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1. INTRODUCTION

Spatially complete representations of surface climate
are required for many purposes in applied and theoret-
ical environmental science. Examples include biogeo-
chemical modelling (Cramer & Fischer 1996), forestry
(Booth & Jones 1998), agriculture (Nicholls 1997,
Changnon & Kunkel 1999), hydrology and water re-
sources (Arnell 1999), climate change studies (Hulme
& Jenkins 1998, Hulme et al. 1999, Giorgi & Francisco
2000). Typically, the required spatial resolution of cli-
mate data increases with the resolution of analysis.
Global analyses of climate change impacts and terres-
trial biogeochemical cycling historically used data
gridded at 30’ latitude by longitude (lat/lon) or coarser
resolution, due to an absence of higher resolution data
that are global in extent as well as the computing
penalty invoked if higher resolution input data were
used. Regional and country scale analyses tend to

require higher resolution data (grid spacing <25 km)
so that climatic and climate-driven differences across
regions and within sub-regions can be identified (e.g.
Daly et al. 1994, Frei & Schar 1998). However, in many
regions of the world such high-resolution data have
not been available.

This paper describes the construction of a 10’ lat/lon
mean monthly climatology of surface climate over
global land areas, excluding Antarctica (henceforth
NEW01). The data set represents an improvement on
an earlier gridded climatology at 30’ lat/lon resolution
(henceforth NEW99, New et al. 1999) through an
increased spatial resolution, the incorporation of addi-
tional station data and the inclusion of a description
of precipitation variability, enabling the calculation of
probability distributions of monthly precipitation. The
climatology comprises a suite of variables: mean tem-
perature, diurnal temperature range, relative humidity,
sunshine, ground-frost frequency, wet-day frequency,
wind speed, and the 2 parameters of the Gamma distri-
bution fitted to monthly precipitation data.
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The data set was primarily developed for use in the
International Water Management Institute’s (IWMI)
World Water and Climate Atlas, but will also appeal to
a wider audience who require climate data at a resolu-
tion higher than that of previously available data sets.
The IWMI Atlas is designed as a growing collection of
data products and analytical tools focused on climate
and water resources, assembled in a standardized for-
mat that can be quickly and easily analysed using the
accompanying software package, the IWMI Synthe-
sizer. Examples of applications of the Atlas data in-
clude: identifying areas suitable for rain-fed agricul-
ture, providing inputs for hydrologic modelling of river
basins, providing basic climate data for crop model-
ling, and helping in the projection of water supply
and demand nationally and globally. Monthly climate
summaries for selected locations and variables are
available at the IWMI web site (www.iwmi.org), through
a purpose-developed web query engine (CAWQuer)
that accesses the full Atlas data set.

The structure of the paper is as follows. In Section 2
the station data and digital elevation data are briefly
described, and the Gamma distribution and its use
with monthly precipitation is discussed. Section 3
describes the thin-plate spline methodology used to
interpolate the station data to produce continuous
fields and their associated errors. In Section 4 the
derived grids are compared to a previous climatology
at 0.5° resolution, while in Section 5 regional examples
are used to illustrate some of the characteristics of the
gridded data. Section 6 draws the paper together with
a summary and some conclusions.

2. DATA

The climate station data used to construct the clima-
tology represent the fruits of a data collation program
at the Climatic Research Unit (CRU) extending from
the 1980s to the present day (Hulme 1994a,b, Jones
1994, Jones et al. 1999). These data have been com-
prehensively described by New et al. (1999, 2000), so
are only summarised in the sections that follow.

2.1. Sources

The station means used to construct the climatology
are predominantly climatological normals1 for the
period 1961 to 1990, collated from a number of sources.
These included direct contacts (and indirect contacts

via web-servers) with national meteorological agen-
cies and archive centres, the WMO 1961 to 1990 clima-
tological normals (WMO 1996), the Centro Interna-
cional de Agricultura Tropical (CIAT), as well other
published sources and personal contacts, and data sets
of monthly station time-series held in CRU. The main
sources are detailed below:

• Data supplied by National Meteorological Agen-
cies (NMAs) comprise by far the largest single data
source. Most of these data were supplied on diskette,
but about 23% were supplied either as published vol-
umes of 1961 to 1990 normals or on NMA paper copies.
Data on the latter 2 media were scanned or keyed in,
with independent checks against the originals.

• The WMO recently published the 1961 to 1990
climatological normals, which were merged with the
CRU data set. This resulted in 690 additional stations
that had data for at least 1 variable not previously in
the CRU data set.

• Several countries in Africa (e.g. Zaire and Angola)
and Southeast Asia (e.g. Cambodia) provided few or
no 1961 to 1990 normals to either CRU or the WMO.
In these cases data were extracted from 1 of 2 sources:
Müller (1982) and FAO (1984). Generally, these means
were calculated using data from the period 1931 to
1960. In the case of the FAO publications, the number
of years contributing to a mean was unknown. A small
number of stations from several other sources were
used. These included the USAF Climatological Data
Volume (USAF 1987) and a number of personal con-
tacts where data for between one and several tens of
stations were obtained.

• Personnel at CIAT have collated several thousand
climatological means for South and Central America
(P. Jones pers.comm.). Unfortunately, the period each
mean represents is unspecified, although the number
of years of record contributing to the mean is usually
supplied. These were assumed to be broadly represen-
tative of the period 1950 to 1990, but were in any case
assigned a lower weight in the interpolation scheme.

• Global data sets of monthly time series of precipi-
tation (Eischeid et al. 1991, updated), mean tempera-
ture (Jones 1994, updated), maximum and minimum
temperature (the Global Historical Climatology Net-
work; Easterling et al. 1997, with additions by CRU) for
several thousand stations worldwide were searched for
additional stations. CRU also holds smaller data sets of
monthly time series of the other variables. These data
have been quality-controlled and checked for inhomo-
geneities. Station means for 1961 to 1990 were calcu-
lated from these time series and added to the normals
data set.

Despite these data collation efforts, the CRU data in
many regions still represent only a sub-set of the
potentially available stations.
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1A ‘normal’ is a climatic average for a defined period, such
as the WMO standard normal periods of 1931–1960 and
1961–1990
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2.2. Quality control

Data from the WMO collection were subjected to a
fairly comprehensive series of quality control (QC)
checks by the National Climatic Data Centre (NCDC
1997). Data obtained directly from NMAs were
assumed to have been quality-checked at source.
Nonetheless, all data were subjected to a 2-stage QC
process. In the first stage, prior to interpolation, a stan-
dard series of automated tests were performed on indi-
vidual station normals. These tests were similar to
those used by the NCDC during the collation of the
WMO 1961 to 1990 climatological normals, namely:
(1) internal consistency checks, e.g. ensuring that the
monthly means follow a consistent seasonal cycle and
that predefined absolute limits are not exceeded; and
(2) between-variable consistency tests, e.g. ensuring
that monthly minimum, mean and maximum tempera-
tures are consistent and that months with zero precipi-
tation have zero wet-days.

The second stage of QC occurred during the interpo-
lation of station data, where the interpolation diagnos-
tics enabled identification of station-months that had
large residuals (see Section 3.2), and were potentially
in error. As a general rule, data that failed these QC
tests were removed from the interpolation. In some
cases, however, the data could be compared and re-
placed with normals calculated from the CRU monthly
station time-series described above.

2.3. Variables

The number of stations for each variable varies
markedly (Figs. 1 to 9). Precipitation and temperature
are the most widely available, followed by diurnal tem-
perature range (simply the difference between mean
maximum and minimum temperature). Windspeed is
the least widely reported variable with just over
3950 stations globally (Fig. 1), while precipitation has

3

Fig. 1. Distribution of
stations for which mean
wind speed was available

Fig. 2. Distribution of
stations for which mean
precipitation was available
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the most extensive and dense network, with some
27 000 stations for mean precipitation (Fig. 2) and
22 000 stations for the coefficient of variation (CV) of
precipitation (Fig. 3).

