UK Climate
Impacts Programme

EPSRC Building Knowledge for a Changing Climate ,\

BETWIXT
Built EnvironmenT: Weather scenarios for
investigation of Impacts and eXTremes

BETWIXT Technical Briefing Note 1
Version 2, February 2004
THE CRU DAILY WEATHER GENERATOR
M. WATTS, C.M. GOODESS* AND P.D. JONES

Climatic Research Unit, University of East Anglia
Norwich, NR4 7TJ

*Corresponding author: c.goodess@uea.ac.uk




BETWI XT Technical Briefing Note 1 Version 2

1. INTRODUCTION

The starting point for climate scenario construction in the Building Knowledge for a
Changing Climate (BKCC) programme is the four generic IPCC SRES emissions scenarios
and the UKCIPO2 scenarios (Hulme et al., 2002) which are the most recent, detailed and
reliable climate scenarios for the UK. However, the UKCIPO2 scenarios have a number of
disadvantages with respect to the requirements of the BKCC programme. The spatial
resolution of these scenarios (50 km by 50 km) is still coarser than required for some
applications, for example, and they do not provide point-specific information. Some features
of the present-day climate, particularly with respect to extreme events such as high
temperatures and extreme precipitation, are poorly represented. A number of different
approaches could be used to address these disadvantages.

The most appropriate approach, given the lack of point-specific information and concern
about reliability, together with the need for self-consistent scenarios for a number of variables
(i.e., precipitation, temperature, vapour pressure, relative humidity, wind speed, sunshine
duration and reference potential evapotranspiration) is to use the Climatic Research Unit
(CRU) daily and hourly weather generators. The CRU daily weather generator is described
here. The hourly version will be described in a separate technical briefing note.

A number of different weather generators are available (see Wilks and Wilby, 1999, for a
review). The CRU daily weather generator was initially developed by Jones and Salmon
(1995). It has been substantially modified as part of the BETWIXT project and it is this
modified version that is described here.

Measurements of past meteorological observations at a given site are used to estimate the
model parameters, which are then used in a stochastic model to generate streams of daily
weather variables (Table 1).

Table 1: Weather variables produced by the daily CRU weather generator.

Primary generated variable:

Precipitation (mm)

Secondary generated variables:

Minimum temperature (degrees C)
Maximum temperature (degrees C)
Vapour pressure (hPa)

Wind speed (ms™)

Sunshine duration (hours)

Calculated variables:

Relative humidity (%)
Reference potential evapotranspiration (mm day™)
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Precipitation is the fundamental, primary variable in the weather generator, from which al the
other variables are derived using regression relationships or subsequent direct calculation.
Thus it is important that a sufficiently reliable method is used to generate precipitation. Here,
a first-order Markov chain model (Richardson, 1981) is used. Once precipitation has been
generated (Section 2), the secondary variables (minimum and maximum temperature, vapour
pressure, wind speed and sunshine duration) are generated (Section 3). Finaly, relative
humidity and reference potentia evapotranspiration are calculated from the generated
variables (Section 4). Note that in the hourly CRU weather generator, wind gust speed is also
calcul ated.

An example of how the CRU daily weather generator is run is presented in Section 5.
Detailed information about how the model performs (model validation) and is used to
construct climate scenarios will be presented in further technical briefing notes, as outlined in
Section 6.

2. GENERATING THE PRIMARY WEATHER GENERATOR VARIABLE -
PRECIPITATION

The Markov chain model generates the amount of precipitation (including zero amounts) on
any day by sampling at random from a distribution that is determined by the amount of
precipitation on the preceding day. Basing the distribution on the previous day’'s
precipitation, makes it a first order model. Using a continuous distribution for precipitation,
makes it an infinite state model. The distribution function, aso referred to as the transition
function (equation 2.1), is the incomplete gamma function (Gregory et al., 1993; Thom,
1958).

P(B.y;X) = B e x ik 1)

Equation 2.1 gives the probability for a given rainfall amount, x, and thus can be used in
reverse to calcul ate the rainfall amount using a number drawn from a random distribution.

The parameters y and g are calculated by fitting to observed precipitation, and are assumed to
depend on the previous day’ s precipitation and the time of year.

