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Abstract 

As part of the European Union-funded STARDEX project, a systematic and 

rigorous intercomparison was undertaken of 22 statistical downscaling methods, 

focusing on 10 indices of extreme temperature and precipitation.  A case-study 

approach was taken, encompassing six European regions and Europe as a whole (the 

latter utilising a new data set of almost 500 daily station time series for the period 

1958-2000).  Before the STARDEX statistical downscaling methods were applied to 

output from global climate models, their performance was assessed using reanalysis 

data, as described here.  The use of common data sets, calibration/validation periods 
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and test statistics provides a rigorous experimental framework for answering such 

well-defined questions as: is there any systematic difference in performance of the 

methods between different seasons, indices and regions; or between direct methods in 

which the seasonal indices of extremes are downscaled and indirect methods in which 

daily time series are generated and the seasonal indices then calculated from these.  

The extent to which these questions can be addressed is limited by the variation in 

skill from method-to-method, index-to-index, season-to-season  and station-to-station, 

with the latter dominating.  This variability means that it is not possible to identify a 

consistently superior method in the majority of cases.  Hence a major 

recommendation is to use a range of the better statistical downscaling methods for the 

construction of scenarios of extremes, just as it is recommended good practice to use a 

range of global and regional climate models in order to reflect a wider range of the 

uncertainties.  Thus downscaling uncertainties should always be considered, alongside 

other uncertainties including choice of GCM and impact model. 

 
1.  Introduction 
 

Climate scenarios drive all top-down climate impact assessment studies.  The 

value of such studies is, therefore, limited by the availability of appropriate and 

reliable climate scenarios.  Thus there is a growing demand for scenarios with higher 

and higher spatial and temporal resolutions for increasingly specialised applications 

within many different socio-economic sectors, including agriculture, forestry, water 

resources, energy, transport, tourism and public health.  Recent events, such as the 

August 2002 floods in Central and Eastern Europe and the severe heatwaves 

experienced across many parts of Europe in August 2003, graphically illustrate the 

losses of life and high economic damages which can be caused by extreme weather 

events.  According to estimates by Munich Re, for example, the August 2002 floods 
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were responsible for economic losses of 21.1 billion Euro and insured losses of 3.4 

billion Euro, together with over 100 fatalities (Munich Re, 2002).  Events such as this 

also demonstrate the need for scenarios of weather extremes as well as mean climate.  

At the same time there is a need to quantify and, where possible, reduce the 

uncertainties associated with climate scenarios (Karl et al., 1999; Beersma et al., 

2000; Cramer et al., 2000; Meehl et al., 2000). 

The mismatch in scales between model resolution and the increasingly small 

scales required by impact analysts can be overcome by downscaling, i.e., ‘sensibly 

projecting the large-scale information on the regional scale’  (von Storch et al., 1993).  

Two major approaches to downscaling, statistical (based on the application of 

relationships identified in the observed climate, between the large-scale and smaller-

scale, to climate model output) and dynamical (using physically-based Regional 

Climate Models (RCMs)) were developed and tested 5-10 years ago by a number of 

different research groups, and shown to offer good potential for the construction of 

high-resolution scenarios (Hewitson and Crane, 1996; Wilby et al., 1998; Giorgi and 

Mearns, 1999; Mearns et al., 1999; Murphy, 1999; Zorita and von Storch, 1999; 

Murphy, 2000).  In both cases, however, the focus during this period was on changes 

in mean climate rather than on daily extremes, leaving considerable scope for further 

development and refinement of the methodologies.  This was the major focus of three 

European Union funded projects running from 2001/2002 to 2004/2005: MICE, 

PRUDENCE and STARDEX (Christensen et al., 2005a).  While PRUDENCE 

focused on the development and use of RCMs (Christensen et al., 2005b) and MICE 

on the use of GCM and RCM output in impacts studies (Hanson et al., 2005), 

STARDEX focused on the development and assessment of improved statistical 
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downscaling methods for Europe with emphasis on the ability to construct scenarios 

of extremes. 

The generic advantages and disadvantages of dynamical and statistical 

downscaling for the construction of scenarios of extremes are summarised in Tables 1 

and 2 respectively.  For some climate impact study applications, statistical 

downscaling may provide a more appropriate approach than dynamical downscaling, 

in particular, where station or point values of extremes are required or when 

computational resources are limited. Statistical downscaling methodologies can also 

provide information about the performance of GCMs and RCMs with respect to their 

ability to reproduce large-scale circulation and other predictor variables together with 

their relationships with surface climate (the predictands in statistical downscaling).  

Understanding and quantifying predictor/predictand relationships in observed data 

sets, an important step in statistical downscaling, can help to identify potential sources 

of climate model bias and increase confidence in simulated changes of surface 

climate. Thus many aspects of the work undertaken in the STARDEX project inform 

and complement work undertaken in PRUDENCE. 

More than 20 different statistical downscaling methods (Section 3.1) were 

developed and evaluated in the STARDEX project using daily temperature and 

precipitation time series from six European case-study regions (Iberian Peninsula 

(Western Iberia and Southeast Spain), Greece, the Alps, the German Rhine catchment, 

UK (Northwest UK and Southeast England) and Northern Italy (Emilia Romagna)) 

and for Europe as a whole (Section 2.1).  In the latter case, a new dataset of almost 

500 daily station records was used.  For model calibration, predictor variables were 

constructed from reanalysis data (Section 2.2).  The focus was on 10 indices of 

extremes describing frequency, magnitude and persistence characteristics of extreme 
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temperature and precipitation events (Section 2.3).  The need to work with reasonably 

large sample sizes means that ‘moderate’  extremes are considered, e.g., 90th percentile 

values rather than 95th or 99th.    

In order to ensure a fair and consistent intercomparison and evaluation of 

performance, a standard verification procedure was used, including standard 

calibration/validation periods and performance statistics (Section 3.2).   

The validation analyses presented in Section 4 address well-defined questions 

including: is there any systematic difference in performance of the methods between 

different seasons, indices and regions; or between direct methods in which the 

seasonal indices of extremes are downscaled and indirect methods in which daily time 

series are generated and the seasonal indices then calculated from these.  Finally, in 

Section 5, the relative confidence in the different statistical downscaling methods is 

summarised and recommendations made concerning their use for climate scenario 

construction and further development.  

 

2.  The STARDEX Datasets  

2.1  Observed station data 

A European-wide data set of observed daily maximum and minimum 

temperature and precipitation for 495 stations for the period 1958-2000 was 

developed by Fundación para la Investigación del Clima (FIC) for use in the 

STARDEX project (FIC, 2005).  The dataset has good spatial coverage over most of 

Europe (Figure 1).  Station data were provided by the European Climate Assessment 

(ECA) project (http://eca.knmi.nl) and by national meteorological services from 14 

European countries.  Quality control analyses of the daily temperature and 

precipitation time series values were undertaken by FIC in order to identify erroneous, 
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e.g., negative rainfall or Tmin>Tmax,  or spatially incoherent values (FIC, 2005).  An 

iterative homogenisation procedure based on the approach of Moberg and 

Alexandersson (1997) was also applied to the mean annual maximum and minimum 

temperature series.  Due to the relatively sparse distribution of the stations, detected 

inhomogeneities were not corrected, but flagged as suspect.  In addition to the quality 

control work undertaken by FIC, considerable work on quality control and 

homogenisation was previously undertaken by the ECA on all temperature and 

precipitation series in their data set (Wijngaard et al., 2003), including those 

subsequently incorporated in the STARDEX dataset. 

The European-wide data set was complemented by higher-density datasets 

produced by the relevant STARDEX partner for each of the six case-study regions 

(Table 3).  For each of these regions, a subset of stations drawn from the FIC 

European-wide data set was also identified and used, for example, to intercompare 

locally- and European-wide developed downscaling methods (see Section 3.2).   