The ways in which surface climate variables are
measured and reported vary both within and between
countries. Common differences include gauge/instru-
ment type and height, measurement times, and the
units of measurement. For instance, precipitation mea-
surements can be influenced by several factors, most
notably gauge type, the ratio of solid to liquid precipi-
tation and wind conditions/turbulence. Various attempts
have been made to correct for such biases in precipita-
tion (e.g. Groisman et al. 1991, Legates & DeLiberty
1993, Yang et al. 1999, Groisman & Ranakova 2001).
The CRU data over the former USSR include the ori-
ginal data adjusted by Groisman et al. (1991), but we
made no attempt to correct precipitation data over
other regions; in most cases there was insufficient
information to attempt this.

Wind speed is measured at heights above the surface
of between 2 and 20 m. Measurement height varies both
within and between countries, and in many cases the
heights were not specified. Consequently, no corrections
were made to wind data. The large majority of known
heights were 10 m, and the interpolated wind field
should be assumed to represent speed at this height.

Differences in temperature measurement times have
been shown to induce disparities of several tenths of a
degree Celsius (Karl et al. 1986, Andersson & Mattison
1991) and different countries calculate mean tempera-
ture in various ways (Jones et al. 1986). Where pos-
sible, mean temperature was defined as the average of
mean maximum and minimum temperature, which are
measured more uniformly across the world. At stations
where only mean temperature was available, these
values were used, despite the uncertainty about their
derivation.

Wet-day frequencies were generally expressed as
the number of days per month with precipitation >0.1

4

Fig. 4. Distribution of stations
for which mean temperature 

was available

Fig. 3. Distribution of stations
for which the coefficient of
variation (CV) of monthly
precipitation was available
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Fig. 5. Distribution of sta-
tions for which diurnal
temperature range was 

available

Fig. 6. Distribution of sta-
tions for which wet-day
frequency was available.
Black and red dots repre-
sent stations for which
wet-day frequency was
provided with the 0.1 mm
and 1.0 mm thresholds
respectively. The latter
were converted to the
equivalent 0.1 mm wet-

day frequency

Fig. 7. Distribution of sta-
tions for which sunshine
(black) and cloud fraction
(red) was available. The
latter were converted to
sunshine percent as de-

scribed in the text
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or 1.0 mm. There were approximately twice as many
stations reporting wet-day frequency with a 0.1 mm
threshold than those with a 1.0 mm threshold; conse-
quently those with a 1.0 mm threshold were converted
to a 0.1 mm threshold, using the empirical conversion
procedure described by New et al. (1999). A small
number of normals (e.g. UK and Australia) used some
other threshold, typically 0.2 mm, and no adjustment
was made for these more moderate differences.

The data set contains normals for cloud cover and
sunshine, mostly from different stations. Sunshine nor-
mals were supplied as either mean hours per month
or percent of maximum possible bright sunshine. Total
cloud cover normals were mostly provided in oktas
(eighths) and sometimes in tenths. Normals in units of
sunshine hours were converted to percent of possible
maximum sunshine, and cloud cover normals were
standardised to oktas. For some countries both cloud
cover and sunshine data were available, but in most
instances either one or the other was provided. To
obtain more complete coverage, cloud cover was con-

verted to sunshine using the approach described by
New et al. (1999), which is based on the methodology
of Doorenbos & Pruitt (1984), but with an additional
latitudinal correction.

Humidity normals in the CRU data set comprised
roughly equal numbers of relative humidity (RH) and
vapour pressure (e). Vapour pressure measurements
were converted to RH using the equation:

(1)

where esat is the saturated vapour pressure (in hPa) at
mean air temperature (T), calculated using the Clau-
sius-Clapeyron equation (Shuttleworth 1992, p. 4.3):

(2)

This estimation is reliable provided that tempera-
ture and relative humidity are measured simultane-
ously and the temperature is above zero. In some
cases the mean temperatures at the times of mea-
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Fig. 8. Distribution of sta-
tions for which relative hu-
midity (black) and vapour
pressure (red) was avail-
able. The latter were con-
verted to relative humidity,
as described in the text

Fig. 9. Distribution of sta-
tions for which ground frost
frequency (black) and air
frost frequency (red) were
available. The latter were
converted to ground frost
frequency, as described in
the text. Blue dots repre-
sent stations where mini-
mum temperature was used
to estimate ground frost 

frequency
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surement were available and the estimated RH can
be considered reliable. However, in many cases only
the mean, or minimum and maximum temperature
was available, while RH was the mean of 1 or sev-
eral daily measurements. Validation of the conver-
sion using stations where both RH and e were avail-
able suggest the estimated RH will have errors of up
to ±15% (New et al. 1999). Below freezing, 2 issues
complicate the measurement of vapour pressure
and its conversion to RH. First, saturation vapour
pressure over ice is lower than over water, and not
all instruments can account for this. Secondly, satu-
rated vapour pressure decreases from ~1.0 hPa at
–20°C to ~0.15 hPa at –40°C; at these low pressures
small absolute measurement errors (~0.1 hPa) are
large in relative terms, and induce similarly large
errors in RH. These problems are revisited in Sec-
tion 5, where the gridded data are evaluated over
selected regions.

Most ground frost normals were defined as the fre-
quency of grass minimum temperatures <0°C. Some
normals, however, were defined as the frequency of
minimum air temperatures <0°C and these had to be
converted to ground frost frequency. As there was no
straightforward theoretical basis for this conversion,
the empirical formula derived by Hulme et al. (1995)
was used. Validation of this formula indicated that the
estimates are typically accurate to within 2 d mo–1

(New et al. 1999). For much of the tropics, no ground
frost or air frost normals were available for the obvious
reason that temperatures rarely fall below freezing
point. This absence of data presented problems for the
interpolation of frost frequency to high elevations in
the tropics. In these regions, ground frost frequency
was estimated from minimum temperature data using
the formulation of New et al. (1999).

The interpolation described in Sec-
tion 3 makes use of elevation as a co-
predictor. The elevation data used to
create grids of the interpolated sur-
faces derives from the GLOBE 1 km
elevation database, downloaded from
the National Geophysical Data Centre
(NGDC 2000). The GLOBE elevation
data were resampled to produce a 10’
elevation grid, simply by calculating
the average of all GLOBE elevations in
each 10’ grid box. A 10’ cell was con-
sidered to be ocean only if <25% of
the constituent GLOBE elevation cells
were land. As a result, the elevation of
any 10’ cell designated as land repre-
sents the average elevation of at least
100 (maximum 400) GLOBE elevation
points.

2.4. Precipitation probabilities

In order to estimate precipitation exceedence proba-
bilities, the Gamma distribution was chosen to model
the probability distribution of monthly precipitation.
Although other distributions are possible (Stedinger et
al. 1992, Hutchinson 1995b), the Gamma distribution
can be easily calculated using the ‘method of moments’
—the mean and standard deviation of the observed
data are used to define the 2 parameters of the Gamma
distribution (Stedinger et al. 1992):

(3)

(the ‘shape’ parameter)

(the ‘scale’ parameter)

where µx is the arithmetic mean, σx is the standard
deviation, and CV is the coefficient of variation. The
commonly used terms of ‘shape’ and ‘scale’ for para-
meters α and β arise from the effect they have on the
Gamma probability density function, illustrated in
Fig. 10. α controls the shape (or skewness) of the distri-
bution, as a function of the relative variability, or coef-
ficient of variation (CV). A high CV results in a posi-
tively skewed distribution, while a lower CV produces
a more normal distribution. In contrast β describes the
scale over which the distribution occurs. For any shape,
the scale increases (β decreases) as the arithmetic mean
of the distribution increases.

Using parametric estimators also simplifies the inter-
polation procedure, because only the mean and coeffi-
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Fig. 10. The probability density function for the Gamma distribution, with α and
β defined for a range of coefficients of variation (CVx) and for data with a mean 

(µx) of 20 and 100
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cient of variation of precipitation need to be inter-
polated. Fields of the parameters of the Gamma distri-
bution can then be calculated from the gridded mean
and CV fields. This approach was used because µ and
CV are easier to interpret and verify than α and β. The
alternative—interpolating α and β directly—would
have made intuitive verification of the interpolated
fields more difficult.

A further advantage of interpolating the mean and
CV of precipitation lay in the larger number of precipi-
tation normals (means) in the CRU data set. In contrast,
precipitation CVs had to be calculated from monthly
time-series in the CRU data set, which contains far
fewer stations (compare Figs. 2 & 3). Interpolation of
α and β directly would have limited the number of sta-
tions to those in the data set of station time series.