The continuous distribution of observed precipitation amount (including zero amounts) is
simulated by a discrete number of bins, whose divisions have to be chosen with some care:
too few and the continuous nature of the distribution is lost, but too many and there will not
be enough entriesin a bin to get reliable fits. Previous work undertaken in the CRU indicates
that 12 binsis an appropriate number. Daily data are divided into 24 haf-months to allow for
seasonal variation. Reliability is also improved by using a sufficiently long training data set —
at least 20 years of data are required.

In generating precipitation, the values for y and g are obtained by interpolating these

parameters, for the appropriate half-month, corresponding to the bins nearest to the previous
day’ s generated precipitation amount. The generated precipitation amount is found by using a
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random number generator to select a random vaue of precipitation from the distribution
specified by the appropriate values of y and f.

3. SECONDARY GENERATED VARIABLES — MINIMUM AND MAXIMUM
TEMPERATURE, VAPOUR PRESSURE, WIND SPEED AND SUNSHINE
DURATION

Mean temperature, diurnal temperature range, vapour pressure, wind speed and sunshine
duration are derived through first order auto-regressive processes (Mearns et al., 1984).
Minimum and maximum temperatures are then derived from the mean temperature and
diurnal temperature range. For reasons of simplicity, all variables are normalised to a mean
of unity and a standard deviation of one. Using the observed data, the regression weights are
calculated by fitting the appropriate equation (i.e., 3.1, 3.2, 3.3 or 3.4) for the appropriate
transition and variable.

3.1 Mean temperature and diurnal temperaturerange

As for precipitation, the data are divided up into half-monthly blocks so that any seasonal
variation of the regression weights can be allowed for. In addition, data for the following four
transition types are treated separately (including normalisation, see above):

Transition Yesterday Today
DD Dry Dry
ww Wet Wet
DW Dry Wet
WD Wet Dry

This is a necessity, as the correlation of temperature between successive DD days, say, is
distinctly different from successive WW days.

DD and WW

X, =aX, , +¢ 3.1)
DW

X, =aX,, +dP +¢ (3.2)
WD

X, =aX,_, +dP_ +e (3.3)

where the X; s are mean temperature or diurnal temperature range for the different transitions,
and a and d are the regression weights. The random element ¢ is the product of a number
chosen at random from a normal distribution, scaled to ensure that the overal standard
deviation of the generated seriesis unity.
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3.2. Vapour pressure, wind speed and sunshine duration
For vapour pressure, wind speed and sunshine duration

X, =aX_, +bT +cR +dP +¢ (3.4)

where X is vapour pressure, wind speed or sunshine duration, T; is mean temperature, R is
diurnal temperature range and P; is mean precipitation and a, b, c and d are the regression
weights. The random element ¢ is again the product of a number chosen at random from a
normal distribution, scaled to ensure that the overall standard deviation of the generated series
IS unity.

4. CALCULATED VARIABLES — RELATIVE HUMIDITY AND REFERENCE
POTENTIAL EVAPOTRANSPIRATION

4.1 Relative humidity

Relative humidity (rh) is calculated from vapour pressure (VP) using equation 4.1. Saturated
vapour pressure (VPs), which is required in equation 4.1, is caculated using the Magnus
equation 4.2:

th="P (4.1)
VP,

17.38t

vp, = 6.107e20+ (4.2)

wheret is mean temperature.

4.2 Reference potential evapotranspiration

Many methods are available for the calculation of potential evapotranspiration, some of which
have large and complex input data requirements. For BETWIXT purposes, a relatively
simple method which can be calculated from the CRU daily weather generator outputs is
required. A suitable method is the grass reference potential evapotranspiration (ET,)
calculated using the FAO (Food and Agricultural Organization) Penman-Monteith method
(Allen et al., 1994). The CRU and University of Newcastle have experience of using this
method for the construction of climate change scenarios in the EU funded SWURVE
(Sustainable Water: Uncertainty, Risk and Vulnerability in Europe) project
(http://www.ncl.ac.uk/swurve/). The choice of this method in the SWURVE project was
based on an inter-comparison of different formulations to estimate potential
evapotranspiration for European environments completed during the earlier EU-funded
WRINCLE (Water Resources. Influence of Climate change in Europe) project
(http://www.ncl.ac.uk/wrincle/).

