367
Figure 6.3: Observed and theoretical daily rainfall distribution functions for	507
Alcentarille in summer	360
Figure 6.4: Observed and theoretical daily rainfall distribution functions for	509
Alcantarilla in autumn	371
Figure 6.5: Observed and theoretical daily rainfall distribution functions for	571
Missanello in winter.	373
Figure 6.6: Observed and theoretical daily rainfall distribution functions for	0,0
Missanello in spring.	375
Figure 6.7: Observed and theoretical daily rainfall distribution functions for	
Missanello in summer.	377
Figure 6.8: Observed and theoretical daily rainfall distribution functions for	
Missanello in autumn.	379
Figure 6.9: Frequency (the percentage of 1000 runs) distributions for the	
Alcantarilla scenario runs OBS1970, HAD1970, HAD2030 and HAD2090.	381
Figure 6.10: Frequency (the percentage of 1000 runs) distributions for the	
Missanello scenario runs OBS1970, HAD1970, HAD2030 and HAD2090.	385
Figure 7.1: SLP composites (hPa) for wet and dry E and SE-type autumn days in the	100
	429
Figure 7.2: SLP composites (nPa) for E and SE-type autumn days in the Guadalentin	420
which are wet at 1-3, 10-12 and 20+ stations.	430
rigure 7.5. 500 nPa geopolential neight composites for wet and dry E and SE-type	120
autumn days in the Outdatenum. Figure 7.4. SLD and 500 hDa geopotential bright charts (hDa) for two selected E and	432
SE-type high-rainfall events in the Guadalantin	122
Figure 7.5: SI P charts (hPa) for eight selected autumn high-rainfall events in the	-55
Guadalentin.	434
	-

Figure 7.6: 500 hPa geopotential height charts for eight selected autumn high-rainfall events in the Guadalentin	436
Figure 7.7: SI P charts (hPa) for seven selected winter high-rainfall events in the Δ gri	438
Figure 7.8: 500 hPa geopotential height charts for seven selected winter high-rainfall	-50
events in the Agri.	440
Figure 7.9: The number of stations in the Guadalentin where daily rainfall is greater than the 95 th percentile value plotted against the percentage of all days with	
extreme rainfall.	442
Figure 7.10: The number of stations in the Agri which are wet on a particular	
circulation-type day plotted against the percentage of all wet type days.	443
Figure 7.11: SLP charts (hPa) for eight selected summer high-rainfall events in the	
Guadalentin.	444
Figure 7.12: 500 hPa geopotential height charts for eight selected summer high-rainfall	
events in the Guadalentin.	446
Figure 7.13: Observed versus NCWG-simulated values for (a) the mean monthly	
number of rain days and (b) mean monthly rainfall (mm), for 22 stations in the	
Guadalentin.	448
Figure 7.14: Observed versus NCWG-simulated values for (a) the mean monthly	
number of rain days and (b) mean monthly rainfall (mm), for 15 stations in the Agri.	450
Figure 7.15: Observed versus NCWG-simulated joint probabilities (P00 = the joint probability of it being dry at both stations $P11 =$ the joint probability of it being	
wet at both stations) for 22 stations in the Guadalentin	452
Figure 7.16: Observed versus NCWG-simulated joint probabilities (P00 = the joint	732
probability of it being dry at both stations, $PII =$ the joint probability of it being	
wet at both stations) for 15 stations in the Agri.	453
Figure 7.17: Inter-station correlations plotted against inter-station distance (km) for rainfall amount at six stations in the Guadalentin.	454
Figure 7.18: Inter-station correlations plotted against inter-station distance (km) for	
rainfall amount at 11 stations in the Agri.	455
C	