 

2.2  Reanalysis data 

 The predictor variables, including sea level pressure (SLP), 500 hPa 

geopotential height, 1000-500 hPa thickness field and relative/specific humidity and 

temperature at different pressure levels, used to calibrate and validate the STARDEX 

statistical downscaling models (Table 4) were derived from the National Centers for 

Environmental Prediction (NCEP) reanalyses (Kalnay et al., 1996).  A number of 

studies have evaluated the reliability of these variables over Europe and the North 

Atlantic.  Reid et al. (2001), for example, showed that mean SLP is generally well 

simulated over the domain of interest to STARDEX, although large differences 

compared with gridded and station data sets do occur outside this domain, over 
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Greenland and the Barents Sea.  Other studies have compared NCEP upper-air 

temperatures with satellite observations (Basist and Chelliah, 1997; Shah and Rind, 

1998), and shown good agreement.  However, a global analysis indicates that, prior to 

1979, NCEP upper-air temperatures do not agree with radiosonde and satellite data 

(Santer et al., 1999).  Despite these issues, the NCEP reanalysis data set was 

considered the most appropriate for use in STARDEX, having the major advantages 

of comparable spatial resolution to the current generation of GCMs and spanning the 

40-year period for which suitable daily observed data were available (see Section 2.1).  

Although a comparably long reanalysis data set (ERA-40) is now available from the 

European Centre for Medium-range Weather Forecasts, at the start of the STARDEX 

project, only 15 years of reanalysis data (ERA-15) were available from this source.     

 Since some NCEP variables are provided on a Gaussian grid, rather than a 

regular latitude/longitude grid, natural neighbour interpolation, a sophisticated 

weighted average method (as implemented in the Natgrid software routine, part of the 

NCAR software library, see 

http://ngwww.ucar.edu/ngdoc/ng4.3/ngmath/natgrid/intro.html), was used to 

interpolate all potential predictor variables to a standard 2.5˚ latitude by 2.5˚ longitude 

grid. 

 

2.3 Indices of extremes    

A set of 10 core indices of extremes (six for precipitation and four for 

temperature) was identified for use in the STARDEX project (Table 5).  Many of the 

indices are based on thresholds defined using percentile values rather than fixed 

values.  This makes them transferable across the range of climatic regimes 

experienced across Europe.  However, such ‘ fixed-bin’  approaches do have some 



 8 

limitations, e.g., when exploring the contribution of extreme events to overall trends 

(Michaels et al., 2004).  In order to ensure reasonable sample sizes and to avoid major 

difficulties in trend analysis (Frei and Schär, 2001), the focus is on ‘moderate’  

extremes, i.e., 90th and 10th percentile values, rather than the far tails of the 

distributions.  The core set was carefully chosen to encompass magnitude (e.g., Tmax 

90th percentile), frequency (e.g., number of days with precipitation exceeding the 90th 

percentile) and persistence (e.g., longest dry spell length and heat wave duration) of 

extremes.  A software package for calculating these indices (and over 40 more), 

together with documentation providing a detailed definition of each index, is available 

from the STARDEX web site: http://www.cru.uea.ac.uk/cru/projects/stardex/.  Core 

indices calculated for the FIC European-wide dataset (Section 2.1) can also be 

downloaded from this site.  

It should be noted that many other definitions of extremes are available.  Those 

used here are, however, highly appropriate for the STARDEX purposes of developing 

and evaluating statistical downscaling methods for the construction of scenarios of 

extremes.  As well as being rather moderate, they are defined primarily from a 

climatic perspective rather than an impacts perspective.  This is not to say that they 

are irrelevant for impacts purposes.  The greatest 5-day total rainfall, for example, is 

likely to be relevant to flooding episodes on smaller catchments, although a longer 

aggregation period may be more appropriate for larger catchments. 

 

3.  The STARDEX Exper imental Approach 

3.1  The STARDEX statistical downscaling methods 
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A range of the various possible approaches to statistical downscaling (Wilby 

et al., 1998; Zorita and von Storch, 1999) was developed and evaluated by 

STARDEX partners: 

- multiple linear regression (MLR); 

- canonical correlation analysis (CCA); 

- artificial neural networks (ANN); 

- multivariate autoregressive (MAR) modelling; 

- conditional re-sampling (CR) and other analogue-based methods; 

- methods based on a ‘potential precipitation circulation index’  (PPCI) 

and ‘critical circulation patterns’ ; 

- a conditional weather generator (CWG); and, 

- local scaling (LOC, LOCI) and dynamical scaling (DYN, DYNI). 

In all, 22 different methods were developed and tested by the 12 STARDEX 

partners.  These are summarised in Table 4, which lists the predictors and predictands 

used and provides a very brief outline of each method.  A standard naming 

nomenclature is used for these methods: the first component is the STARDEX 

institution which developed the method, while the second is the technique, followed 

by, where appropriate, the sub-technique (e.g., KCL_ANN_RBF is the Radial Basis 

Function Artificial Neural Network technique developed by Kings College London).  

The methods can be divided into ‘ indirect’  methods, where daily time series are 

downscaled and indices of extremes (Table 5) calculated, and ‘direct’  methods where 

the indices of extremes are employed as predictands.  The downscaling methods 
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themselves are described in detail in STARDEX Deliverable D15, while the 

methodologies used for selecting potential predictor variables are described in 

STARDEX Deliverable D10 (both available from 

http://www.cru.uea.ac.uk/cru/projects/stardex/). 

The development of the STARDEX statistical downscaling methods is 

underpinned by detailed analyses of observed data undertaken in the earlier stages of 

the project, including analyses of trends in the indices of extremes (see STARDEX 

Deliverable D9 available from http://www.cru.uea.ac.uk/cru/projects/stardex/ and 

Schmidli and Frei, 2005) and exploration of relationships between these indices and 

their trends, and potential predictor variables (Haylock and Goodess, 2004; Maheras 

et al., 2004).   

Good predictor variables are defined in STARDEX Deliverable D10 as: 

- having strong, robust and physically-meaningful relationships with the 

predictand; 

- having stable and stationary relationships with the predictand; 

- explaining low-frequency variability and trends; 

- being at an appropriate spatial scale (in terms of both physical processes 

and GCM performance); and 

- well reproduced by GCMs. 

A number of different methods were used to select the most appropriate 

predictor variables for use in each STARDEX study region including: stepwise 

multiple regression, compositing, correlation analysis, principal components analysis 

and CCA.  These more traditional methods proved more useful than novel methods 

such as a genetic algorithm (Holland, 1975) approach (see STARDEX Deliverable 

D10 for further discussion on predictor selection). 
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 The STARDEX statistical downscaling methods (Table 4) range from 

standard linear regression methods (MLR (Wilks, 1995; Draper and Smith, 1981), 

used by four STARDEX groups), through methods focusing on spatial patterns (CCA 

(Barnett and Preisendorfer, 1987; von Storch et al., 1993; Gyalistras et al., 1994), also 

used by four STARDEX groups), to non-linear neural network methods (ANN) and 

other less-widely used approaches including some analogue-based methods.  Three 

STARDEX groups evaluated a number of different ANN approaches (Table 4).  

Kings College London (KCL), for example, worked with Radial Basis Function 

(RBF) (Broomhead and Lowe, 1988; Moody and Darken, 1989) ANNs and Multi 

Layer Perceptron (MLP) models (Rumelhart and McClelland, 1986) in order to 

simulate multi-site precipitation (Harpham and Wilby, 2004; 2005).  Prior to 

STARDEX, there had been relatively few examples of ANNs used for downscaling 

and even fewer applications to downscaling multi-site precipitation extremes 

(McGinnis, 1997; Cavazos, 1999; Crane and Hewitson, 1998; Zorita and von Storch, 

1999; Cavazos, 2000; Schoof and Pryor, 2001; Olsson et al., 2001; Trigo and 

Palutikof, 2001).  Thus the STARDEX study provides the most systematic evaluation 

of ANN methods for the latter purpose to date.   

