Construction of climate scenarios for the BKCC integrating framework

CRU, University of East Anglia WRSRL, University of Newcastle Hadley Centre

UKCIP02 scenarios

- simulations for 1961-1990/2071-2100 only
- daily timescale output
- 50 km x 50 km resolution
- some present-day features poorly simulated
- limited emissions scenarios/single model
- urbanized portions of land surface neglected

Appropriate approaches

- CRU daily/hourly weather generators
- development & application of the GNSRP model for construction of specialised rainfall scenarios
- exploration of a more-physically based approach to wind scenario development
- new representation of urban areas in GCM simulations

Scenarios of climate change in urban areas

- new mosaic/tiling land surface scheme in HadAM3 (3.75° long. X 2.5° lat.)
- 1xCO₂ and 2xCO₂ (with scaling)
- additional inputs of sensible heat in urban areas (current energy consumption)
- mean temperature/extremes & humidity
- report due April 2004

Issues to be addressed

- UHI effect at present-day and validation
- importance of changes to UHI effect have urban changes been under or over estimated?
- importance of urban heat sources in the current climate & how this might change

Workshops, dissemination and ongoing support/advice

- two workshops May 2003 and 2004
- web site
- technical briefing notes
- support/advice on scenario use and availability of information/scenarios for additional variables
- bulletin board?

Deliverables from climate scenarios project

D1: Examples of WG/GNSRP model output for testing impacts models	July/December 2003
D2: Daily/hourly scenarios for 8 variables* for 3-5 representative case-study locations	April 2004
D3: Software package to run the GNSRP precipitation model for any given UK location	April 2004
D4: Report describing the analyses of changes to urban/rural temperature and humidity	April 2004
D5: Technical briefing notes on issues such as the models used and underlying assumptions, uncertainties and confidence limits, and guide to good practice in scenario use	December 2003 and April 2004

*Precipitation, min/max temperature, vapour pressure/relative humidity, sunshine duration, wind speed and PET

Climate scenario construction using the CRU daily and hourly weather generators (WG)

> Matthew Watts and Clare Goodess

Advantages of the CRU WGs

- daily and hourly time-series for specific point locations
- self-consistent scenarios for a number of variables

Scenario details

- Four UKCIP02 emissions scenarios (low, medium-low, medium-high and high) based on HadRM3 output
- Limited number of additional models?
- 3-5 case-study locations?
- 2020s, 2050s, 2080s?
- time series length, e.g., 30, 100, 1000 yrs?

- Task 1: modification & updating of the daily WG focusing on the development of generic, user-friendly subroutines for perturbing the parameters in climate change studies
- Task 2: Development of methodologies for perturbing the WG parameters based on UKCIP02 & to quantify some of the uncertainties
- Task 3: Improvements to the daily WG, focusing on secondary variables
- Task 4: Development of the hourly WG

Model Description

- Markov Chain Model
- First Order
- Continuous State
- Transfer Function : Gamma distribution

Model Operation

- Create transition matrix
- Calculate parameters for transfer function for each transition
- Derive general relationhip for parameters based on precipitation amount
- Calulate todays preciptation from yesterdays by inverting the transfer function
- Use todays precipitation to derive other variables

Example Model Data

STN	DY	MN	DY	HR	SS	TN	TX	VP	RH	WN	RN	PET
3772	1997	01	01	9999	1.06	-1.7	5.2	6.37 -99	99.99	0.57	5.00	-999.00
3772	1997	01	02	9999	1.24	3.5	0.5	5.27 -99	99.99	2.04	7.00	-999.00
3772	1997	01	03	9999	2.87	-0.7	5.8	6.43 -99	99.99	3.53	23.00	-999.00

Example daily output: end June 2003 Example hourly output: December 2003 Daily/hourly scenarios: April 2004