A limitation of the use of the Gamma distribution is its
behaviour when fitted to data with many months with
zero precipitation, a common occurrence in arid and
seasonally arid regions. In such situations, the empirical
cumulative distribution function is discontinuous near
zero, while the Gamma cumulative distribution func-
tion is continuous, and tends to approach zero as x

approaches zero. Because of this the frequency of dry
months inferred from the fitted distribution will tend to
be underestimated. An alternative procedure would be
to estimate the probability of zero rainfall from the data,
and then estimate the Gamma distribution only for non-
zero values of monthly rainfall. However, this would
have required separate interpolation of fields of zero
probability and precluded the use of stations for which
mean rainfall was available, thus reducing station con-
trol. For these reasons, the simpler approach described
in the previous paragraph was adopted.

The effect of fitting the Gamma distribution to all
data is illustrated in Fig. 11, which shows the fitted
and empirical percentiles of monthly precipitation at
Niamey (Niger), encompassing a wide range of precip-
itation regimes. In January, the height of the dry sea-
son, only 4 mo with rainfall have occurred in the 93 yr
on record; thus the empirical probability of zero rain is
~0.96. In contrast, the fitted distribution predicts the
probability of zero rainfall to be lower, at 0.94. A fur-
ther consequence of this bias is that the predicted
rainfall quantiles are overestimated (underestimated)
at lower (higher) percentiles.

8

Fig. 11. Fitted (Gamma distribution) and empirical percentiles of monthly precipitation at Niamey, Niger
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April and October precipitation at Niamey represent
intermediate cases, where there are fewer dry months
(30 and 45% respectively; see Fig. 11). As with Janu-
ary, the probability of zero rainfall is underestimated,
this time by ~20%. Similarly, the lower (higher) precip-
itation totals are overestimated (underestimated), by a
few mm at lower totals and 10 to 20 mm at higher
totals. In July, during the West African monsoon, all
months in the record have rainfall, with a minimum of
30 mm. Here the fit is much better and the biases at
low and high totals are not as marked; nonetheless,
there remains over- and underestimation at the lowest
and highest totals respectively.

Similar results were found when evaluating the
Gamma distribution in a number of climatic environ-
ments (United Kingdom, Southern Africa, Brazil and
India), but are not shown here. These results all sug-
gest that, apart from the largest percentiles, the esti-
mation error in all months is only a few mm, and is not
significant in most practical applications (e.g. crop suit-
ability assessments). At the largest percentiles, pre-
cipitation is considerably overestimated and estimates
at these percentiles should be treated with caution;
indeed it is recommended that precipitation should be
estimated only between the 10th and 90th percentiles
to avoid the relatively large errors associated with the
tails of the fitted distributions.

3. INTERPOLATION

3.1. Thin-plate smoothing splines

The station climate statistics were interpolated using
thin-plate smoothing splines (ANUSPLIN) developed
by Mike Hutchinson at the Australian National Univer-
sity (Hutchinson 1999). The original thin-plate spline-

fitting technique is described by Wahba (1979), while
Hutchinson (1995a) provides a theoretical description
of their application to surface climate variables such as
precipitation. Spline interpolation is robust in areas
with sparse or irregularly spaced data points. Thin-
plate splines are defined by minimising the roughness
of the interpolated surface, subject to the data having a
predefined residual. This is usually accomplished by
determining the amount of data smoothing that is
required to minimise the generalised cross validation
(GCV). The GCV is calculated implicitly and hence
without recourse to computationally demanding itera-
tive procedures. The main advantage of splines over
many other geostatistical methods is that prior estima-
tion of the spatial auto-covariance structure is not
required (Hutchinson 1995a).

Using the Bayesian arguments of Wahba (1983) and
Silverman (1985) to define the error covariance matrix
of the fitted values, the ANUSPLIN package also
enables the calculation of spatially distributed stan-
dard errors about the fitted surface. The Bayesian stan-
dard error can be interpreted in an analogous manner
to the standard error in linear regression. Confidence
intervals for the predicted surface can be estimated by
multiplying the surface standard error by 1.96, the
95% 2-sided confidence interval for the standard nor-
mal distribution.

3.2. Interpolation of climate variables

The approach to interpolation of all surface climate
variables except precipitation CV is the same as that
described by New et al. (1999). Trivariate thin-plate
spline surfaces were fitted as functions of latitude, lon-
gitude and elevation to the station data over several
regional domains or ‘tiles’ (Fig. 12). The inclusion of

9

Fig. 12. Spatial domains or
‘tiles’ over which the inter-
polations of surface climate
data were performed. Note
that for some variables,
most notably precipitation,
the actual surface fitting
was undertaken over 2 or
more sub-tiles within each
domain in order to reduce 
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elevation as a co-predictor adds considerable skill to
the interpolation, enabling topographic controls on
climate that are resolved by the station data to be cap-
tured. For some of the variables, especially precipita-
tion, station numbers were too large for available com-
puter memory to permit interpolation over an entire
domain. In such cases the continental domains were
divided into sub-areas that were subsequently merged.
Sub-areas were defined with overlaps of several de-
grees latitude and/or longitude to avoid discontinuities
when they were merged.

Precipitation CV was interpolated as a function of
latitude, longitude and mean precipitation. There were
2 main reasons for this. First, CV is closely (inversely)
related to mean precipitation and we found that pre-
cipitation was as good or better as a predictor of CV
than elevation in most regions. Second, making the
interpolated CV dependent on mean precipitation
ensured that the 2 statistics varied together in a consis-
tent manner in regions with poor station control. The
alternative, interpolating CV as a function of location
and elevation, increased the likelihood of different ele-
vation dependencies arising during the surface fitting
process, with the consequence that the mean and CV
of precipitation would not necessarily vary together in
a consistent manner.

The spline-fitting program provided a list of the sta-
tions with the largest residuals from the fitted surfaces.
These lists were used to identify and check potentially
erroneous stations. In some instances, these stations
were deemed to be correct and their positions as outliers
were assumed to be due to local climatological variations
that could not be resolved with the available network.
However, a number of station outliers were found to
have identifiable errors—most common mistakes in-
cluded inaccurate locational and/or elevation informa-
tion, and typographic errors, where values for a single
month did not fit in with the overall seasonal pattern.
Stations such as these were corrected or, if this was not
possible, excluded from the interpolation data set.

Once spline surfaces had been fitted to the station
data, the resultant surface coefficients were used in con-
junction with the 10’ elevation data to calculate grids of
climate variables. In the case of precipitation CV, the
(interpolated) grid of mean precipitation was used in-
stead of the elevation to compute the gridded estimates.
At this stage, the grids were plotted and inspected visu-
ally for errors that might have escaped the earlier QC.

3.3. Interpolation errors

By definition, geostatistical interpolation involves
errors, as it is the error structure of the input data that
helps to define the fitted surface. For geostatistical

interpolation to be appropriate, the data should have
some spatial predictability. Variability in the data that
is not predictable (in this case, variability that is not a
function of latitude, longitude and elevation) is consid-
ered to be noise. Thus local topographic effects such as
rain shadows cannot be resolved unless: (1) a predictor
that is a proxy for this influence is incorporated in the
interpolation, and/or (2) there are sufficient stations to
capture this local dependency as a function of latitude,
longitude and elevation. In regions with sparse data,
the station networks used to create these data sets are
clearly unable to capture this sort of detail and the
interpolated fields will represent the larger-scale (>25
to 50 km) climatic regime; however the surfaces will
nonetheless explicitly incorporate the larger-scale cli-
mate lapse rates and these will be reflected in the grid-
ded data set as a function of local elevation in the
gridded elevation data. In regions with increasingly
dense station data, increasingly finer-scale topographic
dependencies will be resolved.

The noisier the data are (in terms of predictability as
a function of latitude, longitude and elevation), the
greater will be the predictive error as one moves away
from control stations. The spline-fitting program pro-
vides an estimate of this predictability through the
GCV. Although calculated implicitly, the GCV is equi-
valent to removing each data point in turn and sum-
ming, with appropriate weighting, the square of the
difference between the omitted point and that pre-
dicted by a surface fitted using all the other points.