The first ANN approach evaluated in STARDEX is MLP models.  These 

models have a single hidden layer, and the non-linear transformation of the linear 

sums is catered for by the activation functions in the middle and output layer 

(Harpham and Wilby, 2004; 2005).  The goal in training an MLP model is to find the 

values of the weight vectors that minimise the error between that network output and 

the desired target value.  The most common method for training an MLP network is 

the error back-propagation algorithm (Rumelhart and McClelland, 1986) and this is 
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the approach used in STARDEX by KCL (Harpham and Wilby, 2004; 2005) and the 

Aristotle University of Thessaloniki (AUTH). 

The RBF network developed by KCL consists of two layers (Harpham and 

Wigley, 2004; 2005).  In the first layer, the basis functions, which provide the non-

linear behaviour (Bishop, 1995), are determined by unsupervised training using K-

means clustering of the predictor input vector alone.  Singular Value Decomposition 

is then used to estimate the second layer weight vectors.  This distinction between the 

first and second layer weights is considered to be a particular advantage of the RBF 

approach since suitable parameters can be chosen for the hidden nodes without having 

to perform a full non-linear optimisation of the network (Harpham and Wilby, 2005). 

For the first study region (see Section 3.2) the MLP and RBF results from 

KCL were very similar, so for the second study region KCL substituted the MLP with 

a Genetic Algorithm (GA) RBF to provide further comparison. The RBF networks 

training algorithm determines the network structure either by a priori or a posteriori 

knowledge. Networks configured in this manner are not guaranteed to have an 

optimal structure and may result in under-fitting or over-fitting of the training data 

resulting in poor generalisation ability. Only by adopting a trial-and-error approach 

can this be corrected. The GA-RBF addresses the ad hoc approach applied to 

configuring the standard RBF network structure by using a genetic algorithm to 

optimise the network structure/parameters. The GA-RBF configuration used in 

STARDEX (Harpham, 2004), together with optimising the basis centres (including 

the number of basis centres) and their associated width, introduces the optimisation of 

the basis function type at a particular node. 

A Bayesian approach to MLP modelling was taken by the University of East 

Anglia (UEA) (Cawley et al., 2003) in order to avoid over-fitting the training data 
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(Buntine and Weigend, 1991; Mackay, 1992a,b).  In addition to using the usual sum-

of-squares (SSE) error metric in the training process, UEA also tested a 

Bernoulli/Gamma misfit term (Williams, 1998), which does not make the implicit 

assumption of a Gaussian noise process.  Reflecting the Bayesian approach, outputs of 

a committee of 20 networks were combined to create the daily series, using Monte-

Carlo (MC) simulation in one version of the model (Table 4).  

The ability to model multi-site time series while retaining the spatial 

correlation of the observed series is one potential advantage of the ANN approach to 

statistical downscaling (Harpham and Wilby, 2004; 2005).  This is also an advantage 

of the multivariate autoregressive (MAR) model developed by the University of 

Stuttgart (USTUTT) (Table 4).  This approach is based on a modified version of the 

space-time model described by Bárdossy and Plate (1992).  The important 

development within the STARDEX project is that the spatial covariance structure of 

the variable concerned (temperature or precipitation) is taken into account and 

maintained in downscaling.  The model can also be used to generate areal values of 

precipitation and temperature on grids using the spatial structure from observation 

locations, which can then be used in hydrological impacts studies.  The model 

parameters are conditioned on circulation patterns defined using a fuzzy rule-based 

classification scheme (Bárdossy et al., 1995, 2002) and moisture flux is also taken 

into account in downscaling precipitation. 

Another group of STARDEX approaches (Table 4) is based on analogue or re-

sampling approaches (Palutikof et al., 2002).  The ADGB_HYPER4 method, for 

example, is a novel approach based on pre-selection of ‘potentially extreme days’  and 

then random re-sampling in the four-dimensional hyper-space of the predictor 

variable principal components.  Only days with extreme precipitation are downscaled, 
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not full daily time series.  A two-step analogue approach is also taken by FIC in the 

FIC_ANAL2 method (Table 4).  In this case, a set of analogues (‘n’  most similar 

days) is selected in the first step from a reference dataset based on similarity of the 

geostrophic fluxes at 1000 and 500 hPa.  In the second step, precipitation and 

temperature are obtained by searching in the ‘n’  days population for relationships 

between the predictands and additional predictors.  For precipitation, the six most 

similar days are averaged.  For temperature, MLR is performed using only the ‘n’  

days population with forward and backward stepwise selection of predictors.  The 

additional potential predictors used here are low tropospheric thickness, average 

temperature of the preceding days and a sinusoid function of the day of the year.   

A combination of regression and analogue selection is also used in the Centre 

National de la Recherche Scientifique (CNRS) downscaling method.  Here, however, 

regression is used in the first step to construct a ‘Potential Precipitation Circulation 

Index’  (PPCI), i.e., a linear regression of daily precipitation against the anomaly 

pattern correlation of a day’s large-scale circulation (the 700 hPa geopotential height 

field) with the precipitation regime clusters identified by Plaut et al. (2001).  The 

PPCI values are divided into 20 bins, and then a day randomly selected from the 

appropriate bin.  A broadly similar approach is used in the KCL conditional re-

sampling (CR) method (Wilby et al., 2003).  In this case, the SDSM (Statistical 

DownScaling Model) single site conditional weather generator (Wilby et al., 2002; 

2003) is used to downscale an area-average precipitation series (referred to as the 

marker site).  Wet-day amounts are then re-sampled from the empirical distribution of 

area averages conditional on the large-scale atmospheric forcing and a stochastic error 

term.  The actual wet-day amount is determined by mapping the modelled normal 

cumulative distribution value onto the observed cumulative distribution at the marker 
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site.  The marker site is then cross-referenced to the actual amount at each station 

within the region. 

A conditional weather generator (CWG) (Goodess and Palutikof, 1998) was 

developed by the Danish Meteorological Institute (DMI).  First, a surface pressure 

pattern is obtained as the average pressure difference between wet and dry days 

observed at a given station.  A circulation index is then calculated by regressing the 

daily surface pressure field on this pattern.  The circulation index is divided into a 

number of quantiles, usually between 5 and 10, and for each quantile the following 

precipitation quantities are calculated: the probability for wet/dry days, the 

probabilities for a wet/dry day following a dry/wet day, and the two gamma 

distribution parameters for precipitation amount.  A two-state Markov Chain process 

combined with random sampling from the gamma distribution (Wilks and Wilby, 

1999) is then used to generate the daily precipitation series.  

Two variants of local scaling (LOC and LOCI) and of dynamical scaling 

(DYN and DYNI) were developed by the Eidgenössische Technische Hochschule 

(ETH). The common idea of all four methods is to use GCM-simulated precipitation 

as a predictor for regional/local precipitation.  These STARDEX methods are 

modifications of the procedures of Widmann and Bretherton (2003). Thus the GCM-

simulated precipitation is rescaled with a spatially varying factor which compensates 

for long-term biases of the GCM at the station being downscaled. While the original 

schemes (LOC and DYN) aim only at correcting the bias in mean precipitation, the 

STARDEX modifications (LOCI and DYNI) include a bias correction for 

precipitation frequency and intensity.  The two local scaling methods use GCM 

precipitation as their only predictor, while the two dynamical scaling methods include 
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the 1000 hPa geopotential field as an additional predictor which results in flow-

dependant scaling factors. 