Following the method of Allen et al. (1994), as implemented in the SWURVE project, ET, is
calculated using equation 4.3

900
A - v -
. :o 084(R, c;)+yT+273_16u2(ea e,)

° A+y(1+0.34U,)
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4.3
where:
ET, is reference crop evapotranspiration [mm day™]
R is net radiation at crop surface[MIm? d*]
G is soil heat flux [MIm? d™]
T is average temperature at 2 m height [°C]
U, is windspeed measured at 2 m height [m s
(exey) is vapour pressure deficit for measurement at 2 m height [kPa)
A is slope vapour pressure curve [kPa °C]
1% is psycrometric constant [kPa °C™]
900 is coefficient for the reference crop [kJ kg K d™], Allen et al. (1994)
0.34 iswind coefficient for the reference crop [sm™], Allen et al. (1994)

5. RUNNING THE CRU DAILY WEATHER GENERATOR

A suitably long (i.e., at least 20 year) daily time series of observed meteorological data must
be available in order to calibrate or train the weather generator for each location, i.e., in order
to calculate the weather generator parameters for each site. For BETWIXT, 10 such sites
have been identified in consultation with BKCC partners. These sites include Ringway
(Manchester Airport, 53.35 N 2.28 W, elevation 69 m), which has daily data for the period
1961-1995. The Ringway data were obtained from the British Atmospheric Data Centre and
are available for use by academic BKCC partners from the BETWIXT web site. They are
used here as an example of running the CRU daily weather generator.

The results shown in Figure 1 were obtained using 12 precipitation bins and a minimum
precipitation cutoff of 1.0 mm (i.e., any day with less than 1 mm of observed or generated
precipitation is defined as adry day). The weather generator is stochastic, which means that,
once the parameters have been calculated, it can be run for any length of time. The Figure 1
results are for a 35 year period, but a period of 100 or even 1000 years could be used if
desired. A different sequence of random numbers is produced each time the weather
generator isrun, hence different daily time series are produced each time. Thusit isimportant
to use output from multiple runs when validating performance, for example. The Figure 1
weather generator results are averaged over 1000 35-year long simulations. Although the
model was calibrated for the 35-year period 1961-1995, its stochastic nature means that there
is no day-by-day or year-by-year correspondence between the observed and simulated time
series.

Figure 1 shows the observed (blue) and simulated (red) proportion of dry days (upper panel)
and mean daily precipitation (lower panel) for each half-month for Ringway. The mean of the
1000 weather generator simulations is shown in each case, together with the plus/minus two
standard deviation range calculated across the 1000 simulations. In all half-months, the
observed vaue lies within the simulated range, indicating the good performance of the
weather generator with respect to these two statistics.
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Figure 1. Observed (blue) and smulated (red) proportion of dry days (top panel) and mean
daily precipitation (lower panel) for each half month at Ringway based on a 35 year period
Observed values are the mean for the period 1961-1995. The simulated values are the mean
of 1000 weather generator runs (red triangles). The red lines and bars show the variability
of the 1000 series (plotted as plug/minus two standard deviations around the mean).

6. CONCLUDING REMARKS

The CRU daily wesather generator is able to provide daily time series for the weather variables
listed in Table 1 for specific UK sites, such as Ringway, which have sufficient (i.e., at least 20
years) of observed datafor the primary and secondary generated variables.

The example results in Figure 1 indicate that the weather generator performs well with respect

to these two precipitation statistics (proportion of dry days and mean precipitation amount)
for Ringway. However, more extensive validation (including investigation of the ability to
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reproduce extreme events, such as high precipitation events, and the other generated weather
variables) is required before this daily weather generator can be used to construct climate
change scenarios for use in the BKCC programme. The results of these validation studies will
be described in another BETWIXT technical briefing note. Yet another briefing note, will
describe how the weather generator parameters are perturbed in order to construct climate
scenarios which are consistent with the UKCIPO2 scenarios. The latter note will aso
demonstrate how the CRU daily weather generator can be run using precipitation output from
the University of Newcastle GNSRP model (Burton et al., 2004) as the primary variable, in
order to obtain secondary and calculated variables (Table 1) that are fully consistent on a day-
by-day basis with the GNSRP generated precipitation.
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