The square root of the GCV (RTGCV) for each inter-
polation domain and variable is shown in Tables 1 to 9. As
would be expected, the mean cross validation errors are
similar to those reported for NEW99 (using a similar set
of station data). The variables with the highest relative
error are precipitation (Table 1) and wind speed
(Table 9). In the case of precipitation this is because of 
its inherent spatial variability, even though there are
>27000 stations in the data set. RTGCV for precipitation
varies from <10% of the domain mean over NE North
America to >50% in domains with variable elevation
and low station density, such as South America and Cen-
tral Asia. Wind speed has the sparsest station network,
with consequent high cross validation errors; the sparse
network is compounded by difficulties in interpolating
the rather large gradients in wind speed from coastal to
inland sites, the variability in measurement heights (Sec-
tion 2.3) and the strong control of local topography in
modifying the larger-scale wind regime.

The relative RTGCVs for precipitation CV lie be-
tween 20 and 40% of the domain mean CV, with no
region exhibiting relative errors that are notably larger
than other regions. This is at least in part because the
regions with the most variable CV also have the high-
est domain-mean CV, so large absolute errors are less

10
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Table 1. Square root of the generalised cross validation (RTGCV; expressed as the percent of the domain-mean) for precipitation
over the interpolation domains.  Note that in some cases the continental domains were subdivided into smaller interpolation tiles 

to reduce the computation times where there were a large number of stations present

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Asia 20° S, 45° E–40° N, 160° E 46 44 41 42 39 35 36 36 34 39 44 43
Australia 60° S, 90° E–12° N, 140° E 32 31 30 29 28 27 30 29 29 29 30 31
Australia 60° S, 140° E–12° N, 180° E 21 22 21 22 23 25 25 26 27 23 22 20
C. Asia 25° N, 55° E–90° N, 180° E 59 54 53 59 47 65 62 54 45 41 21 55
C. America 8° N, 120° W–20° N, 25° W 61 61 56 38 28 23 25 23 21 24 36 54
C. America 0° N, 50° W–20° N,25° W 17 17 15 18 21 26 36 37 43 38 27 21
C. America 0° N, 120° W–20° N,80° W 56 49 48 40 31 24 26 26 24 29 44 60
C. America 0° N, 80° W–20° N,50° W 36 31 29 26 25 26 32 30 27 26 31 39
Europe 30° N, 20° W–85° N,10° E 20 19 19 16 13 14 15 15 17 18 18 20
Europe 30° N, 10° E–85° N,60° E 31 30 30 25 21 21 22 23 31 31 29 32
N. Africa 5° S, 25° W–40° N,60° E 29 28 28 36 40 35 34 31 32 38 38 34
N. America 35° N, 80° W–85° N,20° W 11 10 9 9 8 8 7 8 9 10 8 9
N. America 20° N, 180° W–35° N,20° W 26 33 37 39 30 21 23 22 22 27 36 33
N. America 35° N, 180° W–85° N,105° W 27 27 25 22 17 14 13 13 18 28 27 27
N. America 35° N, 105° W–85° N,80° W 15 11 10 8 8 8 10 8 10 10 9 11
S. Africa 40° S, 0° E–0° N,60° E 29 28 27 34 41 35 33 31 32 39 32 29
S. America 60° S, 110° W–15° S,20° W 17 20 20 26 33 36 38 36 28 23 21 19
S. America 15° S, 110° W–0° N,50° W 27 25 27 28 30 34 40 40 36 31 31 32
S. America 15° S, 50° W–0° N,20° W 17 18 16 20 26 33 44 46 44 30 22 19

Table 2. RTGCV as for Table 1, but for the coefficient of variation of precipitation

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 25 21 21 16 16 18 17 21 19 15 16 20
Asia 20° S, 87° E–40° N, 160° E 25 29 25 23 22 26 24 29 28 28 33 34
Asia 20° S, 45° E–40° N, 87° E 29 28 30 33 33 26 29 30 25 25 28 28
C. Asia 25° N, 55° E–90° N, 180° E 33 30 32 37 35 23 23 23 22 25 30 30
C. America 25° S, 120° W–25° N, 25° W 23 21 22 22 24 29 29 31 28 26 25 22
Europe 30° N, 20° W–85° N, 60° E 26 21 18 22 29 29 34 35 25 26 22 20
N. Africa 5° S, 25° W–40° N, 60° E 26 26 29 32 33 32 33 36 31 28 28 24
N. America 20° N, 180° W–80° N, 95° W 22 20 23 21 24 28 30 25 18 16 18 21
N. America 20° N, 95° W–80° N, 20° W 22 19 20 17 15 17 19 16 14 14 19 21
S. Africa 40° S, 0° E–0° N, 60° E 39 40 33 34 30 37 41 39 34 26 35 37
S. America 60° S, 110° W–0° N, 20° W 20 20 21 22 25 29 29 31 28 27 26 22

Table 3. RTGCV for mean monthly wet-day frequency (expressed in d mo–1) over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 1.8 1.7 1.9 1.8 2.1 2.1 2.1 2.1 2.1 2.1 1.9 2.0
Asia 20° S, 45° E–40° N, 160° E 1.8 1.6 1.6 1.7 1.7 2.0 2.6 2.5 1.9 1.6 1.7 1.8
C. Asia 25° N, 55° E–90° N, 180° E 1.5 1.3 1.3 1.2 1.2 1.7 2.4 2.3 1.6 1.2 1.2 1.5
C. America 0° N, 120° W–20° N, 25° W 2.5 2.1 2.3 2.2 2.5 3.1 3.6 3.5 3.2 2.8 2.4 2.5
Europe 30° N, 20° W–85° N, 60° E 1.8 1.6 1.6 1.4 1.3 1.2 1.3 1.4 1.6 1.6 1.6 1.8
N. Africa 5° S, 25° W–40° N, 60° E 1.8 1.8 1.9 1.8 1.9 1.6 1.8 1.9 1.7 1.9 1.9 1.9
N. America 20° N, 180° W–47° N, 20° W 2.3 1.9 1.8 1.5 1.5 1.6 1.7 1.9 1.8 1.9 1.7 2.2
N. America 47° N, 180° W–85° N, 20° W 2.3 1.9 1.8 1.6 1.7 1.5 1.4 1.5 1.5 1.6 1.8 2.2
S. Africa 40° S, 0° E–0° N, 60° E 2.1 2.3 2.4 2.2 2.3 1.9 1.9 2.0 2.1 2.4 2.5 2.2
S. America 60° S, 110° W–0° N, 20° W 3.5 3.1 3.5 3.4 3.7 4.1 4.3 4.2 3.8 3.4 3.3 3.6
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Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 3.9 3.8 3.6 3.8 3.7 3.5 3.7 3.5 3.4 3.6 3.6 3.7
Asia 20° S, 45° E–40° N, 160° E 5.7 5.4 5.2 4.8 4.8 4.7 4.7 4.7 4.9 4.9 5.4 5.7
C. Asia 25° N, 55° E–90° N, 180° E 6.7 6.4 6.3 5.5 5.4 5.4 5.1 5.1 4.9 5.7 6.0 6.5
C. America 0° N, 120° W–20° N, 25° W 4.8 4.9 4.8 4.8 4.6 4.2 4.4 4.3 4.2 3.8 4.1 4.5
Europe 30° N, 20° W–85° N, 60° E 3.6 3.5 3.4 3.4 3.8 4.0 4.1 3.9 3.7 3.3 3.3 3.5
N. Africa 5° S, 25° W–40° N, 60° E 4.8 4.6 4.7 4.7 5.0 5.4 5.6 5.6 5.2 4.7 4.7 4.8
N. America 20° N, 180° W–85° N, 20° W 4.8 5.1 5.2 5.4 5.1 4.3 4.2 3.9 3.7 3.9 4.3 4.6
S. Africa 40° S, 0° E–0° N, 60° E 5.0 4.7 4.7 5.0 5.2 5.6 5.6 5.5 5.2 5.1 5.3 5.1
S. America 60° S, 110° W–0° N, 20° W 4.4 4.5 4.2 4.1 3.9 4.2 4.5 4.7 4.5 3.8 3.9 4.4

