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There now exists a growing 
network of temperature-
sensitive tree-ring density 
chronologies spanning much 
of the higher-latitude and 
high-elevation regions of 
the Northern Hemisphere 
(Figure 1).  Here we 
present several illustrations 
of the large regional-scale 
nature of the temperature 
signal in many of these 
data (Figures 2 and 3), data that were produced 
at the Institute of Forest, Snow & Landscape 
Research, Birmensdorf, Switzerland from data 
collected from generally cool and moist sites spread 

across the western United 
States, Canada, Europe, 
Fennoscandia and northern 
Siberia (Figure 1).

We show some examples 
of the information that 
has been gleaned about 
past temperature variability 
from these data (Figures 
4 , 5 , 6 and 7).  Despite 
a generally strong and 
consistently maintained 
relationship between 
extended summer warmth 
and density variability on the 
interannual time scale, there 
is an apparent increasing 
divergence in the decadally-
smoothed trends of growth 

and temperatures over the recent few decades 
(Briffa et al., 1998b) that may indicate an 
anthropogenic-related change in the climate/
growth response (Figures 4 and 5).  To 
investigate this in more detail requires a 
significant international initiative to update 
and improve the sample data base for the 
last few decades.
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Two periods (1688-1711 and 
1804-1827) from the 560 yearly 
maps of reconstructed summer 
temperatures, based on tree-
ring density data.  [From Briffa 

et al. (2000a)]
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Figure 1.  Location of the 387 
chronologies with tree-ring density 
measurements, and the 9 regions used 
in the analyses from which examples are 
illustrated here.  [From Briffa et al. (2000a)]

r(MXD,Temp)

-1.0

-0.5

0.0

0.5

1.0

C
o

rr
el

at
io

n

J J A S O N D J F M A M J J A S

O
ct

-S
ep

O
ct

-M
ar

A
p

r-
S

ep

M
ay

-A
u

g

Ju
n

-A
u

g

Previous
year

Same
year

Figure 2.  A summary of the individual 
temperature response functions for all maximum 

latewood density chronologies in the network.  
The triangles show the lower 5 to upper 95 

percentile ranges of all site correlations against 
local temperature for individual months prior to 

and during the growing season, and for some 
averaged ‘seasons’.  The histograms show the 

mean value of the individual correlations, while 
the circles show the simple correlations between 

the single chronology formed as the average of 
all individual sites chronologies, and the average 

temperature drawn from all co-located areas.
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Figure 3.  The dominant climate response structure within the tree-ring 
density data set, identified by Principal Component Analysis of the set of 
correlations between each chronology and monthly temperatures (from the 
previous June, through to the September of the year of growth).  Red dots 
indicate those chronologies with a similar pattern of seasonal temperature 
response to that shown on the right, with greater similarity indicated by larger 
dots.  [From Briffa et al. (2000a)]
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Figure 4.  Reconstructions (black lines with shading 
to indicate the 1 and 2 standard error ranges) of the 
9 regional summer (April-September) temperatures, 

calibrated against the observed record (red lines).  
The tree-ring density data were processed using 

an age-banding technique, to remove the age-bias 
effect without losing low-frequency variations.  The 

vertical red lines indicate when the early parts of the 
reconstructions have reduced reliability.  All curves 

have been smoothed with a decadal filter.  [From 
Briffa et al. (2000b)]
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Figure 7.  Comparison of various quasi-Northern 
Hemisphere temperature reconstructions, all 

recalibrated to represent April-September 
temperatures over all land north of 20(N.  The blue 

curve and shading shows the reconstruction based on 
age-banded tree-ring density data, together with its 1 
and 2 standard error uncertainty ranges.  All curves 
have been filtered by a 50-yr filter.  [From Briffa & 

Osborn (1999) and Briffa et al. (2000b)]
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Figure 5.  Reconstruction of the summer 
temperature from all land areas covered by the tree-
ring density data, for the recent period (upper panel) 
and decadally-smoothed for the past 600 years (lower 
panel).  The observed temperatures (red lines) are 
reconstructed using two alternative approaches to 
minimising the effect of age-related trends in the 
raw data: (i) by ‘age-banding’ the density data (black 
lines, with shading to indicate the 1 and 2 standard 
error ranges), a method that preserves long-timescale 
variability in the final chronology, but that requires 
large numbers of sample series, representative of 
different age trees and well distributed over time; 
or (ii) by standardising the density data (blue lines), 
by taking the ‘more traditional’ approach of taking 
residuals from modified exponential (Hugershoff) 
functions fitted to individual measurement series.
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Figure 6.  Reconstruction of summer temperature 
over the Northern Hemisphere land, based on 

Hugershoff standardised tree-ring density data.  These 
data provide excellent reliability at interannual to 

multi-decadal time scales, and exhibit a clear response 
to explosive volcanic eruptions (indicated by the 

purple arrows).  [From Briffa et al. (1998a)]