 

3.2  Pr inciples for  ver ification and intercompar ison of the STARDEX statistical 

downscaling methods 

In order to ensure a rigorous and systematic approach to validation and 

intercomparison of the STARDEX statistical downscaling methods, a set of principles 

for this work was agreed.  All partners used data from common predictand (Section 

2.1) and predictor (Section 2.2) datasets.  The core set of 10 indices of extremes was 

used, together with mean daily precipitation and mean maximum and minimum 

temperature – giving 13 indices in total (Table 5).  A common verification or 

independent validation period was also chosen: 1979-1993, for compatibility with the 

‘perfect-boundary condition’ , i.e., ERA-15 forced, RCM simulations undertaken in 

the MERCURE project (Machenhauer et al., 1998).  The remaining period of data, 

1958-1978 and 1994-2000 was used for model calibration or training.  A common set 

of verification statistics for the comparison of observed and downscaled annual series 

of seasonal indices was identified: Root Mean Square Error (RMSE) between the 

observed and simulated index with the bias removed; Spearman rank-correlation 

coefficient (CORR); and BIAS (the mean difference between the simulated and 

observed indices).  In all cases reported here, these statistics were calculated for the 

1979-1993 verification period. 

The STARDEX statistical downscaling methods (Table 4) use a range of 

approaches suitable for different applications.  Some provide multi-site information, 

for example.  The latter methods are more applicable to denser regional station 
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networks than European wide.  Thus it was decided that it would be inappropriate to 

use a single case-study for verifying and intercomparing all the methods.  Instead, the 

matrix shown in Table 6 was devised.  Three groups (UEA, FIC and DMI) applied 

their methods European-wide, i.e., to the FIC dataset of 495 stations (Figure 1).   The 

other nine groups undertook initial development of their method(s) in the region with 

which they were most familiar, e.g., ETH from Zurich, Switzerland initially 

developed their scaling methods for the Alps.  In addition to this ‘primary’  region, 

eight of the nine groups also applied their method(s) in a ‘secondary’  region with a 

contrasting climatic regime, e.g., the UK in the case of ETH.  Each group developed 

their method(s) using the full set of stations available for their primary case-study 

region and, in most cases, the subset of stations from the FIC dataset for their 

secondary region (see Tables 3 and 6).  However, the intercomparisons described in 

Section 4 are based on the regional subsets of stations (see Table 3) in all but one 

case.   

This case-study approach allows a number of different intercomparisons to be 

undertaken by sampling the matrix shown in Table 6 either horizontally or vertically.  

Downscaling methods from six different groups can be directly compared in the case 

of Alpine precipitation, for example.  Servizio Meteorologico Regional, 

ARPA_Emilia Romagna (ARPA) and AUTH both applied regression and CCA-based 

downscaling methods in the Greek and Northern Italy case-study regions – allowing 

another interesting set of comparisons to be made.  Many other such intercomparisons 

were undertaken. 

Having set up this rigorous experimental framework, suitable approaches for 

handling the many combinations of different methods (22 – see Table 4), regions 
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(seven – see Table 3), indices (13 – see Table 5) and seasons (four) had to be devised.  

These approaches and the major results are described in the next section. 

 

4.  Results of the STARDEX Intercompar ison Exercise  

The experimental matrix shown in Table 6 allows a number of specific 

questions to be addressed: 

- Is there any systematic difference in performance of the methods between 

different seasons? 

- Is there any systematic difference in performance of the methods between 

different indices? 

- Is there any systematic difference in performance of the methods between 

different regions? 

- Do direct methods in which the seasonal indices of extremes are downscaled 

perform better than indirect methods in which daily time series are generated and  

the seasonal indices then calculated from these? 

- Do the regionally-developed methods perform better than the European-wide 

methods? 

- Can a single ‘best’  method be identified? 

 

These questions were addressed by undertaking a series of regional analyses 

which are reported in detail in STARDEX Deliverable D12 (available from 

http://www.cru.uea.ac.uk/projects/stardex) with the major conclusions summarised in 

the following sections.  A preliminary inspection of the downscaled results for all 
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regions indicated that the variation in skill from station-to-station dominates the 

variations in skill from index-to-index, from method-to-method and from season-to-

season.  This is clearly demonstrated in Figure 2, which shows box-and-whisker plots 

of the Spearman correlation skill for four different downscaling methods applied to 

Alpine precipitation.  Thus in order to address the questions above, results were 

averaged across neighbouring stations, as well as across the different indices, seasons 

and methods, as appropriate for addressing each question.  While this was a pragmatic 

approach, designed to draw general conclusions from a large amount of downscaled 

data, it does not preclude more detailed analyses using different averaging methods or 

individual results (see Section 5). 

 

4.1  Is there any systematic difference in per formance between the different 

seasons?   

 In the majority of cases, performance is best in winter and worst in summer, 

particularly with respect to precipitation.  This is illustrated by Figures 3 and 4 which 

show Spearman correlations averaged across stations and precipitation indices for the 

UK (14 downscaling methods) and the Iberian Peninsula (six methods) respectively.  

Exceptions to this pattern can, however, be identified – the DMI_CWG method, for 

example, performs worst for autumn in the Iberian Peninsula (Figure 4).  All the other 

methods applied to the Iberian Peninsula perform better in autumn than spring (but 

see Section 4.3).  For the UK, the difference in performance between spring and 

autumn is less clear, although in a number of cases, it is better for autumn than spring.  

For Greece, however, correlations are lower in autumn than all other seasons.  This is 

demonstrated in Figure 5, which indicates consistently lower correlations (including a 
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few negative correlations) in autumn for precipitation indices averaged across four 

stations from western Greece.  These lower correlations could be attributed to the 

higher variability of the geopotential heights during autumn compared with the other 

seasons (Maheras et al., 2002). 

 

4.2  Is there any systematic difference in per formance of the methods between 

different indices? 

 As might be expected, performance is better for temperature than 

precipitation, and, particularly for precipitation, also tends to be better for the mean 

indices (pav, txav and tnav – see Table 5) than the indices of extremes.  In the 

German Rhine study region, for example, correlations averaged across 10 stations and 

five methods are greater than +0.7 for temperature in most cases (with the exception 

of heat wave duration) (Figure 6), but only reach a maximum of about +0.65 for 

precipitation (Figure 7).  Figure 6 indicates that performance for all of the temperature 

indices of extremes is somewhat poorer than for average maximum and minimum 

temperature.  The models, by virtue of their calibration processes, still tend to 

gravitate towards the central tendency of the training data sets.  In the case, of 

precipitation, however, performance is considerably poorer for the indices of extremes 

than average precipitation (Figure 7). 

 With respect to precipitation, the maximum number of dry days (pxcdd), a 

measure of persistence, seems to be better simulated than the indices of extremes 

which focus more on the magnitude of events.  This is clearly the case for the German 

Rhine in all seasons (Figure 7) and for western Greece in winter (Figure 5) and the 

Alps in winter and autumn (Figure 2).  These three figures also indicate that the 
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number of precipitation events greater than the 90th percentile (pnl90) tends to be 

better simulated than the percentage of precipitation from such events (pfl90) and the 

90th percentile value itself (pq90).   Thus in general, the occurrence process seems to 

be better captured than the amounts process.  This is likely to be because the 

downscaling schemes always include some predictors based on large-scale circulation 

which are likely the capture patterns prohibiting the occurrence of precipitation 

(hence the better results for pxcdd) whereas the magnitude of intense precipitation is 

more likely to depend on much smaller-scale mechanisms (hence the poorer results 

for pq90). 

 

4.3  Is there any systematic difference in per formance of the methods between 

different regions? 