Table 4. RTGCV (expressed in °C) for mean monthly temperature over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.2 1.0 1.0 1.0 0.9
Asia 20° S, 45° E–40° N, 160° E 1.1 1.1 1.1 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.1 1.1
C. Asia 25° N, 55° E–90° N, 180° E 1.1 1.1 1.0 0.8 0.8 1.0 1.0 1.0 1.0 0.8 1.0 1.0
C. America 0° N, 120° W–20° N, 25° W 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1
Europe 30° N, 20° W–85° N, 60° E 1.1 1.0 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.1
N. Africa 5° S, 25° W–40° N, 60° E 1.8 1.6 1.4 1.4 1.5 1.6 1.7 1.7 1.6 1.5 1.6 1.7
N. America 20° N, 180° W–85° N, 110° W 1.5 0.9 0.9 0.7 0.6 0.7 0.7 0.7 0.7 0.6 0.8 0.9
N. America 20° N, 110° W–85° N, 90° W 1.3 0.9 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.9
N. America 20° N, 90° W–85° N, 75° W 0.6 0.7 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.6 0.5 0.6
N. America 20° N, 75° W–85° N, 20° W 0.7 0.8 0.6 0.6 0.7 0.6 0.7 0.6 0.6 0.6 0.6 0.7
S. Africa 40° S, 0° E–0° N, 60° E 1.5 1.5 1.4 1.4 1.5 1.7 1.7 1.6 1.5 1.4 1.4 1.4
S. America 60° S, 110° W–0° N, 20° W 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N,180° E 2.2 2.3 2.3 2.2 2.2 2.2 2.3 2.6 2.3 2.2 2.2 2.1
Asia 20° S, 45° E–40° N,160° E 2.4 2.3 2.4 2.3 2.4 2.4 2.5 2.5 2.6 2.7 2.5 2.4
C. Asia 25° N, 55° E–90° N,180° E 1.8 1.4 1.7 1.6 1.6 1.4 1.3 1.3 1.5 1.6 1.7 1.7
C. America 0° N, 120° W–20° N,25° W 2.5 2.6 2.5 2.6 2.4 2.2 2.1 2.1 2.1 2.2 2.4 2.6
Europe 30° N, 20° W–85° N,60° E 1.5 1.5 1.7 1.8 2.0 2.1 2.2 2.2 2.1 2.0 1.7 1.5
N. Africa 5° S, 25° W–40° N,60° E 3.1 3.1 3.2 3.2 3.5 3.8 3.8 3.9 3.8 3.6 3.2 3.0
N. America 20° N, 180° W–85° N,105° W 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.4 1.3 1.3
N. America 20° N, 105° W–85° N,85° W 1.4 1.5 1.5 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.4 1.4
N. America 20° N, 85° W–85° N,20° W 0.9 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.9
S. Africa 40° S, 0° E–0° N,60° E 2.8 2.9 2.8 2.8 3.2 3.7 3.7 3.6 3.2 2.9 2.6 2.7
S. America 60° S, 110° W–0° N,20° W 1.7 1.7 1.6 1.6 1.7 1.8 1.9 1.9 1.8 1.7 1.7 1.9

Table 5. RTGCV (expressed in °C) for mean monthly diurnal temperature range over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 0.8 0.9 1.4 2.7 3.6 4.1 4.2 3.9 3.3 2.8 1.9 1.1
Asia 20° S, 45° E–40° N, 160° E 1.9 1.6 1.8 1.5 1.0 0.7 0.5 0.5 0.9 1.4 2.0 2.0
C. Asia 25° N, 55° E–90° N, 180° E 1.8 1.5 1.8 1.6 1.2 0.8 0.5 0.7 1.1 1.5 2.0 2.1
C. America 0° N, 120° W–20° N, 25° W 2.2 1.9 1.5 1.0 0.7 0.5 0.5 0.5 0.5 0.9 1.5 2.0
Europe 30° N, 20° W–85° N, 60° E 2.5 2.3 2.5 2.3 1.6 0.8 0.4 0.6 1.1 1.9 2.4 2.6
N. Africa 5° S, 25° W–40° N, 60° E 2.5 2.1 2.3 1.7 0.8 0.7 0.7 0.6 0.6 1.5 2.1 2.5
N. America 20° N, 180° W–50° N, 95° W 2.1 1.9 2.0 1.7 1.3 1.1 0.6 0.8 1.3 1.7 1.7 1.9
N. America 50° N, 180° W–85° N, 20° W 1.5 1.3 1.8 1.8 1.8 1.4 0.8 1.2 1.7 2.1 1.4 1.3
N. America 20° N, 95° W–50° N, 20° W 0.4 0.4 0.8 1.4 1.4 1.1 0.3 0.6 1.5 1.7 1.2 0.6
S. Africa 40° S, 0° E–0° N, 60° E 0.5 0.5 0.4 0.5 1.4 2.1 2.3 1.8 0.9 0.5 0.4 0.5
S. America 60° S, 110° W–0° N, 20° W 0.6 0.5 0.7 0.9 1.2 1.3 1.3 1.3 0.9 0.9 0.7 0.8

Table 6. RTGCV (expressed in d mo–1) for mean monthly ground frost frequency over the interpolation domains

Table 7. RTGCV for mean monthly relative humidity (%) over the interpolation domains
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significant when expressed in relative terms. Wet-day
frequency cross validation errors vary between 1 and
4 d mo–1, with largest errors over South and Central
America—again due to topographic complexity—and
over Asia and Central Asia in the monsoon period.

Cross validation errors for mean temperature are
close to 1°C in all regions (Table 4), with lowest errors
again in areas where station coverage is dense relative
to the spatial complexity of temperature. Prediction
errors for diurnal temperature range are greater, vary-
ing between 1 and 4°C. This is partly because diurnal
temperature range is a function of both minimum and
maximum temperature, which are more difficult to
predict than mean temperature, but also because there
are fewer diurnal temperature range stations.

Ground frost frequency, relative humidity and sun-
shine percent RTGCVs (Tables 6 to 8) are between 10
and 20% of the domain-wide means (absolute errors of
between 3 and 7% for relative humidity and sunshine
percent, and 1 to 3 d for ground frost frequency). Higher
errors for ground frost frequency occur where frost is a
significant factor, and hence relative errors remain low.

4. COMPARISON TO PREVIOUS CLIMATOLOGIES

As noted in Section 1, the climate data sets differ
from an earlier version (NEW99) in 2 main ways: the

data are interpolated onto a finer-resolution grid
(10’ compared to 30’) and the station data set has been
expanded to include additional stations for some vari-
ables in some areas. Generally, these 2 enhancements
interact to produce differences (or ‘added value’) be-
tween the new 10’ and old 30’ grids. New station data
should improve the interpolation skill, especially in
areas with more complex mesoscale (100 to 10 000 km2)
climate, where a sparser network may have captured
only the regional trend surface. A higher-resolution
elevation grid enables the surface fitted to such a grid
to reflect the influence of local elevation effects not
resolved by a coarser grid, provided the surface co-
efficients incorporate this effect.

