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Table 2 Details of the PMIP models used in the compari-
son, with the LLN-2D model included for reference.
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The sectoral nature of LLN-2D means that it is not possible to get direct
estimates of long-term climate change at the regional scale (e.g. the British
Isles). Downscaling methodologies developed for use with GCMs cannot
be used with 2D models. Therefore a downscaling methodology, using a
rule-based approach, was developed (Burgess, 1998).

* For 0 and 6 ka BP, most of the PMIP values fall within one standard deviation (SD)
of downscaled temperatures from LLN-2D. A N A N AT

* At 21 ka BP the range of estimates from the PMIP models is large and the downscaled
LLN-2D temperature lies within the range of these estimates.

July temperature:

* The range of PMIP estimates at 0 and 6 ka BP is much larger for July than January
and the GCM values do not fall within one SD of downscaled temperatures.

* The range of the PMIP estimates remains large at 21 ka BP, all GCM values are
warmer than the downscaled LLN-2D values.
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Indices of English climatic states during the Late Quaternary were com-
pared with various LLN-2D model outputs from the LQ2 simulation. These
model timeseries were used to define critical thresholds of zonal climatic
parameters that coincide with local changes in climatic state. Figure 4 illus-
trates the procedure for assignment of Central England climatic states from
LLN-2D output. Once climatic states are defined, temperature and precipi-
tation values can be assigned using present-day climate analogue states, iden-
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Downscaled mean January and July temperature and precipitation for the = *At0and 6 ka BF, the PMIP values all fall within one SD of the downscaled LLN-2D Figure 5 Downscaled temperature and precipitation from
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tion from the nearest GCM land grid box to central England were extracted ~ Northern STATE * At 21 ka BP all PMIP models predict slightly higher precipitation than LLN-2D. from the PMIP models and raw LLN-2D output (*).

July precipitation:
* At 0 and 6 ka BP, most PMIP model estimates are slightly drier than the mean LLN-  * For temperature at 0 and 6 ka BF, downscaled values are much warmer than the raw
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from each of the PMIP models and are also plotted in Figure 5. Values
during glacial times are taken as the means over tundra analogue stations, as
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