 Comparison of Figures 3 and 4 indicates that a similar range of downscaling 

methods tends to give somewhat higher correlations for the UK case-study region 

than for the Iberian Peninsula.  Within these two regions (sub-regional results not 

shown), performance with respect to precipitation tends to be worse for the SE Spain 

sub-region, one of the driest regions in Europe and subject to more localised and 

Mediterranean influences (Goodess and Palutikof, 1998) than the Western Iberian 

region, which is more affected by larger-scale Atlantic influences (Goodess and 

Jones, 2002).  Given these differences, further work is recommended on verifying 

these two sub-regions separately.  The finding that autumn precipitation is better 

simulated than spring precipitation (Section 4.1) is, for example, not necessarily 

applicable to the SE Spain sub-region where autumn precipitation events are mainly 

due to convection, although also related to easterly air masses tracking over a warm 
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Mediterranean Sea (Goodess and Jones, 2002).  Sub-regional contrasts in performance 

are also evident for Greece, particularly with respect to precipitation – except in 

spring, performance is generally better for the four western stations (Figure 5) than for 

the four eastern stations (not shown).   

 Regional differences in performance are most clearly identified by looking at 

results for the three methods that were applied to the European-wide dataset (Table 6).  

The best performing of these methods is the FIC_ANAL2 method (see Sections 4.5 

and 4.6).  For temperature, performance of this method is consistent across the 

European domain, with correlations generally exceeding +0.8 in the case of average 

minimum temperature (Figure 8).  In winter, however, a few Scandinavian stations 

have large negative correlations, and the correlations fall to +0.6 to +0.8 at a few 

locations in summer.  For precipitation, performance is poorer and less consistent 

across Europe, as illustrated by the results for average precipitation shown in Figure 

9.  In winter, correlations tend to be higher on west-coast locations and drop off 

towards the eastern edges of the domain.  In summer, the lowest correlations (-0.2 to 

+0.2 for average precipitation) occur over southern Spain and in an area to the east of 

the Alps.  

 

4.4  Do direct methods per form better  than indirect methods? 

 It is difficult to make any general statement on the performance difference 

between methods that directly downscale seasonal indices and those that downscale 

daily series of precipitation.  While indirect methods appear to do better than direct 

methods for UK and Iberian Peninsula precipitation (Figures 3 and 4), for example, 
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this is just as likely to be due to the superior performance of ANN-based methods 

(Section 4.6) and/or the use of different predictor variables.   

 A more direct comparison is possible between the indirect USTUTT_MAR 

and direct USTUTT_MLR methods in the German Rhine.  The seasonal skill scores 

(RMSE and CORR) of these two methods are shown in Table 7 for the precipitation 

indices, averaged across the full regional set of 100 stations.  These results indicate 

that the direct MLR method performs slightly better than the indirect MAR method in 

summer, and vice versa, in spring and autumn.  In winter, it is not possible to identify 

which of the two methods performs better.   

 Comparisons between direct (ARPA_CCA and ARPA_MLR) and indirect 

(AUTH_CCA and AUTH_MREG) methods can also be made for Greece (Figure 5) 

and Northern Italy (Figure 10).  The indirect CCA and regression methods seem to 

perform slightly better than the direct methods in the case of Greek precipitation 

(Figure 5).  Similarly, the indirect CCA approach appears consistently slightly better 

for Northern Italian temperature, while the differences between the direct and indirect 

regression approaches are less consistent (Figure 10). 

 

4.5  Do the regionally-developed methods per form better  than the European-

wide methods? 

The most direct comparison possible here, is between regionally-developed 

CCA methods (ARPA_CCA, AUTH_CCA and, for the UK only, UEA_CCA) and 

their European-wide applications (UEA_CCA for Europe as a whole and the Iberian 
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Peninsula).  Figure 5 indicates that the regionally-based CCA methods are superior 

with respect to western Greek precipitation. 

However, for other regions and methods, there is no clear indication that the 

locally-developed methods perform consistently better than the methods developed 

based on the European-wide data set.  For German Rhine precipitation, the 

performance of the European-wide FIC_ANAL2 method is comparable with that of 

the locally developed USTUTT_MAR and USTUTT_MLR methods in winter and 

autumn, and even slightly better for some indices (Figure 11).  In spring, all three 

methods show more or less similar performance, while FIC_ANAL2 tends to perform 

better for most indices in summer.  For the majority of German Rhine precipitation 

indices and seasons (Figure 11), the FIC_ANAL2 method is clearly superior to the 

other two European-wide methods (UEA_CCA and DMI_CWG).  Of the three 

methods applied to German Rhine temperature (UEA_CCA, FIC_ANAL2 and 

USTUTT_MLR), the FIC_ANAL2 method is consistently better (results not shown).  

For Greek temperature (results not shown), performance of the FIC_ANAL2 method 

is comparable to that of the locally-developed MLR and CCA methods.  The 

FIC_ANAL2 method also performs reasonably well in comparison with locally-

developed methods for Alpine precipitation (Figure 2) and temperature (results not 

shown).    

 

4.6  Can a single ‘best’  method be identified? 

     The discussion in Section 4.5 indicates that the performance of the 

FIC_ANAL2 method is generally good with respect to temperature (Figure 8).  Only 

one other method was applied to European-wide temperature (UEA_CCA4) and this 
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latter method (Figure 12) is clearly less skilful than FIC_ANAL2.  FIC_ANAL2 also 

performs well for temperature extremes (such as the 10th percentile of minimum 

temperature, Figure 13).  Although it performs better than UEA_CCA and 

DMI_CWG with respect to precipitation across Europe (Figure 9), the skill, 

particularly for precipitation extremes (such as the greatest 5-day rainfall total, Figure 

14) is substantially less than for temperature. 

 The variation in performance between seasons (Figures 3, 4 and 7), stations 

(Figure 2) and indices (Figures 2, 5 and 11) makes it particularly difficult to identify a 

‘best’  or ‘better’  method for downscaling precipitation.  In fact, it is impossible to 

identify a consistently ‘best’  method.  If the correlations for Iberian precipitation 

shown in Figure 4 are averaged across seasons (Figures 15a), it can be concluded that 

the ANN (KCL_ANN_RBF and KCL_ANN_GA_RBF) methods are superior to the 

other methods applied in this region.  However, a different conclusion emerges if the 

biases are considered (Figure 15b).  Since each of the indices has different units, 

biases cannot be averaged across indices.  Therefore, each bias was converted to a 

rank compared to other models for each index, season and station.  The ranks were 

then averaged across all indices, seasons and stations.   Methods with lower biases 

therefore have a higher rank.  It is evident from Figure 15 that methods with the 

highest correlations tend to have higher biases and methods with the lowest 

correlations (DMI_CWG, UEA_CCA4 and KCL_CR) have lower biases.  A similar 

pattern is also evident in precipitation results for the UK (not shown) and in a number 

of other cases.  For example, pxcdd in Greece tends to have higher correlations than 

other indices of extremes (Figure 5), but also higher biases (not shown).  Similarly, 

for Alpine temperature (results not shown), the FIC_ANAL2 method tends to give 

higher correlations and lower RMSE than the University of Berne (UNIBE) CCA 
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method, but the latter gives the lowest biases.  The question as to whether correlations 

or biases are a more important test statistic when trying to identify the better 

performing downscaling methods is discussed in Section 5. 

 

5.  Conclusions and Recommendations on the Use of Statistical Downscaling 

Methods 

The STARDEX intercomparison of statistical downscaling methods for 

Europe and European regions focused on performance with respect to extreme 

temperature and precipitation events and benefited from being undertaken in a 

rigorous experimental framework.  Thus the NCEP Reanalysis-based verification 

analyses described here, were conducted using a common set of principles (Section 

3.2).  The STARDEX experimental matrix (Table 6) allows a number of well-defined 

questions to be addressed in Section 4.   However, the extent to which these questions 

can be answered unequivocally is limited by the variation in skill from method-to-

method, index-to-index, season-to-season  and station-to-station.  The latter variation 

in skill is found to dominate (Figures 2 and 15).   Neighbouring stations can display 

very different behaviour.  However, for the same station, contrasts in performance 

between seasons or indices can be as high or higher than inter-station contrasts. 

