CRU TS 2.0: Introduction

Timothy D. Mitchell *
January 31, 2003

Contents

1 Introduction 1
2 Variables 1
3 Resolution 2
4 Construction 2
5 References 4

1 Introduction

This document provides a summary of the climate data-set labelled CRU TS 2.0. Any use of this data-set should be duly acknowledged by referring to the published paper (Mitchell et al, 2003).

2 Variables

There are five variables supplied in this data-set, each constrained to lie within the range of the possible (Table 1).

*Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK (t.mitchell@uea.ac.uk)
Table 1: Climate variables supplied as part of CRU TS 2.0. Where limits were placed on the values that a variable could take, the limits are indicated.

<table>
<thead>
<tr>
<th>var</th>
<th>variable</th>
<th>units</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>cld</td>
<td>cloud cover</td>
<td>percentage</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>dtr</td>
<td>diurnal temperature range</td>
<td>degrees Celsius</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>precipitation</td>
<td>mm</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tmp</td>
<td>temperature</td>
<td>degrees Celsius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vap</td>
<td>vapour pressure</td>
<td>hecta-Pascals</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: UEA gridded data-sets of climate observations previously developed.

<table>
<thead>
<tr>
<th>data-set</th>
<th>space</th>
<th>time</th>
<th>variety</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRU CL 1.0</td>
<td>0.5°</td>
<td>1961-90</td>
<td>climatology</td>
<td>New et al, 1999</td>
</tr>
<tr>
<td>CRU CL 2.0</td>
<td>10'</td>
<td>1961-90</td>
<td>climatology</td>
<td>New et al, 2002</td>
</tr>
<tr>
<td>CRU TS 1.0</td>
<td>0.5°</td>
<td>1901-1995</td>
<td>time-series</td>
<td>New et al, 2000</td>
</tr>
<tr>
<td>CRU TS 1.1</td>
<td>0.5°</td>
<td>1996-1998</td>
<td>time-series</td>
<td>Mark New, pers. comm.</td>
</tr>
<tr>
<td>CRU TS 1.2</td>
<td>0.5°</td>
<td>1995-2000</td>
<td>time-series</td>
<td>Mitchell et al, 2003</td>
</tr>
</tbody>
</table>

3 Resolution

The data is supplied on a 0.5 degree grid, covering the global land surface. The data grid is envisaged as a rectangle with boundaries at the poles and the international date line. Data is only supplied for land boxes on the grid, which total 67420. The data is supplied at a monthly time-step for 1901-2100.

4 Construction

Previous work had produced the data-sets summarised in Table 2. The present data-set (CRU TS 2.0) builds upon these previous data-sets. The general procedure was as follows:

1. The CRU station databases were updated to ensure sufficient station coverage to 2000.¹

2. The station data for 1901–2000 was anomalised relative to 1961–1990.²

¹Cloud cover data was only available for 1971-1996; this was augmented by sunshine duration data for 1991-2000.

3. The station anomalies were interpolated onto a 0.5 degree grid. (In locations in space and time where station data was unavailable, the gridded values were ‘relaxed’ towards zero.)

4. The derivation of the grids of cloud cover anomalies for 1901–2000 was a special case. The sunshine anomaly grids were converted to cloud cover grids under the assumption that they had the same magnitude as, but opposite sign to, their respective cloud cover anomalies. Both sets of cloud cover anomaly grids were reanomalised relative to 1961–1990 by calculating the difference between the original and 1961–1990 base periods from CRU TS 1.0. The cloud time-series was completed by appending the the grids for 1901–1970 from CRU TS 1.0 to produce a complete record for 1901–2000.

5. The time-series were adjusted to ensure that the mean anomaly for the base period (1961–1990) was zero at each grid-box. Care was taken to ensure that the gridded anomalies ‘relaxed’ to zero remained at zero after the adjustment.

6. The grids of anomalies (relative to 1961–1990) for 1901–2000 were combined with the global climatology for 1961–90 at 0.5 degrees (CRU CL 1.0) to obtain grids of absolute values.

7. The data in the grids was constrained to lie within the range of the physically possible (Table 1).

---

3The sparse vapour pressure data was augmented by ‘synthetic data’ estimated from diurnal temperature range, and was only ‘relaxed’ towards zero as a last resort.

4The grids from CRU TS 1.0 were first anomalised relative to 1961–1990.

5Although the mean for the baseline is certainly zero for the station anomalies, this is not necessarily the case at the grid-box level, because of the changes over time in the selection of stations contributing information to a grid-box.

6A minor point is that the grids in CRU TS 1.0 — and therefore in CRU TS 2.0 for cloud cover in 1901–1970 — were not correctly relaxed to zero in areas where station data was unavailable, so there are slight differences between the 1961–90 normal and the ‘relaxed’ values in such cases.

7For precipitation, the operation was multiplicative, since the precipitation anomalies were relative (percentages). For all other variables the operation was additive.
5 References


\(^8\)This data-set is known as CRU CL 1.0
\(^9\)In fact, only 1901–1995 were developed.
\(^10\)This data-set is known as CRU TS 1.0
\(^11\)This data-set is known as CRU CL 2.0