A comprehensive evaluation of differences between
NEW01 and NEW99 is a non-trivial task that goes
beyond the scope of this paper, and so we provide only
a summary of ‘added value’. As there are no global-
scale data sets at this resolution, we do this primarily
through comparison of NEW99 and NEW01 to station
data. The comparison involves a number of steps. First,
the monthly mean climate at each station is estimated
from the 4 nearest grid points in NEW99 and NEW01
using an inverse-squared-distance weighting scheme.
The absolute difference between each station data
point and the monthly estimates are then calculated
(i.e. 12 per station). These differences are summarised
by computing the mean of all the monthly absolute
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Table 8. RTGCV for mean monthly sunshine fraction (%) over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 5.9 6.2 5.8 6.9 6.2 6.5 6.4 6.1 6.5 6.2 6.0 6.7
Asia 20° S, 45° E–40° N, 160° E 6.6 6.5 5.9 6.0 6.1 6.9 7.5 7.1 6.8 5.8 5.9 6.9
C. Asia 25° N, 55° E–90° N, 180° E 7.3 6.4 5.3 4.8 4.9 5.8 6.4 6.2 5.7 5.1 5.9 7.1
C. America 0° N, 120° W–20° N, 25° W 7.2 7.2 6.6 6.9 7.1 7.1 7.0 6.6 6.2 6.1 6.7 7.3
Europe 30° N, 20° W–85° N, 60° E 3.7 3.7 3.1 3.0 3.3 3.7 3.7 3.4 3.3 2.9 3.0 3.5
N. Africa 5° S, 25° W–40° N, 60° E 5.1 5.0 4.3 4.3 4.5 5.1 5.3 5.3 4.7 4.5 4.3 5.1
N. America 20° N, 180° W–85° N, 20° W 4.8 5.0 5.2 5.3 4.9 4.8 4.5 4.3 4.2 4.3 4.4 5.0
S. Africa 40° S, 0° E–0° N, 60° E 5.2 5.1 5.1 5.5 5.4 5.7 5.8 6.0 5.4 5.5 5.2 5.6
S. America 60° S, 110° W–0° N, 20° W 7.5 7.7 7.6 7.1 7.0 7.7 8.1 8.3 7.6 6.8 7.0 7.9

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 46 46 47 49 51 51 50 48 49 50 49 47
Asia 20° S, 45° E–40° N, 160° E 41 38 35 33 33 34 37 37 37 38 40 42
C. Asia 25° N, 55° E–90° N, 180° E 43 40 35 31 31 33 36 36 37 38 40 43
C. Asia 25° N, 55° E–90° N, 180° E 43 40 35 31 31 33 36 36 37 38 40 43
C. America 0° N, 120° W–20° N, 25° W 41 38 36 34 34 36 37 36 35 36 37 40
Europe 30° N, 20° W–85° N, 60° E 28 27 25 24 24 25 27 28 28 29 29 29
N. Africa 5° S, 25° W–40° N, 60° E 42 40 38 37 37 38 41 42 43 45 45 44
N. America 20° N, 180° W–85° N, 20° W 25 24 21 20 19 20 21 22 22 23 24 26
S. Africa 40° S, 0° E–0° N, 60° E 60 59 60 61 61 61 62 61 61 61 61 62
S. America 60° S, 110° W–0° N, 20° W 34 34 35 36 36 37 34 32 32 31 33 34

Table 9. RTGCV (expressed in percent of the domain-mean) for mean monthly wind speed over the interpolation domains
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Fig. 13. Fractional change in mean absolute difference between mean monthly precipitation at stations and estimates from
NEW01 and NEW99. Colours show fractional change, text in bottom left of each cell shows the percent of individual station-grid
differences that show a decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell shows 

the number of stations in each 5° grid box
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differences (mean absolute difference or MAD) in
5° grid boxes over the globe and plotting the reduction
(or increase) in grid box MAD when NEW01 is used
instead of NEW99. This change in MAD is expressed
as a fractional change for precipitation (for which the
size of the absolute difference is closely tied to actual
precipitation amount) and as an absolute change for
other variables. In addition, we map (1) the percentage
of station-estimate absolute differences that are lower
for NEW01 compared to NEW99, and (2) the number
of stations occurring into each 5° grid box (note that
the number of estimates is 12 times the number of
stations).

4.1. Precipitation

The change in MAD (as defined above) between
precipitation station data and estimates from NEW01
and NEW99 are shown in Fig. 13 and summarised in
Table 10. Over nearly all areas the agreement between
NEW01 and station data is on average better than for
NEW99, and a large proportion of 5° cells show a
reduction of >25% in MAD. Moreover >66% of the
individual station-to-grid differences are improved in
>90% of the 5° grid boxes. There are a few instances
where NEW99 is closer to the station estimates than
NEW01, but in nearly all of these the MAD is small,
with the result that quite small changes in MAD can
result in large fractional changes. These locations also
tend to have only 1 or a few stations,
suggesting that in some data-sparse
regions there is little difference be-
tween the coarse and fine grids, and
that the additional elevational in-
formation in the finer grid is not
always utilised. However, NEW01
also shows an improvement in as
many data-sparse regions, but again
the estimates from NEW01 and
NEW99 are quite similar.

To investigate the improvement in
the precipitation grids compared to
NEW99 in more detail, we focus on
2 regions: the Indian sub-continent
and the western USA. Over the
Indian sub-continent the NEW01
interpolation benefits from ~400
additional stations, as well as the
finer resolution elevation grid. The
effect of this can be seen in Fig. 14,
which compares July precipitation
for NEW99, NEW01 fitted to the 0.5°
(NEW99) elevation grid, NEW01 and
the raw station data. NEW99 fails to

capture the steep increase in monsoon rainfall from the
coastal plain to the western Ghats, and then the sharp
drop to arid conditions in the rain shadow on the east-
ern (lee) side of the Ghats. This is primarily due to the
sparser station network in NEW99, but is also a func-
tion of the under-representation of topography in the
coarser grid. This can be seen from Fig. 14b which
shows the NEW01 interpolation fitted to the coarser
(NEW99) elevation grid; although the precipitation is
higher along Ghats, it is still under-estimated relative
to both the 10’ grid and the station data (Fig. 14c,d).
However, the NEW01 10’ grid does not capture the full
variance of rainfall along the coast exhibited by station
data, with some smoothing of the steep spatial gradi-
ents and under-estimation of the highest precipitation.

Over the western USA, we adopt a similar compari-
son to that employed over the Indian sub-continent,
but we are also able to compare NEW01 to a ‘state of
the art’ regional climatology, the 10’ version of the
PRISM data set (Daly et al. 1994), downloaded from
the USDA Natural Resources Conservation Services
(http://www.ftw.nrcs.usda.gov). Note also that in this
example we do not compare NEW99 to NEW01 fitted
to the 0.5° grid; however, the 2 grids are very similar,
suggesting that in both cases the same larger-scale
climate trends are well captured.

Fig. 15 compares the grids for January. Both NEW99
and NEW01 capture the main features of precipitation
over the region when compared to PRISM, including
the higher rainfall over the Coast Range, the Cascades
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Table 10.  Summary, for all variables, of analyses undertaken to produce a diagram
such as Fig. 16. Results for all 5° cells were sorted and the cell statistics at various
percentiles extracted. The first figure for each percentile is the percent of NEW01
estimates of station values that are better than NEW99 estimates (i.e. bottom-left
values from each cell in Fig. 16). Values in brackets are the reduction in cell MADs
corresponding to that percentile (corresponding to cell colours in Fig. 16). For
example, in the case of precipitation, half the 5° cells have 78% or more NEW01
estimates that are better than the NEW99 estimates, and half the cells exhibit a
fractional decrease in MAD of at least 0.52. Note that for all variables except pre-
cipitation, changes in MAD are in absolute units rather than fractional changes

Variable Percentile
10 25 50 75 90

Precipitation 95 (–0.8) 86 (–0.7) 78 (–0.5) 71 (–0.4) 64 (–0.2)
Wet-day frequency 100 (–1.5) 95 (–0.8) 88 (–0.4) 79 (–0.2) 69 (–0.1)
Mean temperature 100 (–0.8) 91 (–0.6) 83 (–0.4) 72 (–0.3) 60 (–0.1)
Diurnal temperature range 100 (–1.0) 95 (–0.6) 86 (–0.4) 77 (–0.2) 66 (–0.1)
Frost frequency 100 (–0.9) 94 (–0.5) 85 (–0.3) 75 (–0.1) 58 (0.0)
Relative humiditya 100 (–0.9) 100 (–0.5) 91 (–0.3) 83 (–0.2) 75 (–0.1)
Sunshine 95 (–2.2) 87 (–1.2) 73 (–0.6) 58 (–0.2) 35 (0.6)
Wind speed 100 (–0.7) 97 (–0.6) 84 (–0.4) 66 (–0.1) 41 (0.2)

aRelative humidity is compared to NEW01 fitted to the 0.5° elevation grid as
this variable does not form part of NEW99, which instead used vapour
pressure
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and Sierra Nevada, the intervening rain shadows, and
then the gradual decrease in rainfall over the Rocky
Mountains and into the Great Plains. In other months
these larger features are also present in all 3 data sets
(not shown).