The variability in skill tends not to be systematic, hence it is difficult or 

impossible to identify a single best method in most cases.  Attempts to do this are 

further complicated by the finding that methods/indices with the highest correlations 

are often not those with the lowest biases or RMSE (Section 4.6).  More emphasis is 

given in this paper to correlation results than to RMSE or bias.  This is because 

systematic differences in performance tend to be easier to identify with respect to 
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correlations than the other statistics, and also because it may be easier to correct for 

biases than other types of error, and the ability to capture inter-annual variability is 

considered to be an important characteristic of statistical models which are to be 

applied in the climate change context (Wilby et al., 2004).  Under prediction of low-

frequency climate variability is, however, a characteristic of many statistical 

downscaling methods (Wilby and Wigley, 2000; Wilby et al., 2004), including the 

STARDEX methods (as demonstrated for Alpine precipitation in Figure 16), and is 

often referred to as the ‘overdispersion’  problem (Katz and Parlange, 1998). 

Despite the difficulties discussed above, a number of conclusions concerning 

the relative performance of the STARDEX statistical downscaling methods can be 

drawn from the analyses presented in Section 4, including: 

- performance is generally better for temperature than precipitation, 

better for means than extremes, and best in winter and worst in 

summer; 

- however, there are always exceptions to the rules, for example, in 

Greece, the poorest precipitation results are for autumn; 

- the FIC_ANAL2 European-wide method performs well for 

temperature, as well as or better than locally-developed methods; 

- CCA methods seem to perform better when applied locally rather 

than European wide; 

- the performance of ANN methods is generally quite good, 

particularly with respect to precipitation correlations (e.g., for the 

Iberian Peninsula) which reflect inter-annual skill; 
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- it is particularly difficult to make statements about whether ‘direct’  or 

‘ indirect’  methods are consistently better for downscaling indices of 

extremes; and, 

- for precipitation extremes, persistence, notably the length of the 

longest dry spell, is better represented than magnitude or frequency 

characteristics. 

Since it is not possible to identify a consistently superior method in the 

majority of cases, a major recommendation from the STARDEX verification studies 

is to use a range of the better statistical downscaling methods for the construction of 

scenarios of extremes, just as it is recommended good practice to use a range of global 

and regional climate models in order to reflect a wider range of the uncertainties 

(Mearns et al., 2003).  This implies a need for new easy-to-use statistical downscaling 

tools based on the STARDEX improved methodologies. 

The variability in performance also underlines the importance of undertaking 

rigorous verification studies for each statistical downscaling application.  While 

verification must always be appropriate to the proposed application, the finding that 

statistical downscaling techniques struggle to reproduce even moderate extremes in 

many cases, indicates that testing against more severe events would not make much 

sense. 

One issue that has not been addressed here, is how to judge whether 

performance is sufficiently good to proceed to scenario construction.  For many 

regions and indices of extremes considered here, it is arguable that the skill is 

unacceptably low for summer precipitation and that scenarios should not be 

constructed in these cases.  This may reflect a simple lack of predictability of extreme 

event behaviour at local scales.  Although no significance testing of the skill scores 
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presented here has been undertaken it is likely that many of the downscaling models 

show statistically insignificant skill for many of the indices, especially in summer and 

for some problematic regions.  Thus the analyses presented here could usefully be 

extended by excluding summer results when averaging across seasons and only 

comparing methods where the threshold for significance has been achieved.  

Similarly, given the poorer performance of the downscaling results for SE Spain 

compared with Western Iberia, it would be preferable to analyse these sub-regions 

separately. 

It is worth noting that the skill measures used here will all penalise methods 

with a stochastic component unless the ensemble range of such methods is employed 

in the comparison.  This is highlighted in a more detailed intercomparison of the KCL 

precipitation results for the UK (Harpham and Wilby, 2005).  It is shown that the 

KCL_ANN methods out-perform the KCL_CR method for the STARDEX indices 

(because the former methods are deterministic and the latter is stochastic), but this is 

reversed when it comes to comparing quantiles which reflect the distribution of daily 

event magnitudes.   

The Reanalysis-based verification studies described here reflect the 

complexity of undertaking rigorous systematic methodological intercomparisons. 

Many more verification analyses could be undertaken using the large volumes of data 

generated by STARDEX (much of which will be publicly available from October 

2005).  However, these studies represent only one step in the process of constructing 

reliable and robust climate change scenarios using statistical downscaling (Wilby et 

al., 2004).  As part of the STARDEX project, considerable work was also done on 

predictor selection (including assessment of the sensitivity of methods to the choice of 

predictors and their spatial domains) before finalising the improved statistical 
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downscaling methods listed in Table 4.  Having verified the downscaling methods for 

the present day using Reanalysis data, the next step is to determine whether the 

predictor variables are sufficiently well reproduced by GCMs (see STARDEX 

Deliverable D13 available from http://www.cru.uea.ac.uk/cru/projects/stardex/).  Only 

then, is it reasonable to apply the statistical downscaling models using output from 

control and perturbed GCM simulations.  One of the final steps of the STARDEX 

work is to assess the statistically downscaled changes in European temperature and 

precipitation extremes focusing on issues such as their consistency and robustness, 

including their consistency with GCM and RCM simulated changes, focusing on 

those climate models used within the PRUDENCE project (Christensen et al., 2005b).  

The significance of the downscaling uncertainty relative to the other uncertainties, 

including the choice of GCM, must also be addressed.  
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Table 1:  Summary of the advantages and disadvantages of the direct use of 
regional climate model output to construct scenar ios of extremes (Goodess et al., 
2003). 4444 = advantage, 8888 = disadvantage, ? = advantage/disadvantage of the 
method is uncer tain.  
 

 
4  Provides physically-consistent multi-variate information 
4  Higher spatial resolution than GCMs should reduce some biases (e.g., more intense 
            extremes) 
 
 
8  Relatively short (e.g., 30 year) runs make it difficult to assess multi-decadal natural 
            variability 
8  Runs may not be available for time periods of interest (e.g., 2020s) 
8  Relatively few simulations/ensembles available 
8  Affected by biases in the underlying GCM 
 
 
? Added value of higher spatial resolution needs to be demonstrated 
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Table 2:  Summary of the advantages and disadvantages of statistical 
downscaling for  the construction of scenar ios of extremes (Goodess et al., 2003). 
4444 = advantage, 8888 = disadvantage, ? = advantage/disadvantage of the method is 
uncer tain. 
 

 
4  Provides station/point values of extremes 
4  Less computer intensive than dynamical downscaling 
4  Can be applied to GCM and/or RCM output 
 
 
8  Assumes that predictor/predictand relationships will be unchanged in the future (the 
            stationarity issue) 
8  Requires long/reliable observed data series 
8  Affected by biases in the underlying GCM 
 
 
? May be possible to ‘correct’  predictors for systematic model biases 
? Scenarios may indicate changes which differ substantially in magnitude, and even in 
            direction, from those based directly on model output 
? Ideally, downscaling methods should reflect the underlying physical mechanisms and 
            processes, but statistical downscaling is unlikely, for example, to treat convective 
            rainfall events in a physically realistic way 
? Sensitive to specific methodology, choice of predictor variables, etc. 
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Table 3:  Summary of data available for  the STARDEX regional case-study 
regions. 
 

