

"Exploring inter-model uncertainties in scenarios of UK climate extremes using a daily weather generator"

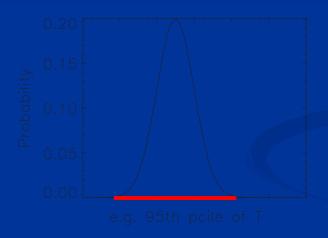
Dr. Craig Wallace [Climatic Research Unit, University of East Anglia]

UKCIP/EPSRC Building Knowledge for a changing climate

CRANIUM Climate Change Risk Assessment: New Impact and Uncertainty Methods

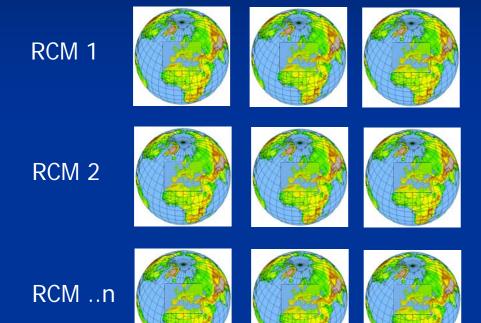
Acknowledgements:

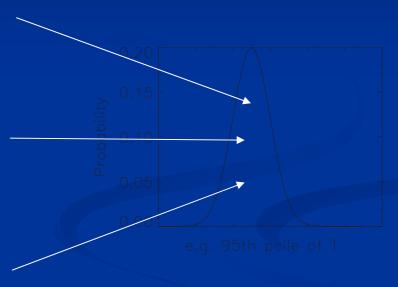
Dr. Clare Goodess Prof. Phil Jones



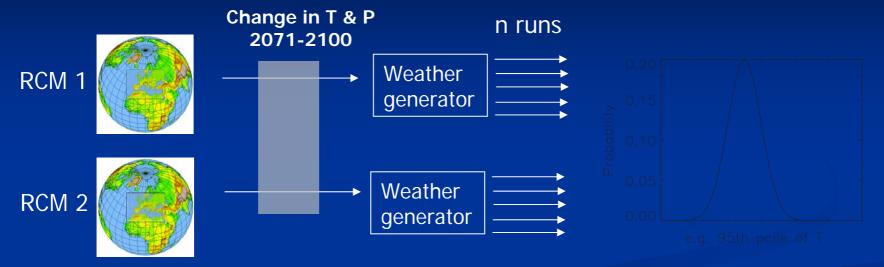
CRANIUM AIMS

PDFs of future UK climate extremes


2071-2100



- 1: Incorporating RCM uncertainty: the CRANIUM methodology
 - 2: Example changes in UK extremes by 2071-2100



The CRU weather generator:

- developed for BETWIXT (Watts et al., 2004)
- produces stochastic daily time series
- mean and s.d. constrained

PRUDENCE simulations

Control	Future Scen A2	Future Scen B2
1961-1990	2071-2100	2071-2100
HIRHAM (x2) HadRM3P CHRM CLM REMO RCAO (x2) PROMES RegCM RACMO Arpege (x2)	HIRHAM (x2) HadRM3P CHRM CLM REMO RCAO (x2) PROMES RegCM RACMO Arpege (x2)	HIRHAM HadRM3P RCAO (x2) PROMES RegCM Arpege (x2)

Which climate extremes are we interested in?

Heatwave duration
Number of hot days
Number of cold days
Fraction of rainfall from intense events...

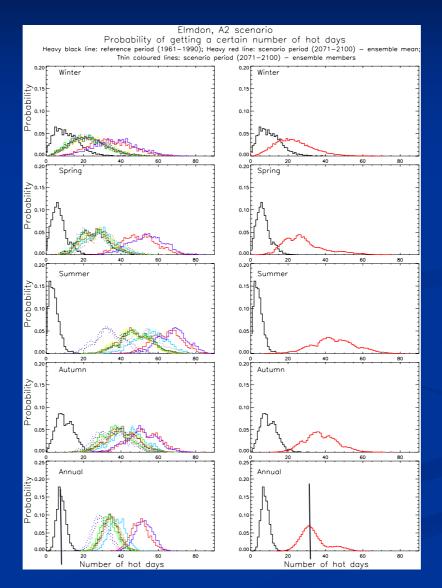
Station	Lat	Lon
1: Paisley	55.85	-4.43
2: Eskdalemuir	55.32	-3.20
3: Ringway	53.85	-2.28
4: Bradford	53.82	-1.77
5: Coltishall	52.77	1.35
6: Hemsby	52.68	1.68
7: Elmdon	52.45	-1.73
8: Heathrow	51.48	-0.45
9: Gatwick	51.15	-0.18
10: Yeovilton	51.00	-2.63

2: Example changes in UK extremes by 2071-2100

The number of **hot** days:

"The number of days in a year or season (within the future climate) where Tmax exceeds the 95th percentile of the year/season daily Tmax population within a reference climate"

Reference climate?


BETWIXT project conducted a suite weather generator simulations using *observed station* data as constraining parameters (rather than *future* changes) to obtain a number of years of control daily weather.

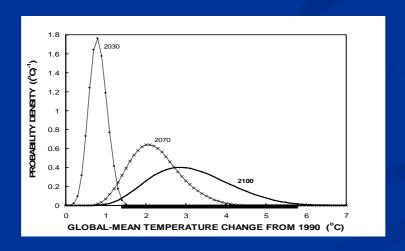
2: Example changes in UK extremes by 2071-2100

UEA NORWICH

Elmdon: under A2 scenario forcing

2071-2100: 31 hot days...

3: CONCLUSIONS



-consultation with stakeholders indicates PDFs are most useful tool for policy makers/stakeholdersRISK ASSESMENT

-CRANIUM combines RCM/weather generator technique to enhance population size and incorporate RCM uncertainty

-some GCM –related uncertainty is also captured in mean perturbed PDFs...but n only = 2..

-incorporating GCM uncertainty will widen PDF but provide more realistic forecasts

Wigley and Raper [2001]