When NEW01 and PRISM are compared in more
detail, it is clear that the spatial variance in the former
is reduced over regions of complex topography, being
underestimated in many high elevation regions. This
indicates that NEW01 does not capture the full topo-
graphic control on precipitation. One reason for this
lies with the station data used to fit the NEW01 surface
(Fig. 15d), which also do not capture most of the high
precipitation peaks in PRISM—the problem of ‘topo-
graphic bias’ of input data identified by Briggs &
Cogley (1996). Moreover, if the climate-elevation rela-
tionship is non-linear, or 2 stations with similar eleva-
tion on either side of a topographic barrier have high
(windward) and low (leeward) precipitation, values
interpolated as a function of location and elevation (as

in NEW01) will tend to be underestimated. PRISM
overcomes this problem by including (1) more stations
and (2) additional predictors—such as aspect—but at
the expense of computational effort. Thus in regions
with dense station networks that can resolve some of
the topographic complexities in precipitation, an inter-
polation technique like PRISM is able to produce supe-
rior results. However, on a global scale few regions
have the required station density, and the computa-
tional and station-input demands of an approach such
as PRISM are unsustainable. The simpler technique
employed to construct NEW01 is therefore more
appropriate for such global-scale interpolations.

4.2. Mean temperature

Fig. 16 shows the change in the mean station-grid
differences for mean temperature when NEW01 and
NEW99 are compared to station data. As with precipi-
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Fig. 14. Comparison of
precipitation grids
(mm mo–1) for July
over the Indian sub-
continent. (a) Original
0.5° grid from NEW99;
(b) NEW01 fitted to the
NEW99 0.5° elevation
grid; (c) NEW01 at 10’;
(d) precipitation sta-
tion data used to
interpolate NEW01,
with the colours corre-
sponding to the July
mean precipitation at 

these stations

(a) NEW99 (0.5°) [JULY] (b) NEW01 (0.5°) [JULY]

(c) NEW01 (10°) [JULY] (d) Station Data [JULY]
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tation, a large proportion of stations show closer agree-
ment with NEW01, with only 7% of grid boxes show-
ing an increase in MAD, and over 75% of grid-boxes
showing a decrease in MAD of >0.2°C. In contrast, the
greatest increase in MAD is just <0.2°C, and only a few
5° cells show any increase in MAD. Thus, as for pre-
cipitation, the 10’ grids described here show an overall
improvement in accuracy when compared to station
observations.

4.3. Wind speed

The final detailed comparison between NEW01 and
NEW99 is wind speed, which is, after precipitation, the
most difficult variable to interpolate (see Table 9) and
suffers from a particularly sparse station network. This
variable therefore has lower potential ‘added value’
when interpolated to finer resolution, because the
station network may not capture spatial variability at
this resolution. Over much of North America, Asia and

Australia the MAD of wind speed at stations (Fig. 17)
decreases when NEW01 is used (by between 0.2 and
1.00 m s–1; note that typical wind speeds vary from 2 to
8 m s–1 globally). This is mainly because: (1) the 10’
grid points are closer to the station locations than the
0.5° points and will simply, by their proximity, produce
a better station estimate; and (2) there is some addi-
tional skill derived from the improved elevation grid.
Over Australia the decrease in MAD is quite large
(generally 0.5 to 1.0 m s–1), predominantly due to
improved station data, with the addition of ~200 sta-
tions, whereas over much of Asia the improvement is a
result of the finer grid resolution, as no additional sta-
tions were added in this domain. Over large regions of
Africa and South America, the MAD actually increases,
by up to 0.2 m s–1; these increases are relatively small
and are in part due to the fitted surface being slightly
smoother (lower roughness coefficient and larger sta-
tion error assumed in the statistical model). Overall,
wind speed in NEW01 shows an improvement in some
regions and slightly less skill in others.
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Fig. 15. Comparison of pre-
cipitation grids (mm mo–1) for
January over the western
USA. (a) Original 0.5° grid
from NEW99; (b) NEW01 at
10’; (c) the PRISM precipita-
tion grid at 10’; (d) precipi-
tation station data used to in-
terpolate NEW01, with the
colours corresponding to the
January mean precipitation 

at these stations

(a) NEW99 (0.5°) [JANUARY] (b) NEW01 (10°) [JANUARY]

(c) PRISM (10°) [JANUARY] (d) Station Data [JANUARY]
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Fig. 16. Change in mean absolute difference (MAD) between mean monthly temperature from station data and estimates from NEW01
and NEW99. Colours show the change in MAD (°C); text in bottom left of each cell shows the percent of individual station-grid
differences that show a decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell show the 

number of stations in each 5° grid box
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Fig. 17. Change in mean absolute difference (MAD) between wind speed station data and estimates from NEW01 and NEW99.
Colours show change in m s–1, text in bottom left of each cell shows the percent of individual station-grid differences that show a
decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell show the number of stations in 

each 5° grid box
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4.4. Other variables

Space limitations preclude the inclusion of maps
showing the changes in MAD for the other variables.
However, the results of all analyses are summarised in
Table 10. In all cases except wind speed and sunshine,
>90% of 5° grid cells show a decrease in MAD and
>50% show a decrease that is non-negligible (e.g.
50% of diurnal temperature range cells show a de-
crease of 0.4°C). Similarly, depending on the variable,
at between 75 and 90% of cells (second-last and last
columns), more than half the individual station esti-

mates derived from NEW01 are better than those
derived from NEW99.

5. REGIONAL EXAMPLES

In this section, a selection of regional examples is
presented to provide a flavour of the derived climate
fields. A complete graphical presentation is beyond the
scope of this paper because of the sheer number of
climate fields, but readers are referred to the IWMI
World Water and Climate Atlas website (http://www.
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Fig. 18. Southern Asian
precipitation (January
and July) exceeded 10,
50 and 90% of the time
(i.e. the 90th, 50th and
10th percentiles), de-
rived using the inter-
polated parameters of
the Gamma distribution

(a) 90% Exceedence – JANUARY (b) 90% Exceedence – JULY

(c) 50% Exceedence – JANUARY (d) 50% Exceedence – JULY

(f) 10% Exceedence – JULY(e) 10% Exceedence – JANUARY
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cgiar.org/iwmi/watlas/atlas.htm) at which data can be
visualised and downloaded (in various formats) free
of charge, or the Climatic Research Unit website
(http://www.cru.uea.ac.uk) where the gridded data
are also available in raw ASCII format.

5.1. Precipitation over southern Asia

We illustrate the use of the parameters of the Gamma
distribution by deriving fields of precipitation ex-
ceeded 10, 50 and 90 percent of the time (i.e. the 90th,
50th and 10th percentiles) for January and July over
the south-central portion of the Asian domain. The
percentiles were determined on a grid-point-by-grid-
point basis using a numerical inversion of the Gamma
distribution (available in most graphics and numerical
packages; alternatively there are numerous approxi-
mations in the literature, e.g. Stedinger et al. 1992).

The resultant fields (Fig. 18) demonstrate the change
in monthly precipitation depth at these different ex-
ceedence probabilities. In January, at the height of the
dry season, the 90% exceedence precipitation is effec-
tively zero over much of the region, except for parts of
the Himalayas. The median precipitation in January
(50% exceedence) is similar to the mean precipitation
maps most readers will be familiar with, and shows the

well-known dry period over large parts of the Indian
sub-continent and Myanmar, with wetter conditions
over Sri Lanka and SE Asia. For precipitation with 10%
exceedence probabilities, only the western part of
India and parts of Tibetan China have zero precipita-
tion; other regions have significant non-zero precipita-
tion, up to 250 mm in Sri Lanka and Indonesia.

In July, which is in the Asian monsoon season, pre-
cipitation is much higher than in January. The 90%
exceedence precipitation is close to zero only in Pak-
istan and the extreme SE (NW) of India (Sri Lanka).
Over the western coastal regions of India and Myan-
mar the July precipitation exceeds ~300 mm 90% of
the time, the median precipitation is ~1000 mm, and
the 10% exceedence is close to 2000 mm in places.
Highest precipitation occurs over the highlands around
Shillong, India. The 50% exceedence is very similar to
the mean precipitation field in Fig. 14c.