Region Number of stations in 
the full regional dataset 
(and STARDEX group 
providing the data) 

Number of stations in 
the regional subset  

Stations in the regional 
subset 

Iberian Peninsula:    
   Western Iberia  11 (UEA) 11 Portugal: Beja, Coimbra, 

Lisboa Geofisica, Santarem, 
Pegoes, Alvega, Mora, 
Penhas Douradas, 
Portalegre 

   Spain: Badajoz/Talavera, 
Alcuescar 

   SE Spain 5 (UEA) 5 Albacete/Los Llano., 
Valencia, Alicante Ciudad 
Ja., Murcia/Alcantarilla, 
Murcia/San Javier 

Greece: 22 (AUTH)  4 Western Greece 
 
4 Eastern Greece 

Agrinio, Ioannina, 
Kalamata, Kerkyra  
Alexandroupoli, Mytilini, 
Samos, Rodos 

Alps: N Alps: 27 grid points,  
Ticino: 15 grid points, 
0.5º precipitation grid, 
Frei and Schär, 1998 
(ETH) 

10 Austria: Innsbruck-Univ. 
France: Nice, Montelimar 
Germany: Muenchen  
Italy: Bologna, Lazzaro 
Alberoni, Bobbio 

 21 temperature (UNIBE)   Switzerland: Arosa, 
Locarno-Monti, Zuerich 

German Rhine: 100 (USTUTT-IWS) 10 Feldberg/Schw., Karlsruhe, 
Mannheim, Deuselbach, 
Koeln-Wahn, Giessen, 
Wuertzburg, Saarbruecken-
E., Kahler Asten, 
Nuernberg-Kra. 

UK:    
   NW UK 15 precipitation (UEA) 3  Eskdalemuir, Ringway, 

Shawbury  
   SE England 28 precipitation (UEA) 3  Cambridge, Goudhurst, 

Oxford 
Northern Italy: 
(Emilia Romagna) 

39 temperature (ARPA) 
59 precipitation (ARPA) 

8 Bobbio, Lazzaro Alberoni, 
Bedonia, Bologna, 
Alfonsine, Parma, 
Firenzuola, Verghereto 
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Table 4: Summary of the STARDEX improved statistical downscaling methodologies 
 
Method Predictand(s) 

(Unless otherwise 
indicated, predictands 
are station series ) 

Predictor(s) 
 
(See STARDEX Deliverable D10 for 
selection procedure)  

Description 
 
(See STARDEX Deliverable D15 for details) 

ADGB_HYPER4 Regional DP index GPH anomalies at 500 hPa, RH at 700 
hPa, geostrophic wind at 500 hPa & 
precipitable water 

Random sampling within the 4-dimensional hyperspace of 
the 4 predictors which defines conditions for high 
precipitation 

ARPA_CCA PIE, TIE SLP, SH at 1000, 950, 850 and 700 
hPa, and T at 850 hPa 

Canonical Correlation Analysis 

ARPA_MLR PIE, TIE Z500: First 4 PCs of 500 hPa GPH 
anomalies 
T850: First 4 PCs of 850 hPa T 

Multiple Linear Regression 

AUTH_ANN DP, DT 500 hPa GPH & 1000-500 hPa 
thickness 

Artificial Neural Network 

AUTH_CCA DP, DT 500 hPa GPH & 1000-500 hPa 
thickness 

Canonical Correlation Analysis 

AUTH_MREG DP, DT Circulation types for 500 hPa, 1000-
500 hPa thickness 

Multiple Linear Regression 

CNRS_PPCI DP Large Scale Circulation patterns 
defined using 700 hPa GPH 

Random selection of an analogue within a set of training days 
having the same ‘Potential Precipitation Circulation Index’  
category  

DMI_CWG DP SLP Conditional weather generator, conditional on quantile values 
of a circulation index, in which precipitation occurrence and 
amount are modelled separately 

ETH_DYN DP – station data or 
mesoscale grids 

Grid-box precipitation As ETH_LOC, but with flow-dependent scaling factors 

ETH_DYNI DP – station data or 
mesoscale grids 

Grid-box precipitation As ETH_LOCI, but with flow-dependent scaling factors 

ETH_LOC DP – station data or 
mesoscale grids 

Grid-box precipitation Local scaling of GCM simulated precipitation 
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ETH_LOCI DP – station data or 
mesoscale grids 

Grid-box precipitation Local scaling of GCM simulated precipitation with 
correction of precipitation frequency and intensity bias  

FIC_ANAL2  
 
( 2SA in some figures) 

DP, DT Geostrophic fluxes at 1000 & 500 hPa, 
low tropospheric humidity and 
thickness 

Two-step analogue method, in which (1) the ‘n’  most similar 
days to the day being simulated are selected from a reference 
data set and (2) regression is performed using 
predictand/predictor relationships from the ‘n’  days data set 

KCL_ANN_GA_RBF DP The SDSM set of predictors Genetic algorithm used to optimise the Radial Basis Function 
network structure and parameters 

KCL_ANN_IRBF DP The SDSM set of predictors Individual Radial Basis Function artificial neural network 
model (i.e., applied to individual sites in each region) 

KCL_ANN_MLP DP The SDSM set of predictors Multi Layer Perceptron artificial neural network model 
KCL_ANN_RBF DP The SDSM set of predictors Radial Basis Function artificial neural network model 

(applied across all sites for each region) 
KCL_CR DP The SDSM set of predictors Conditional resampling of area average precipitation, 

conditional on the large-scale atmospheric forcing and a 
stochastic error term, and daily precipitation amounts at a 
‘marker site’  (generated using SDSM). 

UEA_ANN_GAMMA 
 
(GAM in some figures) 

DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 
using the hybrid Bernoulli/Gamma data misfit term 

UEA_ANN_GAMMAMC DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 
using the hybrid Bernoulli/Gamma data misfit term and 
Monte-Carlo simulation 

UEA_ANN_SSE DP The SDSM set of predictors Bayesian multilayer perceptron artificial neural networks, 
using the sum-of-squares data misfit term 

UEA_CCA PIE CCA1: MSLP 
CCA4: MSLP + GPH, RH, T at 500, 
700 & 850 hPa 

Canonical Correlation Analysis 

UNIBE_CCA DT SLP and GPH, T, SH & RH at 100, 
850, 700, 500 and 300 hPa 

Canonical Correlation Analysis 

USTUTT_MAR DP Objective circulation patterns and: 
- eastward moisture flux at 700 

Multivariate Auto-Regressive model 
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hPa (for precipitation) 
- GPH at pressure level 

corresponding the circulation 
pattern 

USTUTT_MLR PIE, TIE GPH, RH, T, divergence and vorticity 
at several levels, eastward moisture 
flux at 700 hpa level and objective 
circulation patterns 

Multiple Linear Regression 

 
 
DP = daily precipitation     GPH = Geopotential height 
DT = daily temperature     MSLP = Mean sea level pressure 
PIE = STARDEX core indices of precipitation extremes PC = Principal Component 
TIE = STARDEX core indices of temperature extremes RH = Relative humidity 

SDSM = Statistical DownScaling Model (Wilby et al., 2002) 
SH = Specific humidity 
T = Temperature  
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Table 5:  The STARDEX 10 core indices of extremes and three mean indices. 

Precipitation related indices of extremes 
pq90  90th percentile of rainday amounts (mm/day) 
px5d  Greatest 5-day total rainfall 
pint  Simple daily intensity (rain per rainday) 
pxcdd  Maximum number of consecutive dry days 
pfl90  % of total rainfall from events > long-term 90th percentile 
pnl90  Number of events > long-term 90th percentile of raindays 

Temperature related indices of extremes 
txq90  Tmax 90th percentile (ºC) 
tnq10  Tmin 10th percentile (ºC) 
tnfd  Number of frost days Tmin < 0 °C 
txhw90              Heat wave duration (days) 

Mean indices 
pav  Precipitation average (mm/day) 
txav  Average Tmax (ºC) 
tnav  Average Tmin (ºC) 
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Table 6:  The case-study regions in which STARDEX statistical downscaling 
methods were applied. x = method applied to the European-wide data set (Figure 
1). 1 = par tner ’s pr imary region, 2 = par tner ’s secondary region. 
 