5.2. Wet-day frequency over southern Asia

The interpolated mean wet-day frequency over
southern Asia in January, April, July and October is
shown in Fig. 19. The picture for January shows a sim-
ilar pattern of spatial variability to the median precipi-
tation (Fig. 18), with zero or only a few wet-days per
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Fig. 19. Interpolated
wet-day frequency
over the southern 

Asian region
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(c) JULY (d) OCTOBER

30°N

25°N

20°N

15°N

10°N

5°N

30°N

25°N

20°N

15°N

10°N

5°N

30°N

25°N

20°N

15°N

10°N

5°N

30°N

25°N

20°N

15°N

10°N

5°N

65°W 70°W 75°W 80°W 85°W 90°E 95°E 100°E 65°W 70°W 75°W 80°W 85°W 90°E 95°E 100°E

65°W 70°W 75°W 80°W 85°W 90°E 95°E 100°E

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31

Wet-day Frequency (Days/Month)

65°W 70°W 75°W 80°W 85°W 90°E 95°E 100°E



Clim Res 21: 1–25, 2002

month over most of the region during this dry period.
In contrast, July has higher mean wet-day frequency,
up to ~20 d over western India, and up to 31 d over
Myanmar. Wet-day frequency in April and October
reflects the patterns in precipitation that are associated
with the advance and retreat of the Asian monsoon.

These wet-day frequency fields can be used in com-
bination with the mean precipitation fields (calculated
using a simple back-computation with the parameters
of the Gamma distribution—see Section 2.4) to deter-
mine mean monthly precipitation intensity in mm per
wet-day. There is also the potential to use the empiri-
cal relationship between wet-day frequency and
monthly precipitation derived by New et al. (2000) to
calculate the number of wet-days that will typically
occur in a month with precipitation of a given excee-
dence probability.

5.3. Mean temperature and humidity over Europe

We make use of part of the European domain to illus-
trate the interpolated mean temperature and relative
humidity fields. The station networks used to derive
these fields are shown in Figs. 4 and 8. The tempera-
ture fields (Fig. 20) show the expected seasonal pro-
gression of temperatures, with warmest temperatures
of 25°C in central Spain in July, and coldest tempera-

tures of –18°C in northern Scandinavia in January. The
effect of continentality is clearly visible, with coastal
areas being warmer than their adjacent interiors. The
strong elevation dependence of mean temperature is
also portrayed, with high elevation regions such as the
Alps and Pyrenees being cooler than surrounding low-
lands. Elevation lapse rates are calculated implicitly
during the interpolation because of the inclusion of sta-
tion elevation as an independent predictor: the lapse
rate therefore varies across the domain as a function of
spatial variations in this elevation dependence.

The interpolated fields of monthly relative humidity
over Europe (Fig. 21) show the change from relatively
moist conditions in winter to drier conditions in sum-
mer. The latitudinal gradient in atmospheric moisture
is also evident, as are moister conditions in western
coastal regions. In spring and summer (April and July),
the Alps also have higher relative humidity compared
to surrounding areas; this increase with elevation is
reversed in autumn and winter (October and January).

Fig. 21 also highlights some problems arising from the
merging of raw relative humidity and vapour pressure
station data to produce a single humidity variable (in this
case relative humidity, see Section 2.3). In winter, there
are marked differences in the interpolated relative
humidity over Scandinavia, with values of 80 to 90% in
Norway and Finland, and 95 to 100% in Sweden. The
humidity data for both Finland and Norway were sup-
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Fig. 20. Interpolated
mean monthly tem-
perature over Western 

Europe

(a) JANUARY (b) APRIL

(c) JULY (d) OCTOBER

70°N

65°N

60°N

55°N

50°N

45°N

40°N

70°N

65°N

60°N

55°N

50°N

45°N

40°N

70°N

65°N

60°N

55°N

50°N

45°N

40°N

70°N

65°N

60°N

55°N

50°N

45°N

40°N

10°W 5°W 0 5°E 10°E 15°E 20°E 25°E 30°E 10°W 5°W 0 5°E 10°E 15°E 20°E 25°E 30°E

10°W 5°W 0 5°E 10°E 15°E 20°E 25°E 30°E

–20 –15 –10 –5 0 5 10 15 20 25

Mean Temperature (°C)

10°W 5°W 0 5°E 10°E 15°E 20°E 25°E 30°E



New et al.: High-resolution climate data set

plied as relative humidity, most likely an average of daily
or sub-daily measurements. In contrast, the Swedish hu-
midity data were provided as vapour pressure measure-
ments and were converted to relative humidity using
Eq. (1) prior to the interpolation. The higher values of
calculated relative humidity for Sweden probably arise
because of mismatches in the timing of raw vapour pres-
sure (typically once or twice a day) and mean tempera-
ture (either average of maximum and minimum temper-
ature, or the average of several readings through the
day). Several reasons may act to exaggerate the biases in
winter—an increased diurnality in humidity and/or tem-
perature, and the fact that ambient temperatures are
below freezing for much of the time.

5.4. Mean windspeed over Australia

Some 280 wind speed stations over mainland Aus-
tralia and coastal islands contributed to the interpola-
tion over the Australasian domain, providing reason-
ably good station density compared to some other
regions (e.g. Russia). The interpolation has captured
several large-scale features of mean wind speed in
Australia, namely the southwest to northeast decrease
in wind speed and the higher wind speed along the
coast (Fig. 22).

6. CONCLUSIONS

We have documented the construction of a high-
resolution mean monthly climatology of global land
areas excluding Antarctica. The data set has a spatial
resolution of 10’ lat/lon, which approximates to about
18 km × 18 km at the equator, with the east-west di-
mension decreasing to ~16 and ~9 km at 30 and 60° N
and S, respectively. This research builds on earlier
work which resulted in a 30’ lat/lon data set over the
same domain (New et al. 1999) by including additional
station data in some data-sparse areas, making use of
an improved topographic data set and expressing pre-
cipitation in terms of the parameters of the Gamma dis-
tribution. The latter enables the calculation of precipi-
tation at any exceedence probability (i.e. the monthly
precipitation exceeded a given percentage of the time),
which has a number of potential applications in applied
hydroclimatology and agricultural meteorology. The
data set comprises 8 surface climate variables—precip-
itation, wet-day frequency, mean temperature, diurnal
temperature range, relative humidity, sunshine dura-
tion, ground frost frequency and wind speed.

The climate surfaces were interpolated from net-
works of station observations using thin-plate smooth-
ing splines, with elevation, latitude and longitude as
independent predictors. The density of stations varies
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Fig. 21. Interpolated mean
monthly relative humidity 

over Western Europe
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both spatially and according to the climate element
being mapped. In all cases, station networks are spars-
est over cold, dry and mountainous regions, with con-
comitant increased interpolation errors. Mountainous
regions are particularly prone to interpolation errors
because of the more complex topographic forcing in
such regions and a low-elevation (valley bottom) bias
to the station network (see e.g. Briggs & Cogley 1996).
Many regions of the tropics also have relatively sparse
station networks and larger interpolation errors, par-
ticularly for the less commonly reported variables (sun-
shine, relative humidity and wind speed).

Although the data set has a spatial resolution of 10’,
and has been shown to benefit from the improved ele-
vation information at this resolution, small-scale vari-
ability in mean climate that is not captured by the spa-
tial and elevation dependencies in the station data will
likewise not be reflected in the interpolated fields. For
example, local orographic forcing over a mountain
range would not be captured unless there are stations
at several elevations; in the absence of such stations,
elevation relationships from the larger-scale station
network would be used in defining the spline surface.
Similarly, any other forcings on local climate that are
not reflected in elevation and lat/lon—such as aspect—

will be ignored. Thus the full benefit of the higher
resolution will be realised only where the station data
permit and it is important therefore that users make
use of the figures showing the station networks and the
cross-validation statistics to obtain a qualitative idea of
the accuracy of the interpolation in different regions.
Data files listing the locations of all stations used in the
interpolation are also available through the IWMI
World Water and Climate Atlas website (http://
www.cgiar.org/iwmi/watlas/atlas.htm) and the CRU
website (http://www.cru.uea.ac.uk). These can be
used to determine the proximity of any particular grid
point(s) to the station controls.
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Fig. 22. Interpolated mean
wind speed over Australia
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