 
 
 
Group_Method(s) 

Europe Iberian 
Peninsula 

Greece Alps German 
Rhine 

NW 
and 
SE 
UK 

Northern 
Italy 

UEA_CCA x       
FIC_ANAL2 x       
DMI_CWG x       
UEA_CCA and ANN  2    1  
KCL_ANN and CR  2    1  
UNIBE_CCA    1    
CNRS_PPCI  2  1    
ARPA-SMR_CCA 
and MLR 

  2    1 

ETH_DYN and LOC    1  2  
USTUTT/FTS_MAR 
and MLR 

   2 1   

AUTH_ANN, CCA 
and MREG 

  1    2 
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Table 7: Summary of the seasonal skill scores of the indirect USTUTT_MAR and direct USTUTT_MLR downscaling methods for  

precipitation indices averaged over  100 German Rhine stations.   

 

 

Winter Spring Summer Autumn 
Index Method Mean 

RMSE 
Min 

CORR 
Max 

CORR 
Mean 
CORR 

Mean 
RMSE 

Min 
CORR 

Max 
CORR 

Mean 
CORR 

Mean 
RMSE 

Min 
CORR 

Max 
CORR 

Mean 
CORR 

Mean 
RMSE 

Min 
CORR 

Max 
CORR 

Mean 
CORR 

USTUTT_MAR 0.49 0.11 0.91 0.66 0.50 0.39 0.90 0.71 0.70 -0.10 0.75 0.41 0.55 0.05 0.86 0.46 pav 
USTUTT_MLR 0.45 0.32 0.90 0.71 0.51 0.30 0.90 0.64 0.63 0.16 0.88 0.52 0.49 -0.13 0.86 0.50 
USTUTT_MAR 1.09 -0.15 0.76 0.41 1.05 -0.38 0.73 0.35 1.42 -0.55 0.85 0.15 1.28 -0.28 0.64 0.16 pint 
USTUTT_MLR 1.03 -0.14 0.82 0.41 1.13 -0.34 0.82 0.28 1.44 -0.46 0.77 0.12 1.26 -0.44 0.73 0.16 
USTUTT_MAR 3.02 -0.30 0.79 0.33 3.03 -0.31 0.80 0.29 3.98 -0.51 0.78 0.12 3.63 -0.55 0.78 0.22 pq90 
USTUTT_MLR 3.15 -0.60 0.81 0.29 3.22 -0.28 0.74 0.23 3.84 -0.68 0.76 0.20 3.89 -0.43 0.71 0.14 
USTUTT_MAR 16.75 -0.09 0.78 0.35 14.60 -0.23 0.84 0.47 19.50 -0.49 0.70 0.13 17.77 -0.21 0.74 0.33 px5d 
USTUTT_MLR 15.84 -0.06 0.81 0.41 15.54 -0.33 0.80 0.39 18.32 -0.29 0.79 0.29 18.64 -0.58 0.81 0.19 
USTUTT_MAR 4.15 -0.12 0.73 0.38 3.74 -0.06 0.82 0.47 5.76 -0.56 0.68 0.18 5.56 0.14 0.84 0.49 pxcdd 
USTUTT_MLR 4.21 -0.24 0.74 0.31 3.94 -0.39 0.87 0.40 4.94 -0.15 0.90 0.45 5.94 -0.12 0.77 0.41 
USTUTT_MAR 0.14 -0.33 0.78 0.29 0.14 -0.51 0.81 0.20 0.15 -0.65 0.72 0.10 0.14 -0.43 0.85 0.22 pfl90 
USTUTT_MLR 0.13 -0.08 0.80 0.33 0.15 -0.30 0.69 0.14 0.15 -0.61 0.66 0.11 0.16 -0.51 0.51 0.04 
USTUTT_MAR 1.98 -0.28 0.86 0.42 1.89 -0.05 0.90 0.45 1.90 -0.56 0.88 0.21 1.81 -0.54 0.80 0.30 

pnl90 
USTUTT_MLR 1.92 -0.07 0.90 0.48 1.84 -0.12 0.86 0.42 1.80 -0.22 0.77 0.32 1.75 -0.50 0.81 0.21 
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Figure Captions 

 

Figure 1:  Location of the 495 stations in the STARDEX European-wide dataset. 

 

Figure 2:  Seasonal box-and-whisker plots of the Spearman correlation skill for four 

statistical downscaling methods for six precipitation indices and 10 Alpine stations. 

 

Figure 3:  Spearman correlations for 14 statistical downscaling methods and four 

seasons, averaged across the seven precipitation indices and 6 UK stations.  Methods 

are from the following groups: DMI (CWG), ETH (DYN, DYNI, LOC, LOCI), FIC 

(2SA), KCL (IRBF, MLP, RBF, CR) and UEA (GAM, SSE, CCA4, CCA1). 

 

Figure 4:  Spearman correlations for six statistical downscaling methods and four 

seasons, averaged across the seven precipitation indices and 16 Iberian Peninsula 

stations.  Methods are from the following groups: DMI (CWG), KCL (GA-RBF,  

RBF, CR), FIC (2SA), and UEA (CCA4). 

 

 

Figure 5:  Spearman correlations for eight statistical downscaling methods, four 

seasons and the seven precipitation indices, averaged across four stations from 

Western Greece. It = ARPA methods (see Table 4). 

 

Figure 6:  Spearman correlations for four seasons and the six temperature indices, 

averaged across three statistical downscaling methods (FIC_ANAL2, UEA_CCA4 

and USTUTT_MLR) and 10 German Rhine stations.  
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Figure 7:  Spearman correlations for four seasons and the seven precipitation indices, 

averaged across five statistical downscaling methods (DMI_CWG, FIC_ANAL2, 

UEA_CCA4, USTUTT_MAR and USTUTT_MLR) and 10 German Rhine stations.  

 

Figure 8:  Spearman correlations for average minimum temperature (tnav) 

downscaled using the FIC_ANAL2 method for the European-wide dataset, for winter 

(upper panel) and summer (lower panel). 

 

Figure 9:  Spearman correlations for average precipitation (pav) downscaled using the 

FIC_ANAL2 method for the European-wide dataset, for winter (upper panel) and 

summer (lower panel). 

 

Figure 10:  Spearman correlations for the six temperature indices, five statistical 

downscaling methods and four seasons, averaged over eight Northern Italian (Emilia 

Romagna) stations.  

 

Figure 11:  Spearman correlations for the seven precipitation indices, five statistical 

downscaling methods and four seasons, averaged over 10 German Rhine stations. 

 

Figure 12:  Spearman correlations for average minimum temperature (tnav) 

downscaled using the UEA_CCA4 method for the European-wide dataset, for winter 

(upper panel) and summer (lower panel). 
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Figure 13:  Spearman correlations for the 10th percentile of minimum temperature 

(tnq10) downscaled using the FIC_ANAL2 method for the European-wide dataset, for 

winter (upper panel) and summer (lower panel). 

 

 

Figure 14:  Spearman correlations for the greatest 5-day rainfall total (px5d) 

downscaled using the FIC_ANAL2 method for the European-wide dataset, for winter 

(upper panel) and summer (lower panel). 

 

Figure 15a:  Spearman correlations for six statistical downscaling methods, averaged 

across the seven precipitation indices, four seasons and 16 Iberian Peninsula stations.   

Figure 15b:  Rank of absolute bias for six statistical downscaling methods, averaged 

across the seven precipitation indices, four seasons and 16 Iberian Peninsula stations.  

Lower biases are given a higher rank. 

Methods are from the following groups: DMI (CWG), KCL (GA-RBF,  RBF, CR), 

FIC (2SA), and UEA (CCA4). The vertical bars and lines shown the 5th and 95th 

percentiles of the distributions of the correlations and bias ranks. 

 

 

Figure 16:  Seasonal box-and-whisker plots of the ratio of downscaled standard 

deviation over observed standard deviation for four statistical downscaling methods 

for six precipitation indices and 10 Alpine stations. 
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Figure 1 
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Figure 2 
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Figure 3: 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15a: 
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Figure 15b 
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Figure 16 
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